The present technology relates generally to devices and methods for the intravascular treatment of emboli and/or thrombi within a blood vessel of a human patient. In particular, some embodiments of the present technology relate to systems for repeatedly deploying an interventional device at or proximate to a pulmonary embolism within a patient.
Thromboembolic events are characterized by an occlusion of a blood vessel. Thromboembolic disorders, such as stroke, pulmonary embolism, heart attack, peripheral thrombosis, atherosclerosis, and the like, affect many people. These disorders are a major cause of morbidity and mortality.
When an artery is occluded by a clot, tissue ischemia develops. The ischemia will progress to tissue infarction if the occlusion persists. Infarction does not develop or is greatly limited if the flow of blood is reestablished rapidly. Failure to reestablish blood flow can lead to the loss of limb, angina pectoris, myocardial infarction, stroke, or even death.
In the venous circulation, occlusive material can also cause serious harm. Blood clots can develop in the large veins of the legs and pelvis, a common condition known as deep venous thrombosis (DVT). DVT arises most commonly when there is a propensity for stagnated blood (e.g., long distance air travel, immobility, etc.) and clotting (e.g., cancer, recent surgery, such as orthopedic surgery, etc.). DVT causes harm by: (1) obstructing drainage of venous blood from the legs leading to swelling, ulcers, pain, and infection, and (2) serving as a reservoir for blood clots to travel to other parts of the body including the heart, lungs, brain (stroke), abdominal organs, and/or extremities.
In the pulmonary circulation, the undesirable material can cause harm by obstructing pulmonary arteries—a condition known as pulmonary embolism. If the obstruction is upstream, in the main or large branch pulmonary arteries, it can severely compromise total blood flow within the lungs, and therefore the entire body, and result in low blood pressure and shock. If the obstruction is downstream, in large to medium pulmonary artery branches, it can prevent a significant portion of the lung from participating in the exchange of gases to the blood resulting in low blood oxygen and buildup of blood carbon dioxide.
There are many existing techniques to reestablish blood flow through an occluded vessel. One common surgical technique, an embolectomy, involves incising a blood vessel and introducing a balloon-tipped device (such as the Fogarty catheter) to the location of the occlusion. The balloon is then inflated at a point beyond the clot and used to translate the obstructing material back to the point of incision. The obstructing material is then removed by the surgeon. Although such surgical techniques have been useful, exposing a patient to surgery may be traumatic and best avoided when possible. Additionally, the use of a Fogarty catheter may be problematic due to the possible risk of damaging the interior lining of the vessel as the catheter is being withdrawn.
Percutaneous methods are also utilized for reestablishing blood flow. A common percutaneous technique is referred to as balloon angioplasty where a balloon-tipped catheter is introduced to a blood vessel (e.g., typically through an introducing catheter). The balloon-tipped catheter is then advanced to the point of the occlusion and inflated to dilate the stenosis. Balloon angioplasty is appropriate for treating vessel stenosis, but it is generally not effective for treating acute thromboembolisms as none of the occlusive material is removed and the vessel will re-stenos after dilation. Another percutaneous technique involves placing a catheter near the clot and infusing streptokinase, urokinase, or other thrombolytic agents to dissolve the clot. Unfortunately, thrombolysis typically takes hours to days to be successful. Additionally, thrombolytic agents can cause hemorrhage and in many patients the agents cannot be used at all.
Various devices exist for performing a thrombectomy or removing other foreign material. However, such devices have been found to have structures which are either highly complex, cause trauma to the treatment vessel, or lack sufficient retaining structure and thus cannot be appropriately fixed against the vessel to perform adequately. Furthermore, many of the devices have highly complex structures that lead to manufacturing and quality control difficulties as well as delivery issues when passing through tortuous or small diameter catheters. Less complex devices may allow the user to pull through the clot, particularly with inexperienced users, and such devices may not completely capture and/or collect all of the clot material.
Moreover, with many devices, it is difficult or not possible to make repeated attempts at removing clot material (e.g., to make multiple passes with a device). In particular, if a first pass with a device does not completely capture and/or collect all of the clot material, the device and an accompanying catheter system must be removed from the patient, cleaned, and subsequently reinserted into the patient in order to make a second pass and remove additional material. This can be time consuming and traumatic for the patient.
Thus, there exists a need for an improved embolic extraction device.
Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure.
The present technology is generally directed to systems and associated devices and methods for engaging and removing clot material from a blood vessel of a human patient. In some embodiments, an interventional device can be advanced through a guide catheter and deployed within clot material in a blood vessel. The interventional device can subsequently be withdrawn from the patient through the guide catheter to remove clot material captured by the interventional device. In some embodiments of the present technology, the interventional device can be repeatedly deployed in/withdrawn from the blood vessel to capture a desired amount of the clot material—without requiring that the guide catheter be fully withdrawn from the patient after each “pass” (e.g., each repeated deployment/withdrawal of the interventional device). That is, the guide catheter may be inserted only a single time during an intravascular procedure including multiple passes to remove clot material from the patient.
Although many of the embodiments are described below with respect to devices, systems, and methods for treating a pulmonary embolism, other applications and other embodiments in addition to those described herein are within the scope of the technology (e.g., intravascular procedures other than the treatment of emboli, intravascular procedures for treating cerebral embolism, etc.). Additionally, several other embodiments of the technology can have different configurations, states, components, or procedures than those described herein. Moreover, it will be appreciated that specific elements, substructures, advantages, uses, and/or other features of the embodiments described with reference to
With regard to the terms “distal” and “proximal” within this description, unless otherwise specified, the terms can reference a relative position of the portions of a retraction and aspiration apparatus and/or an associated catheter system with reference to an operator and/or a location in the vasculature. Also, as used herein, the designations “rearward,” “forward,” “upward,” “downward,” etc. are not meant to limit the referenced component to use in a specific orientation. It will be appreciated that such designations refer to the orientation of the referenced component as illustrated in the Figures; the retraction and aspiration system of the present technology can be used in any orientation suitable to the user.
As further shown in
As shown in
Referring again to
The housing 102 can further include a channel 116 that extends proximally from the opening 114 along approximately the length of the housing 102, as shown in
When the RA device 100 is coupled to the catheter system 200 (e.g., when the attachment/valve member 208 of the catheter system 200 is positioned within the opening 114 in the housing 102 of the RA device 100), movement of the lever 104 functions to retract a portion of the catheter system 200 positioned in the channel 116 (e.g., the delivery sheath 204 and/or the push member 202). For example, the RA device 100 can include a locking portion that grips the delivery sheath 204 (and, in some embodiments, indirectly the push member 202) to pull the delivery sheath 204 proximally as the lever 104 is moved from the first to the second position.
The tubing system 300 of the clot retrieval system 1 fluidly couples the pressure source of the RA device 100 to the aspiration lumen of the catheter system 200. When the RA device 100 is coupled to the catheter system 200, movement of the lever 104 functions to simultaneously generate negative pressure in the pressure source and to retract a portion of the catheter system 200, as described above. The tubing system 300 has a first portion 314 coupled to the pressure source, a second portion 316 coupled to the guide catheter 206, and a drainage portion 318 coupled to a reservoir 320 (e.g., a vinyl bag). The first portion 314, second portion 316, and/or drainage portion 318 can include one or more tubing sections 302 (labeled individually as tubing sections 302a-302f) and/or fluid control unit, such as one or more control valves. In certain embodiments, one or more of the tubing sections 302 can have a relatively large diameter (e.g., greater than about 0.1 inch, greater than about 0.210 inch, etc.) to help inhibit clogging of clot material within the tubing system 300.
More specifically, the first portion 314 can include the tubing section 302a. The drainage portion 318 can include (i) the tubing section 302b, (ii) a first fluid control unit (e.g., a valve) 304, and (iii) the tubing section 302c. The second portion 316 can include (i) the tubing section 302d, (ii) a clot reservoir 306, (iii) the tubing section 302e, (iv) a second fluid control unit 310, and (v) the tubing section 302f. In some embodiments, the first fluid control unit 304 can be a one-way valve (e.g., a check valve) that only allows fluid flow from the first portion 314 and/or second portion 316 to the drainage portion 318 (and not vice-versa). In certain embodiments, as described in detail with reference to
As shown in
As shown in
Depending on the age and size of the clot material PE, local anatomical and/or physiological conditions, and position of the interventional device ID relative to the clot material PE, the lever 104 can be pumped several times to fully extract the clot material PE and/or interventional device ID from the treatment site. For example,
Once the clot material PE is positioned within the guide catheter 206 such that a distal terminus of the clot material PE is proximal from a distal terminus of the guide catheter 206, the catheter system 200 can be withdrawn proximally (e.g., as indicated by arrow A3 in
To redeploy the interventional device ID, many conventional systems require that the entire catheter system, including the guide catheter 206, be fully removed from the patient (e.g., including a guide catheter). That is, if the once-deployed interventional device is reintroduced without fully removing and cleaning the catheter system, there is a significant risk that clot material and/or other contaminants from the catheter system will be reintroduced into the blood vessel of the patient during a second pass. As described in further detail below, the present technology advantageously allows for an interventional device to be redeployed without fully removing a guide catheter, and with a significantly reduced risk of reintroducing clot material and/or other contaminants into the blood vessel of the patient.
In the embodiment illustrated in
In operation, blood and clot material flow into the clot reservoir 306 via the port 324 as the lever 104 of the RA device 100 is moved from the first position toward the second position. Clot material is captured within the housing 322 and inhibited from exiting through the cap assembly 330 by the filter 321 while blood is allowed to flow from the port 324 to the fluid connector 332. In particular, the filter 321 inhibits clot material from passing into the check valve assembly 335, which could inhibit function of the check valve assembly 335 and/or macerate the clot material and make it indistinguishable from or difficult to distinguish from other fluids (e.g., blood) aspirated and/or removed from the patient. The check valve assembly 335 subsequently inhibits backflow of fluid through the housing 322 via the fluid connector 332 as the lever 104 of the RA device 100 is moved from the second position toward the first position. With reference to
Additional details of the clot reservoir 306, and associated devices and methods, are described in Appendix A to this application.
As further shown in
As illustrated in the embodiment of
Referring to
Referring to
In one aspect of the present technology, the continuous lumen formed by inserting the first valve insert 650 into the attachment member 408 can have a generally constant diameter along the length of the lumen configured to accommodate the outer diameter of the guide catheter 206. Accordingly, as described in further detail below, when a clot retaining portion of an interventional device and associated clot material are retracted proximally through the guide catheter 206, the interventional device ID does not greatly change shape (e.g., expand or compress) while passing through the attachment member 408 and the likelihood of clot material being retained within the attachment member 408 is greatly reduced.
Referring to
The proximal portion 861a can include one or more adjustment features 865 (labeled individually as adjustment features 865a and 865b) for adjusting a diameter of the lumen 864. For example, in some embodiments the second valve insert 860 is a Tuohy Borst Adapter that can be adjusted, via the one or more adjustment features 865, to seal the proximal opening 443a of the attachment member 408 by sealing the lumen 864 against a component of the catheter system 200 inserted therethrough. More particularly, referring to
As described in further detail below, in some embodiments, the second valve insert 860 may more completely seal against components of the catheter system 200 than the valve 445 of the attachment member 408. Accordingly, use of the second valve insert 860 can improve the efficiency of aspiration of the guide catheter 206 using the RA device 100 (
The method 1000 includes engaging the interventional device ID of the catheter system 200 with the clot material PE in the blood vessel BV as, for example, described above with reference to
The method 1000 continues by proximally retracting the interventional device ID and associated clot material PE into the guide catheter 206 of the catheter system 200 until a distal terminus of the clot material PE is proximal from a distal terminus of the guide catheter 206 as, for example, described above with reference to
In some embodiments, the interventional device ID can be retracted proximally into the guide catheter 206 without use of the RA device 100. For example, the operator can manually retract the interventional device ID and associated clot material PE into the guide catheter 206.
After initial deployment of the interventional device ID in blocks 1001 and 1002, the operator can determine whether it is necessary or desirable to redeploy the interventional device ID within the blood vessel BV of the patient in order to remove additional clot material PE that was not removed during a previous pass with the interventional device ID (block 1003). In some embodiments, the operator can visualize the amount of clot material PE collected in the clot reservoir 306 to at least partially determine whether another pass is needed. In other embodiments, the operator can rely on imaging (e.g., fluoroscopic imaging) of the blood vessel BV or other techniques known in the art to determine whether an additional pass is necessary. If another pass is not needed (e.g., the clot material PE was adequately removed), the operator can elect to withdraw the catheter system 200 from the patient (block 1004). If clot material PE remains in the vessel, the operator can prepare to redeploy the interventional device ID.
To redeploy the interventional device ID, the method 1000 includes positioning the first valve insert 650 (
The first valve insert 650 can be advanced over the delivery sheath 204 and/or guidewire of the catheter system 200 until it is positioned (e.g., seated) at least partially within the attachment member 408 (
In operation, the first valve insert 650 helps create a lumen of constant diameter through the attachment member 408 such that a diameter of the interventional device ID does not substantially change (e.g., expand and/or contract) as the interventional device ID is withdrawn proximally through the attachment member 408. In particular, the first valve insert 650 can effectively shield the interventional device ID from the valve 445 of the attachment member 408. Without the first valve insert 650, as the interventional device ID is withdrawn proximally it can expand within the attachment member 408 (e.g., as the interventional device ID passes through the second portion 441b of the first lumen 441) before being squeezed (e.g., radially collapsed) as it passes through the valve 445. Without the first valve insert 650, the valve 445 may strip (e.g., break off, shear, etc.) clot material PE that held by the interventional device ID. This can cause clot material PE to remain in the attachment member 408 after the interventional device ID is fully withdrawn from the patient, which presents a significant risk that remaining clot material PE will be reintroduced into the blood vessel BV of the patient if a second pass is made with the interventional device ID without fully removing the guide catheter 206 from the patient to enable cleaning of the guide catheter 206 and the attachment member 408. The first valve insert 650 of the present technology inhibits clot material PE engaged with the interventional device ID from being stripped by the valve 445 within the attachment member 408 and, therefore, enables a second pass with the interventional device ID to be made without removing the guide catheter 206 from the patient.
The method 1000 includes removing the first valve insert 650 and positioning the second valve insert 860 (
Positioning the second valve insert 860 further includes adjusting (tightening) the second valve insert 860 over the guidewire to seal the proximal opening 443a of the attachment member 408. In some embodiments, the method 1000 need not include positioning of the second valve insert 860. Instead, the valve 445 of the attachment member 408 may provide a suitable seal for subsequent aspiration steps. However, in some embodiments, use of the second valve insert 860 can provide a better seal between the guidewire of the catheter system 200 and the attachment member 408, and thus improve the efficiency of aspiration using the RA device 100.
The method 1000 includes aspirating the guide catheter 206 by, for example, pumping or cycling the lever 104 of the RA device 100 one or more times (block 1007). In embodiments where the clamp 410 was previously closed (e.g., at block 1005), prior to pumping the lever 104, the operator can actuate (e.g., open) the clamp 410 to permit fluid flow from the guide catheter 206 into the tubing system 300. Aspirating the guide catheter 206 removes any residual clot material PE remaining in the guide catheter 206. Accordingly, the residual clot material PE is not reintroduced into the blood vessel BV of the patient when the interventional device ID and delivery sheath 204 are subsequently advanced through the guide catheter 206 during another pass. In certain embodiments, the guide catheter 206 can further be flushed with a fluid (e.g., heparinized saline). For example, the connector 417 can be decoupled from the tubing system 300 and the fluid can be introduced from a flushing device (e.g., a syringe) through a flush port adapter coupled (e.g., semi-permanently coupled) to the connector 417.
In some embodiments, the guide catheter 206 can be aspirated without use of the RA device 100. For example, a syringe or other pressure source can be fluidly coupled directly to the connector 417 and used to aspirate the guide catheter 206. In such embodiments, opening of the clamp 410 fluidly connects the syringe to the lumen 205 of the guide catheter 206 and closing of the clamp 410 fluidly disconnects the syringe from the lumen 205 of the guide catheter 206. In some embodiments, the syringe or other pressure source can be pre-charged with a vacuum—such as by drawing a plunger of the syringe with the clamp 410 closed. The clamp 410 can then be opened to instantaneously or nearly instantaneously (e.g., immediately) apply the stored vacuum pressure to the tubing system 300 and to the lumen 205 of the guide catheter 206, thereby generating suction throughout the guide catheter 206. In particular, suction can be generated at a distal portion of the guide catheter 206. In one aspect of the present technology, pre-charging or storing the vacuum before applying the vacuum to the lumen 205 of the guide catheter 206 is expected to generate greater suction forces with a faster ramp time (and correspondingly greater fluid flow velocities) at and/or near a distal portion of the guide catheter 206 as compared to, for example, simply activating the pressure source of the RA device 100 by cycling the lever 104 of the RA device 100. These suction forces generated by application of the stored vacuum can be used to not only aspirate the guide catheter 206, but also to aspirate or otherwise remove some or all of the clot material PE remaining in the blood vessel BV after retraction of the interventional device ID.
The method 1000 includes flushing the tubing system 300 (block 1008). In some embodiments, flushing the tubing system 300 includes (i) actuating (e.g., closing) the clamp 410 to inhibit fluid flow from the guide catheter 206 into the tubing system 300, (ii) disconnecting the tubing section 326 of the clot reservoir 306 from the tubing section 302e and the connector 417 of the tubing system 300, (iii) placing the tubing section 326 into a container of fluid (e.g., saline), and (iv) pumping the lever 104 of the RA device 100 to draw the fluid through the tubing system 300. In some embodiments, the housing 322 of the clot reservoir 306 can be temporarily disconnected (e.g., unscrewed) from the cap assembly 330 so that the clot material PE in the clot reservoir 306 can be removed. In certain embodiments, the tubing system 300 need not be flushed prior to a second pass with the interventional device ID or another interventional device. In some embodiments, flushing the tubing system 300 can include attaching a syringe to the fluid connector 332 of the clot reservoir 306 and/or to the tubing section 302a of the tubing system 300 and using the syringe to generate a negative pressure to draw the fluid through the clot reservoir 306.
After the tubing system 300 has been flushed, the method 1000 can return to block 1001. In particular, the same interventional device ID and delivery sheath 204 can be cleaned and subsequently advanced through the guide catheter 206 and to the remaining clot material PE in the blood vessel BV. In some embodiments, a new interventional device and delivery sheath can be used for each pass to reduce the likelihood of contamination (e.g., reintroduction of clot material PE into the patient). Once the desired amount of clot material PE has been removed from the patient, the catheter system 200 may be fully withdrawn from the patient (block 1004).
In one aspect of the present technology, the method 1000 provides for multiple passes of an interventional device without requiring that the entire guide catheter be removed after each pass. Accordingly, the present technology allows for only a single insertion of a guide catheter during a procedure including multiple passes to remove clot material—increasing the speed of the procedure and reducing trauma to the patient since the guide catheter does not need to be reintroduced (e.g., advanced through the vasculature and past the heart) before each pass.
Moreover, in certain embodiments, the present technology can enable the guide catheter 206 to be relocated to an alternate treatment site within the patient without removing the guide catheter 206 from the patient and, therefore, without reintroducing the guide catheter 206 through the heart. For example, the guide catheter 206 can be relocated to another treatment site within the lungs including a treatment site in the opposite lung. More specifically, (i) a dilator can be reintroduced into the guide catheter 206, (ii) the guide catheter 206 can be withdrawn into the main pulmonary artery, (iii) the guidewire can be redirected to the new treatment site, (iv) the guide catheter 206 can be advanced over the guidewire to the new treatment site, and (v) the dilator can be removed.
Additional details of the systems, devices, and methods described above with reference to
As further shown in
In particular, referring to
As shown, a tubular member (e.g., an elongate member) 1372 can extend at least partially through the first lumen 1371 to define a central lumen 1374 that is generally coaxial with the first lumen 1371. In some embodiments, the tubular member 1372 can comprise a compliant tubular structure (e.g., a silicon tube) that can be, for example, a thin-walled compliant tubular structure. The thin-walled structure of the tubular member 1372 can facilitate the collapse, and specifically the uniform collapse of the tubular member 1372 and sealing of the tubular member 1372. For example, the attachment member 1108 can further include an actuation mechanism 1375 coupled to the tubular member 1372 and configured to collapse and seal the tubular member 1372 via compression and/or constriction of one or more filaments 1376 coupled to the tubular member 1372.
More specifically, in some embodiments, the actuation mechanism 1375 can be a manual actuator such as one or more buttons 1378. Depression or release of the buttons can, in some embodiments, facilitate sealing of the tubular member 1372 around tools or instruments of a wide range of sizes and/or diameters that fit through the tubular member 1372. For example,
As shown in the embodiment of
Accordingly, the actuation mechanism 1375 and tubular member 1372 of the attachment member 1108 provide for sealing of the attachment member 1108 around, for example, various components of the catheter system 200 (e.g., the delivery sheath 204, the pull member 202, the guidewire, the interventional device ID, etc.) that are inserted through the attachment member 1108 for advancement to the treatment site in the blood vessel BV. Moreover, in the second configuration, the central lumen 1374 of the tubular member 1372 and the first lumen 1371 of the housing 1370 can together provide a continuous lumen of generally constant diameter. As described above, such a constant diameter can prevent clot material PE associated with the interventional device ID from getting stuck in (e.g., remaining in) the attachment member 1108 as the interventional device ID is retracted through the attachment member 1108—thus minimizing the risk of reintroducing clot material to the patient upon a second pass using the interventional device ID (or another interventional device).
The method 1400 includes engaging the interventional device ID of the catheter system 200 with the clot material PE in the blood vessel BV as, for example, described above with reference to
The method 1400 continues by proximally retracting the interventional device ID and associated clot material PE into the guide catheter 206 of the catheter system 200 until a distal terminus of the clot material PE is proximal from a distal terminus of the guide catheter 206 as, for example, described above with reference to
In some embodiments, the interventional device ID can be retracted proximally into the guide catheter 206 without use of the RA device 100. For example, the operator can manually retract the interventional device ID and associated clot material PE into the guide catheter 206.
After the initial deployment of the interventional device ID in blocks 1401 and 1402, the operator can determine whether it is necessary or desirable to redeploy the interventional device ID within the blood vessel BV of the patient in order to remove additional clot material PE that was not removed during a previous pass with the interventional device ID (block 1403). In some embodiments, the operator can visualize the amount of clot material PE collected in the clot reservoir 306 to at least partially determine whether another pass is needed. In other embodiments, the operator can rely on imaging (e.g., fluoroscopic imaging) of the blood vessel BV or other techniques known in the art to determine whether an additional pass is necessary. If another pass is not needed (e.g., the clot material PE was adequately removed), the operator can elect to withdraw the catheter system 200 from the patient at block 1404. If clot material PE remains in the vessel, the operator can prepare to redeploy the interventional device ID.
To redeploy the interventional device ID, the method 1400 includes withdrawing the interventional device ID from the patient (block 1405). In particular, before withdrawing the interventional device ID, the catheter system 200 can be decoupled from the RA device by (i) decoupling the attachment member 1108 from the distal portion 100b of the RA device 100 and (ii) removing the delivery sheath 204 and/or guidewire from the channel 116 of the RA device 100. Additionally, in some embodiments, the stopcock 1110 can be actuated (e.g., twisted closed) to prevent fluid flow from the guide catheter 206 into the tubing system 300 during withdrawal of the interventional device ID.
The delivery sheath 204 and/or another component of the catheter system 200 may then be manually (e.g., by the operator) or automatically pulled proximally to withdraw the interventional device ID from the patient. Before the interventional device ID and associated clot material PE are withdrawn through the attachment member 1108, the actuation mechanism 1375 of the attachment member 1108 can be actuated (e.g., by depressing the buttons 1378) to move the tubular member 1372 to the second configuration (e.g., to open the tubular member 1372) such that the central lumen 1374 of the tubular member 1372 and the first lumen 1371 of the housing 1370 together provide a continuous lumen of generally constant diameter. Accordingly, the interventional device ID can be fully withdrawn (e.g., retracted proximally) through the attachment member 1108 without causing a significant amount of clot material PE associated with the interventional device ID to remain in the attachment member 1108—thus minimizing the risk of reintroducing clot material to the patient upon an additional pass using the interventional device ID (or another interventional device). Moreover, in certain embodiments, the guidewire of the catheter system 200 is pinned during withdrawal of the interventional device ID and the delivery sheath 204 such that the guidewire does not move relative to the interventional device ID and the delivery sheath 204. Therefore, in such embodiments, the guidewire does not need to be re-advanced to the treatment site prior to an additional pass.
Once the interventional device ID has been fully removed from the guide catheter 206 and the attachment member 1108, the attachment member 1108 can be returned to the first (e.g., sealed) configuration by, for example, releasing the buttons 1378. Next, the method includes aspirating the guide catheter 206 by, for example, pumping or cycling the lever 104 of the RA device 100 one or more times (block 1406). In embodiments where the stopcock 1110 was previously closed (e.g., at block 1405), prior to pumping the lever 104, the stopcock 1110 can be opened to permit fluid flow from the guide catheter 206 into the tubing system 300. Aspirating the guide catheter 206 removes any residual clot material PE remaining in the guide catheter 206. Accordingly, the residual clot material PE is not reintroduced into the blood vessel BV of the patient when the interventional device ID and delivery sheath 204 (or another interventional device ID) are subsequently advanced through the guide catheter 206 during another pass. In certain embodiments, the guide catheter 206 can further be flushed with a fluid (e.g., heparinized saline). For example, the fluid can be introduced through the injection port 1212 while simultaneously pressing the buttons 1378 of the attachment member 1108. In certain embodiments, the stopcock 1110 can be closed (e.g., at block 1406), and a syringe can be connected to the injection port 1212 and used to generate a negative pressure prior to opening the stopcock 1110 to permit fluid flow from the guide catheter 206 into the syringe.
In some embodiments, the guide catheter 206 can be aspirated without use of the RA device 100. For example, a syringe or other pressure source can be fluidly coupled directly to the connector 1117 and used to aspirate the guide catheter 206. In such embodiments, opening of the stopcock 1110 fluidly connects the syringe to the lumen 205 of the guide catheter 206 and closing of the stopcock 1110 fluidly disconnects the syringe from the lumen 205 of the guide catheter 206. In some embodiments, the syringe or other pressure source can be pre-charged with a vacuum— such as by drawing a plunger of the syringe with the stopcock 1110 closed. The stopcock 1110 can then be opened to instantaneously or nearly instantaneously (e.g., immediately) apply the stored vacuum pressure to the tubing system 300 and to the lumen 205 of the guide catheter 206, thereby generating suction throughout the guide catheter 206. In particular, suction can be generated at a distal portion of the guide catheter 206. In one aspect of the present technology, pre-charging or storing the vacuum before applying the vacuum to the lumen 205 of the guide catheter 206 is expected to generate greater suction forces with a faster ramp time (and correspondingly greater fluid flow velocities) at and/or near a distal portion of the guide catheter 206 as compared to, for example, simply activating the pressure source of the RA device 100 by cycling the lever 104 of the RA device 100. These suction forces generated by application of the stored vacuum can be used to not only aspirate the guide catheter 206, but also to aspirate or otherwise remove some or all of the clot material PE remaining in the blood vessel BV after retraction of the interventional device ID.
The method 1400 includes flushing the tubing system 300 (block 1407). In some embodiments, flushing the tubing system 300 includes (i) closing the stopcock 1110 to inhibit fluid flow from the guide catheter 206 into the tubing system 300, (ii) disconnecting the tubing section 326 of the clot reservoir 306 from the tubing section 300e of the tubing system 300, (iii) placing the tubing section 326 into a container of fluid (e.g., saline), and (iv) pumping the lever 104 of the RA device 100 to draw the fluid through the tubing system 300. In some embodiments, the housing 322 of the clot reservoir 306 can be temporarily decoupled (e.g., unscrewed) from the cap assembly 330 so that the clot material PE in the clot reservoir 306 can be removed. In certain embodiments, the tubing system 300 need not be flushed prior to an additional pass with the interventional device ID. In some embodiments, flushing the tubing system 300 can include attaching a syringe to the fluid connector 332 of the clot reservoir 306 and/or to the tubing section 302a of the tubing system 300 and using the syringe to generate a negative pressure to draw the fluid through the clot reservoir 306.
After the tubing system 300 has been flushed, the method 1400 can return to block 1401. In particular, the same interventional device ID and delivery sheath 204 can be cleaned and subsequently advanced through the guide catheter 206 and to the remaining clot material PE in the blood vessel. In some embodiments, a new interventional device ID and delivery sheath 204 can be used for each pass to reduce the likelihood of contamination (e.g., reintroduction of clot material PE). Once the desired amount of clot material PE has been removed from the patient, the catheter system 200 may be fully withdrawn from the patient (block 1404).
In one aspect of the present technology, the method 1400 provides for multiple passes of an interventional device without requiring that the entire guide catheter be removed after each pass. Accordingly, the present technology allows for only a single insertion of a guide catheter during a procedure including multiple passes to remove clot material—increasing the speed of the procedure and reducing trauma to the patient since the guide catheter does not need to be reintroduced (e.g., advanced through the vasculature and past the heart) before each pass.
Moreover, in certain embodiments, the present technology can enable the guide catheter 206 to be relocated to an alternate treatment site within the patient without removing the guide catheter 206 from the patient and, therefore, without reintroducing the guide catheter 206 through the heart. For example, the guide catheter 206 can be relocated to another treatment site within the lungs including a treatment site in the opposite lung. More specifically, (i) a dilator can be reintroduced into the guide catheter 206, (ii) the guide catheter 206 can be withdrawn into the main pulmonary artery, (iii) the guidewire can be redirected to the new treatment site, (iv) the guide catheter 206 can be advanced over the guidewire to the new treatment site, and (v) the dilator can be removed.
Additional details of the systems, devices, and methods described above with reference to
1. A method for the intravascular treatment of clot material from a treatment site within a blood vessel of a human patient, the method comprising:
2. The method of example 1 wherein, after inserting the first valve insert into the attachment member, the first valve insert and the attachment member together define a lumen having a generally constant diameter.
3. The method of example 2 wherein the diameter of the lumen is generally the same as the diameter of the elongated shaft.
4. The method of any one of examples 1-3 wherein inserting the first valve insert into the attachment member includes exercising a valve of the attachment member.
5. The method of any one of examples 1-4, further comprising actuating the second valve insert to seal the attachment member.
6. The method of any one of examples 1-5 wherein the first interventional device and the second interventional device are the same interventional device, and wherein the method further comprises cleaning the interventional device to remove the portion of the clot material.
7. The method of any one of examples 1-6, further comprising engaging the second interventional device with remaining clot material at the treatment site in the blood vessel.
8. The method of any one of examples 1-7 wherein aspirating the elongated shaft includes aspirating, into the elongated shaft, at least a portion of clot material remaining at the treatment site in the blood vessel.
9. The method of example 8 wherein aspirating the elongated shaft includes—
10. The method of example 9 wherein the fluid control unit is a clamp.
11. A method for the intravascular treatment of clot material from a treatment site within a blood vessel of a human patient, the method comprising:
12. The method of example 11 wherein actuating the attachment member includes pressing one or more buttons on the attachment member.
13. The method of example 11 or 12 wherein in the second configuration, the lumen of the attachment member has a generally constant diameter.
14. The method of example 13 wherein the diameter of the lumen is generally the same as a diameter of the elongated shaft.
15. The method of any one of examples 11-14 wherein the first interventional device and the second interventional device are the same interventional device, and wherein the method further comprises cleaning the interventional device to remove the portion of the clot material.
16. The method of any one of examples 11-15, further comprising engaging the second interventional device with remaining clot material in the blood vessel.
17. The method of one of examples 11-16 wherein aspirating the elongated shaft includes—
18. A method for the intravascular treatment of clot material from a treatment site within a blood vessel of a human patient, the method comprising:
19. The method of example 18 wherein unsealing the attachment member includes exercising a valve of the attachment member such that a lumen of the attachment member has a diameter that is about equal to a diameter of the lumen of the elongated shaft.
20. The method of example 18 or 19, further comprising:
The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.
Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with some embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.
This application is a continuation of U.S. patent application Ser. No. 17/498,642, filed on Oct. 11, 2021, and titled “SINGLE INSERTION DELIVERY SYSTEM FOR TREATING EMBOLISM AND ASSOCIATED SYSTEMS AND METHODS,” which is a continuation of U.S. patent application Ser. No. 16/258,344, filed on Jan. 25, 2019, and titled “SINGLE INSERTION DELIVERY SYSTEM FOR TREATING EMBOLISM AND ASSOCIATED SYSTEMS AND METHODS,” which is now issued as U.S. Pat. No. 11,154,314, which claims the benefit of U.S. Provisional Patent Application No. 62/622,691, filed on Jan. 26, 2018, and titled “SINGLE INSERTION DELIVERY SYSTEM FOR TREATING EMBOLISM AND ASSOCIATED SYSTEMS AND METHODS,” each of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1101890 | Tunstead | Jun 1914 | A |
2784717 | Thompson | Mar 1957 | A |
2846179 | Monckton | Aug 1958 | A |
2955592 | Maclean | Oct 1960 | A |
3088363 | Sparks | May 1963 | A |
3197173 | Taubenheim | Jul 1965 | A |
3416531 | Edwards | Dec 1968 | A |
3435826 | Fogarty | Apr 1969 | A |
3438607 | Williams et al. | Apr 1969 | A |
3515137 | Santomieri | Jun 1970 | A |
3661144 | Jensen et al. | May 1972 | A |
3675657 | Gauthier | Jul 1972 | A |
3785380 | Brumfield | Jan 1974 | A |
3860006 | Patel | Jan 1975 | A |
3863624 | Gram | Feb 1975 | A |
3892161 | Sokol | Jul 1975 | A |
3923065 | Nozick et al. | Dec 1975 | A |
4030503 | Clark, III | Jun 1977 | A |
4034642 | Iannucci et al. | Jul 1977 | A |
4222380 | Terayama | Sep 1980 | A |
4243040 | Beecher | Jan 1981 | A |
4287808 | Leonard et al. | Sep 1981 | A |
4324262 | Hall | Apr 1982 | A |
4393872 | Reznik et al. | Jul 1983 | A |
4401107 | Haber et al. | Aug 1983 | A |
4469100 | Hardwick | Sep 1984 | A |
4523738 | Raftis et al. | Jun 1985 | A |
4551862 | Haber | Nov 1985 | A |
4604094 | Shook | Aug 1986 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4634421 | Hegemann | Jan 1987 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4646736 | Auth et al. | Mar 1987 | A |
4650466 | Luther | Mar 1987 | A |
4776337 | Palmaz | Oct 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4863440 | Chin et al. | Sep 1989 | A |
4870953 | DonMichael et al. | Oct 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4890611 | Monfort et al. | Jan 1990 | A |
4898575 | Fischell et al. | Feb 1990 | A |
4946440 | Hall | Aug 1990 | A |
4960259 | Sunnanvader et al. | Oct 1990 | A |
4978341 | Niederhauser | Dec 1990 | A |
4981478 | Evard et al. | Jan 1991 | A |
5030201 | Palestrant | Jul 1991 | A |
5059178 | Ya | Oct 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5127626 | Hilal et al. | Jul 1992 | A |
5129910 | Phan et al. | Jul 1992 | A |
5135484 | Wright | Aug 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5158533 | Strauss et al. | Oct 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5192274 | Bierman | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5192290 | Hilal | Mar 1993 | A |
5197485 | Grooters | Mar 1993 | A |
5234403 | Yoda et al. | Aug 1993 | A |
5242461 | Kortenbach et al. | Sep 1993 | A |
5244619 | Burnham | Sep 1993 | A |
5323514 | Masuda et al. | Jun 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5360417 | Gravener et al. | Nov 1994 | A |
5364345 | Lowery et al. | Nov 1994 | A |
5376101 | Green et al. | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5389100 | Bacich et al. | Feb 1995 | A |
5391152 | Patterson et al. | Feb 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5421824 | Clement et al. | Jun 1995 | A |
5443443 | Shiber | Aug 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5476450 | Ruggio | Dec 1995 | A |
5484418 | Quiachon et al. | Jan 1996 | A |
5490859 | Mische et al. | Feb 1996 | A |
5496365 | Sgro | Mar 1996 | A |
5527326 | Hermann et al. | Jun 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5591137 | Stevens | Jan 1997 | A |
5639276 | Weinstock et al. | Jun 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5746758 | Nordgren et al. | May 1998 | A |
5749858 | Cramer | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5782817 | Franzel et al. | Jul 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5827229 | Auth et al. | Oct 1998 | A |
5846251 | Hart | Dec 1998 | A |
5860938 | Lafontaine et al. | Jan 1999 | A |
5873866 | Kondo et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5876414 | Straub | Mar 1999 | A |
5895406 | Gray et al. | Apr 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5911710 | Barry et al. | Jun 1999 | A |
5911728 | Sepetka et al. | Jun 1999 | A |
5911733 | Parodi | Jun 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5947985 | Imran | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5954737 | Lee | Sep 1999 | A |
5971938 | Hart et al. | Oct 1999 | A |
5971958 | Zhang | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5974938 | Lloyd | Nov 1999 | A |
5989233 | Yoon | Nov 1999 | A |
5993483 | Gianotti | Nov 1999 | A |
6017335 | Burnham | Jan 2000 | A |
6030397 | Moneti et al. | Feb 2000 | A |
6059745 | Gelbfish | May 2000 | A |
6059814 | Ladd | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6126635 | Simpson et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6146403 | St. Germain | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6156055 | Ravenscroft | Dec 2000 | A |
6159230 | Samuels | Dec 2000 | A |
6165196 | Stack et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6228060 | Howell | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245078 | Ouchi | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6254571 | Hart | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6322572 | Lee | Nov 2001 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6368339 | Amplatz | Apr 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6413235 | Parodi | Jul 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6458103 | Albert et al. | Oct 2002 | B1 |
6475236 | Roubin et al. | Nov 2002 | B1 |
6485502 | Don Michael | Nov 2002 | B2 |
6508782 | Evans et al. | Jan 2003 | B1 |
6511492 | Rosenbluth et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6530923 | Dubrul et al. | Mar 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6544278 | Vrba et al. | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6551342 | Shen et al. | Apr 2003 | B1 |
6564828 | Ishida | May 2003 | B1 |
6569181 | Burns | May 2003 | B1 |
6575995 | Huter et al. | Jun 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6589264 | Barbut et al. | Jul 2003 | B1 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6605074 | Zadno-azizi et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6620148 | Tsugita | Sep 2003 | B1 |
6620179 | Brook et al. | Sep 2003 | B2 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6623460 | Heck | Sep 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6645222 | Parodi et al. | Nov 2003 | B1 |
6660013 | Rabiner et al. | Dec 2003 | B2 |
6660014 | Demarais et al. | Dec 2003 | B2 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6692504 | Kurz et al. | Feb 2004 | B2 |
6699260 | Dubrul et al. | Mar 2004 | B2 |
6702830 | Demarais et al. | Mar 2004 | B1 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6755847 | Eskuri | Jun 2004 | B2 |
6767353 | Shiber | Jul 2004 | B1 |
6790204 | Zadno-azizi et al. | Sep 2004 | B2 |
6800080 | Bates | Oct 2004 | B1 |
6818006 | Douk et al. | Nov 2004 | B2 |
6824545 | Sepetka et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6824553 | Gene et al. | Nov 2004 | B1 |
6830561 | Jansen et al. | Dec 2004 | B2 |
6846029 | Ragner et al. | Jan 2005 | B1 |
6902540 | Dorros et al. | Jun 2005 | B2 |
6908455 | Hajianpour | Jun 2005 | B2 |
6939361 | Kleshinski | Sep 2005 | B1 |
6942682 | Vrba et al. | Sep 2005 | B2 |
6945977 | Demarais et al. | Sep 2005 | B2 |
6960189 | Bates et al. | Nov 2005 | B2 |
6960222 | Vo et al. | Nov 2005 | B2 |
7004931 | Hogendijk | Feb 2006 | B2 |
7004954 | Voss et al. | Feb 2006 | B1 |
7036707 | Aota et al. | May 2006 | B2 |
7041084 | Fotjik | May 2006 | B2 |
7052500 | Bashiri et al. | May 2006 | B2 |
7056328 | Arnott | Jun 2006 | B2 |
7063707 | Bose et al. | Jun 2006 | B2 |
7069835 | Nishri et al. | Jul 2006 | B2 |
7094249 | Thomas et al. | Aug 2006 | B1 |
7122034 | Belhe et al. | Oct 2006 | B2 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7223253 | Hogendijk | May 2007 | B2 |
7232432 | Fulton, III et al. | Jun 2007 | B2 |
7244243 | Lary | Jul 2007 | B2 |
7285126 | Sepetka et al. | Oct 2007 | B2 |
7300458 | Henkes et al. | Nov 2007 | B2 |
7306618 | Demond et al. | Dec 2007 | B2 |
7320698 | Eskuri | Jan 2008 | B2 |
7323002 | Johnson et al. | Jan 2008 | B2 |
7331980 | Dubrul et al. | Feb 2008 | B2 |
7481805 | Magnusson | Jan 2009 | B2 |
7534234 | Fotjik | May 2009 | B2 |
7578830 | Kusleika et al. | Aug 2009 | B2 |
7621870 | Berrada et al. | Nov 2009 | B2 |
7674247 | Fotjik | Mar 2010 | B2 |
7678131 | Muller | Mar 2010 | B2 |
7691121 | Rosenbluth et al. | Apr 2010 | B2 |
7695458 | Belley et al. | Apr 2010 | B2 |
7713282 | Frazier et al. | May 2010 | B2 |
7722641 | van der Burg et al. | May 2010 | B2 |
7763010 | Evans et al. | Jul 2010 | B2 |
7766934 | Pal et al. | Aug 2010 | B2 |
7775501 | Kees | Aug 2010 | B2 |
7780696 | Daniel et al. | Aug 2010 | B2 |
7815608 | Schafersman et al. | Oct 2010 | B2 |
7837630 | Nieoson et al. | Nov 2010 | B2 |
7905877 | Jilnenez et al. | Mar 2011 | B1 |
7905896 | Straub | Mar 2011 | B2 |
7938809 | Lampropoulos et al. | May 2011 | B2 |
7938820 | Webster et al. | May 2011 | B2 |
7967790 | Whiting et al. | Jun 2011 | B2 |
7976511 | Fotjik | Jul 2011 | B2 |
7993302 | Hebert et al. | Aug 2011 | B2 |
7993363 | Demond et al. | Aug 2011 | B2 |
8021351 | Boldenow et al. | Sep 2011 | B2 |
8043313 | Krolik et al. | Oct 2011 | B2 |
8052640 | Fiorella et al. | Nov 2011 | B2 |
8057496 | Fischer, Jr. | Nov 2011 | B2 |
8057497 | Raju et al. | Nov 2011 | B1 |
8066757 | Ferrera et al. | Nov 2011 | B2 |
8070694 | Galdonik et al. | Dec 2011 | B2 |
8070769 | Broome | Dec 2011 | B2 |
8070791 | Ferrera et al. | Dec 2011 | B2 |
8075510 | Aklog et al. | Dec 2011 | B2 |
8080032 | van der Burg et al. | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8092486 | Berrada et al. | Jan 2012 | B2 |
8100935 | Rosenbluth et al. | Jan 2012 | B2 |
8109962 | Pal | Feb 2012 | B2 |
8118829 | Carrison et al. | Feb 2012 | B2 |
8197493 | Ferrera et al. | Jun 2012 | B2 |
8246641 | Osborne et al. | Aug 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267897 | Wells | Sep 2012 | B2 |
8298257 | Sepetka et al. | Oct 2012 | B2 |
8317748 | Fiorella et al. | Nov 2012 | B2 |
8337450 | Fotjik | Dec 2012 | B2 |
RE43902 | Hopkins et al. | Jan 2013 | E |
8343167 | Henson | Jan 2013 | B2 |
8357178 | Grandfield et al. | Jan 2013 | B2 |
8361104 | Jones et al. | Jan 2013 | B2 |
8409215 | Sepetka et al. | Apr 2013 | B2 |
8480708 | Kassab et al. | Jul 2013 | B2 |
8486105 | Demond et al. | Jul 2013 | B2 |
8491539 | Fotjik | Jul 2013 | B2 |
8512352 | Martin | Aug 2013 | B2 |
8523897 | van der Burg et al. | Sep 2013 | B2 |
8535283 | Heaton et al. | Sep 2013 | B2 |
8535334 | Martin | Sep 2013 | B2 |
8535343 | van der Burg et al. | Sep 2013 | B2 |
8545526 | Martin et al. | Oct 2013 | B2 |
8568432 | Straub | Oct 2013 | B2 |
8568465 | Freudenthal et al. | Oct 2013 | B2 |
8574262 | Ferrera et al. | Nov 2013 | B2 |
8579915 | French et al. | Nov 2013 | B2 |
8585713 | Ferrera et al. | Nov 2013 | B2 |
8608754 | Wensel et al. | Dec 2013 | B2 |
8647367 | Kassab et al. | Feb 2014 | B2 |
8657867 | Dorn et al. | Feb 2014 | B2 |
8696622 | Fiorella et al. | Apr 2014 | B2 |
8715314 | Janardhan et al. | May 2014 | B1 |
8721714 | Kelley | May 2014 | B2 |
8753322 | Hu et al. | Jun 2014 | B2 |
8771289 | Mohiuddin et al. | Jul 2014 | B2 |
8777893 | Malewicz | Jul 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8784442 | Jones et al. | Jul 2014 | B2 |
8784469 | Kassab | Jul 2014 | B2 |
8795305 | Martin et al. | Aug 2014 | B2 |
8795345 | Grandfield et al. | Aug 2014 | B2 |
8801748 | Martin | Aug 2014 | B2 |
8808259 | Walton et al. | Aug 2014 | B2 |
8814927 | Shin et al. | Aug 2014 | B2 |
8820207 | Marchand et al. | Sep 2014 | B2 |
8826791 | Thompson et al. | Sep 2014 | B2 |
8828044 | Aggerholm et al. | Sep 2014 | B2 |
8833224 | Thompson et al. | Sep 2014 | B2 |
8834519 | van der Burg et al. | Sep 2014 | B2 |
8845621 | Fotjik | Sep 2014 | B2 |
8852226 | Gilson et al. | Oct 2014 | B2 |
8939991 | Krolik et al. | Jan 2015 | B2 |
8945143 | Ferrera et al. | Feb 2015 | B2 |
8945172 | Ferrera et al. | Feb 2015 | B2 |
8956384 | Berrada et al. | Feb 2015 | B2 |
8992504 | Castella et al. | Mar 2015 | B2 |
9005172 | Chung | Apr 2015 | B2 |
9011551 | Oral et al. | Apr 2015 | B2 |
9028401 | Bacich et al. | May 2015 | B1 |
9078682 | Lenker et al. | Jul 2015 | B2 |
9101382 | Krolik et al. | Aug 2015 | B2 |
9125683 | Farhangnia et al. | Sep 2015 | B2 |
9126016 | Fulton | Sep 2015 | B2 |
9149609 | Ansel et al. | Oct 2015 | B2 |
9155552 | Ulm, III | Oct 2015 | B2 |
9161766 | Slee et al. | Oct 2015 | B2 |
9168043 | van der Burg et al. | Oct 2015 | B2 |
9173668 | Ulm, III | Nov 2015 | B2 |
9186487 | Dubrul et al. | Nov 2015 | B2 |
9204887 | Cully et al. | Dec 2015 | B2 |
9216277 | Myers | Dec 2015 | B2 |
9241669 | Pugh et al. | Jan 2016 | B2 |
9358037 | Farhangnia et al. | Jan 2016 | B2 |
9259237 | Quick et al. | Feb 2016 | B2 |
9265512 | Carrison et al. | Feb 2016 | B2 |
9283066 | Hopkins et al. | Mar 2016 | B2 |
9301769 | Brady et al. | Apr 2016 | B2 |
9351747 | Kugler et al. | May 2016 | B2 |
9439664 | Sos | Sep 2016 | B2 |
9439751 | White et al. | Sep 2016 | B2 |
9456834 | Folk | Oct 2016 | B2 |
9463035 | Greenhalgh et al. | Oct 2016 | B1 |
9463036 | Brady et al. | Oct 2016 | B2 |
9526864 | Quick | Dec 2016 | B2 |
9526865 | Quick | Dec 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9566073 | Kassab et al. | Feb 2017 | B2 |
9566179 | Andreas et al. | Feb 2017 | B2 |
9566424 | Pessin | Feb 2017 | B2 |
9579116 | Nguyen et al. | Feb 2017 | B1 |
9581942 | Shippert | Feb 2017 | B1 |
9616213 | Furnish et al. | Apr 2017 | B2 |
9636206 | Nguyen et al. | May 2017 | B2 |
9643035 | Mastenbroek | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9700332 | Marchand et al. | Jul 2017 | B2 |
9717488 | Kassab et al. | Aug 2017 | B2 |
9717514 | Martin et al. | Aug 2017 | B2 |
9717519 | Rosenbluth et al. | Aug 2017 | B2 |
9744024 | Nguyen et al. | Aug 2017 | B2 |
9757137 | Krolik et al. | Sep 2017 | B2 |
9827084 | Bonnette et al. | Nov 2017 | B2 |
9844386 | Nguyen et al. | Dec 2017 | B2 |
9844387 | Marchand et al. | Dec 2017 | B2 |
9848975 | Hauser | Dec 2017 | B2 |
9849014 | Kusleika | Dec 2017 | B2 |
9884387 | Plha et al. | Feb 2018 | B2 |
9962178 | Greenhalgh et al. | May 2018 | B2 |
9980813 | Eller | May 2018 | B2 |
9999493 | Nguyen et al. | Jun 2018 | B2 |
10004531 | Rosenbluth et al. | Jun 2018 | B2 |
10010335 | Greenhalgh et al. | Jul 2018 | B2 |
10016266 | Hauser | Jul 2018 | B2 |
10028759 | Wallace et al. | Jul 2018 | B2 |
10045790 | Cox et al. | Aug 2018 | B2 |
10058339 | Galdonik et al. | Aug 2018 | B2 |
10098651 | Marchand et al. | Oct 2018 | B2 |
10130385 | Farhangnia et al. | Nov 2018 | B2 |
10226263 | Look et al. | Mar 2019 | B2 |
10238406 | Cox et al. | Mar 2019 | B2 |
10271864 | Greenhalgh et al. | Apr 2019 | B2 |
10327883 | Yachia | Jun 2019 | B2 |
10335186 | Rosenbluth et al. | Jul 2019 | B2 |
10342571 | Marchand et al. | Jul 2019 | B2 |
10349960 | Quick | Jul 2019 | B2 |
10383644 | Molaei et al. | Aug 2019 | B2 |
10384034 | Carrison et al. | Aug 2019 | B2 |
10456555 | Carrison et al. | Oct 2019 | B2 |
10478535 | Ogle | Nov 2019 | B2 |
10485952 | Carrison et al. | Nov 2019 | B2 |
10524811 | Marchand et al. | Jan 2020 | B2 |
10531883 | Deville et al. | Jan 2020 | B1 |
10588655 | Rosenbluth et al. | Mar 2020 | B2 |
10648268 | Jaffrey et al. | May 2020 | B2 |
10695159 | Hauser | Jun 2020 | B2 |
10709471 | Rosenbluth et al. | Jul 2020 | B2 |
10772636 | Kassab et al. | Sep 2020 | B2 |
10799331 | Hauser | Oct 2020 | B2 |
10912577 | Marchand et al. | Feb 2021 | B2 |
10926060 | Stern et al. | Feb 2021 | B2 |
10953195 | Jalgaonkar et al. | Mar 2021 | B2 |
10960114 | Goisis | Mar 2021 | B2 |
11000682 | Merritt et al. | May 2021 | B2 |
11013523 | Arad Hadar | May 2021 | B2 |
11058445 | Cox et al. | Jul 2021 | B2 |
11058451 | Marchand et al. | Jul 2021 | B2 |
11065019 | Chou et al. | Jul 2021 | B1 |
11147571 | Cox et al. | Oct 2021 | B2 |
11154314 | Quick | Oct 2021 | B2 |
11166703 | Kassab et al. | Nov 2021 | B2 |
11185664 | Carrison et al. | Nov 2021 | B2 |
11213356 | Tanner et al. | Jan 2022 | B2 |
11224450 | Chou et al. | Jan 2022 | B2 |
11224721 | Carrison et al. | Jan 2022 | B2 |
11259821 | Buck et al. | Mar 2022 | B2 |
11305094 | Carrison et al. | Apr 2022 | B2 |
11383064 | Carrison et al. | Jul 2022 | B2 |
11395903 | Carrison et al. | Jul 2022 | B2 |
11406801 | Fojtik et al. | Aug 2022 | B2 |
11433218 | Quick et al. | Sep 2022 | B2 |
11439799 | Buck et al. | Sep 2022 | B2 |
11457936 | Buck et al. | Oct 2022 | B2 |
11529158 | Hauser | Dec 2022 | B2 |
11554005 | Merritt et al. | Jan 2023 | B2 |
11559382 | Merritt et al. | Jan 2023 | B2 |
11576691 | Chou et al. | Feb 2023 | B2 |
11596768 | Stern et al. | Mar 2023 | B2 |
11642209 | Merritt et al. | May 2023 | B2 |
11648028 | Rosenbluth et al. | May 2023 | B2 |
11697011 | Merritt et al. | Jul 2023 | B2 |
11697012 | Merritt et al. | Jul 2023 | B2 |
11744691 | Merritt et al. | Sep 2023 | B2 |
11806033 | Marchand et al. | Nov 2023 | B2 |
11832837 | Hauser | Dec 2023 | B2 |
11832838 | Hauser | Dec 2023 | B2 |
11833023 | Hauser | Dec 2023 | B2 |
11839393 | Hauser | Dec 2023 | B2 |
11844921 | Merritt et al. | Dec 2023 | B2 |
11849963 | Quick | Dec 2023 | B2 |
11865291 | Merritt et al. | Jan 2024 | B2 |
11890180 | Merritt et al. | Feb 2024 | B2 |
11918243 | Marchand et al. | Mar 2024 | B2 |
11918244 | Marchand et al. | Mar 2024 | B2 |
11925369 | Hauser | Mar 2024 | B2 |
11937834 | Dinh | Mar 2024 | B2 |
11937838 | Cox et al. | Mar 2024 | B2 |
11963861 | Strauss et al. | Apr 2024 | B2 |
20010004699 | Gittings et al. | Jun 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010041881 | Sarge et al. | Nov 2001 | A1 |
20010041909 | Tsugita et al. | Nov 2001 | A1 |
20010049486 | Evans et al. | Dec 2001 | A1 |
20010051810 | Dubrul et al. | Dec 2001 | A1 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020032455 | Boock et al. | Mar 2002 | A1 |
20020049452 | Kurz et al. | Apr 2002 | A1 |
20020095161 | Dhindsa | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020120277 | Hauschild et al. | Aug 2002 | A1 |
20020147458 | Hiblar et al. | Oct 2002 | A1 |
20020151918 | Lafontaine et al. | Oct 2002 | A1 |
20020156457 | Fisher | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020169474 | Kusleika | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020188276 | Evans et al. | Dec 2002 | A1 |
20030023263 | Krolik et al. | Jan 2003 | A1 |
20030083693 | Daniel et al. | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030114875 | Sjostrom | Jun 2003 | A1 |
20030116731 | Hartley | Jun 2003 | A1 |
20030125663 | Coleman et al. | Jul 2003 | A1 |
20030135151 | Deng | Jul 2003 | A1 |
20030135230 | Massey et al. | Jul 2003 | A1 |
20030135258 | Andreas et al. | Jul 2003 | A1 |
20030153873 | Luther et al. | Aug 2003 | A1 |
20030153973 | Soun et al. | Aug 2003 | A1 |
20030168068 | Poole et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030191516 | Weldon et al. | Oct 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030225379 | Schaffer et al. | Dec 2003 | A1 |
20040019310 | Hogendijk | Jan 2004 | A1 |
20040039351 | Barrett | Feb 2004 | A1 |
20040039412 | Isshiki et al. | Feb 2004 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040102807 | Kusleika et al. | May 2004 | A1 |
20040122359 | Wenz et al. | Jun 2004 | A1 |
20040127936 | Salahieh et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138692 | Phung et al. | Jul 2004 | A1 |
20040167567 | Cano et al. | Aug 2004 | A1 |
20040199201 | Kellett et al. | Oct 2004 | A1 |
20040199202 | Dubrul et al. | Oct 2004 | A1 |
20040260344 | Lyons et al. | Dec 2004 | A1 |
20040267272 | Henniges et al. | Dec 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050033172 | Dubrul et al. | Feb 2005 | A1 |
20050038468 | Panetta et al. | Feb 2005 | A1 |
20050054995 | Barzell et al. | Mar 2005 | A1 |
20050055047 | Greenhalgh | Mar 2005 | A1 |
20050085769 | MacMahon et al. | Apr 2005 | A1 |
20050085826 | Nair et al. | Apr 2005 | A1 |
20050085846 | Garrison et al. | Apr 2005 | A1 |
20050085849 | Sepetka et al. | Apr 2005 | A1 |
20050119668 | Teague et al. | Jun 2005 | A1 |
20050131387 | Pursley | Jun 2005 | A1 |
20050177132 | Lentz et al. | Aug 2005 | A1 |
20050187570 | Nguyen et al. | Aug 2005 | A1 |
20050203605 | Dolan | Sep 2005 | A1 |
20050283165 | Gadberry | Dec 2005 | A1 |
20050283166 | Greenhalgh et al. | Dec 2005 | A1 |
20050283186 | Berrada et al. | Dec 2005 | A1 |
20060020286 | Niermann | Jan 2006 | A1 |
20060042786 | West | Mar 2006 | A1 |
20060047286 | West | Mar 2006 | A1 |
20060074401 | Ross | Apr 2006 | A1 |
20060089533 | Ziegler et al. | Apr 2006 | A1 |
20060100662 | Daniel et al. | May 2006 | A1 |
20060155305 | Freudenthal et al. | Jul 2006 | A1 |
20060173525 | Behl et al. | Aug 2006 | A1 |
20060195137 | Sepetka et al. | Aug 2006 | A1 |
20060200221 | Malewicz | Sep 2006 | A1 |
20060217664 | Hattler et al. | Sep 2006 | A1 |
20060224177 | Finitsis | Oct 2006 | A1 |
20060229645 | Bonnette et al. | Oct 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060253145 | Lucas | Nov 2006 | A1 |
20060264905 | Eskridge et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282111 | Morsi | Dec 2006 | A1 |
20060293696 | Fahey et al. | Dec 2006 | A1 |
20070010787 | Hackett et al. | Jan 2007 | A1 |
20070038225 | Osborne | Feb 2007 | A1 |
20070093744 | Elmaleh | Apr 2007 | A1 |
20070112374 | Paul, Jr. et al. | May 2007 | A1 |
20070118165 | DeMello et al. | May 2007 | A1 |
20070149996 | Coughlin | Jun 2007 | A1 |
20070161963 | Smalling | Jul 2007 | A1 |
20070179513 | Deutsch | Aug 2007 | A1 |
20070191866 | Palmer et al. | Aug 2007 | A1 |
20070198028 | Miloslavski et al. | Aug 2007 | A1 |
20070208361 | Okushi et al. | Sep 2007 | A1 |
20070208367 | Fiorella et al. | Sep 2007 | A1 |
20070213753 | Waller | Sep 2007 | A1 |
20070213765 | Adams et al. | Sep 2007 | A1 |
20070233043 | Dayton et al. | Oct 2007 | A1 |
20070255252 | Mehta | Nov 2007 | A1 |
20070288054 | Tanaka et al. | Dec 2007 | A1 |
20080015541 | Rosenbluth et al. | Jan 2008 | A1 |
20080087853 | Kees | Apr 2008 | A1 |
20080088055 | Ross | Apr 2008 | A1 |
20080157017 | Macatangay et al. | Jul 2008 | A1 |
20080167678 | Morsi | Jul 2008 | A1 |
20080183136 | Lenker et al. | Jul 2008 | A1 |
20080228209 | DeMello et al. | Sep 2008 | A1 |
20080234715 | Pesce et al. | Sep 2008 | A1 |
20080234722 | Bonnette et al. | Sep 2008 | A1 |
20080262528 | Martin | Oct 2008 | A1 |
20080269798 | Ramzipoor et al. | Oct 2008 | A1 |
20080294096 | Uber, III et al. | Nov 2008 | A1 |
20080300466 | Gresham | Dec 2008 | A1 |
20080312681 | Ansel et al. | Dec 2008 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090054918 | Henson | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090069828 | Martin et al. | Mar 2009 | A1 |
20090076417 | Jones | Mar 2009 | A1 |
20090160112 | Ostrovsky | Jun 2009 | A1 |
20090163846 | Aklog et al. | Jun 2009 | A1 |
20090182362 | Thompson et al. | Jul 2009 | A1 |
20090192495 | Ostrovsky et al. | Jul 2009 | A1 |
20090281525 | Harding et al. | Nov 2009 | A1 |
20090292307 | Razack | Nov 2009 | A1 |
20090299393 | Martin et al. | Dec 2009 | A1 |
20090312786 | Trask et al. | Dec 2009 | A1 |
20100016837 | Howat | Jan 2010 | A1 |
20100030256 | Dubrul et al. | Feb 2010 | A1 |
20100042136 | Berrada et al. | Feb 2010 | A1 |
20100087844 | Fischer, Jr. | Apr 2010 | A1 |
20100087850 | Razack | Apr 2010 | A1 |
20100094201 | Mallaby | Apr 2010 | A1 |
20100106081 | Brandeis | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100114113 | Dubrul et al. | May 2010 | A1 |
20100121312 | Gielenz et al. | May 2010 | A1 |
20100137846 | Desai et al. | Jun 2010 | A1 |
20100190156 | Van Wordragen et al. | Jul 2010 | A1 |
20100204712 | Mallaby | Aug 2010 | A1 |
20100217276 | Garrison et al. | Aug 2010 | A1 |
20100249815 | Jantzen et al. | Sep 2010 | A1 |
20100268264 | Bonnette et al. | Oct 2010 | A1 |
20100318178 | Rapaport et al. | Dec 2010 | A1 |
20110034986 | Chou et al. | Feb 2011 | A1 |
20110034987 | Kennedy | Feb 2011 | A1 |
20110054405 | Whiting et al. | Mar 2011 | A1 |
20110060212 | Slee et al. | Mar 2011 | A1 |
20110071503 | Takagi et al. | Mar 2011 | A1 |
20110118817 | Gunderson et al. | May 2011 | A1 |
20110125181 | Brady et al. | May 2011 | A1 |
20110144592 | Wong et al. | Jun 2011 | A1 |
20110152823 | Mohiuddin et al. | Jun 2011 | A1 |
20110152889 | Ashland | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110160742 | Ferrera et al. | Jun 2011 | A1 |
20110160763 | Ferrera et al. | Jun 2011 | A1 |
20110190806 | Wittens | Aug 2011 | A1 |
20110196309 | Wells | Aug 2011 | A1 |
20110196414 | Porter et al. | Aug 2011 | A1 |
20110213290 | Chin et al. | Sep 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20110224707 | Miloslavski et al. | Sep 2011 | A1 |
20110245807 | Sakata et al. | Oct 2011 | A1 |
20110251629 | Galdonik et al. | Oct 2011 | A1 |
20110264132 | Strauss et al. | Oct 2011 | A1 |
20110264133 | Hanlon et al. | Oct 2011 | A1 |
20110265681 | Allen et al. | Nov 2011 | A1 |
20110288529 | Fulton | Nov 2011 | A1 |
20110288572 | Martin | Nov 2011 | A1 |
20110309037 | Lee | Dec 2011 | A1 |
20110319917 | Ferrera et al. | Dec 2011 | A1 |
20120059309 | di Palma et al. | Mar 2012 | A1 |
20120059356 | di Palma et al. | Mar 2012 | A1 |
20120083824 | Berrada et al. | Apr 2012 | A1 |
20120083868 | Shrivastava | Apr 2012 | A1 |
20120089216 | Rapaport et al. | Apr 2012 | A1 |
20120095448 | Kajii | Apr 2012 | A1 |
20120101480 | Ingle et al. | Apr 2012 | A1 |
20120101510 | Lenker et al. | Apr 2012 | A1 |
20120109109 | Kajii | May 2012 | A1 |
20120138832 | Townsend | Jun 2012 | A1 |
20120143239 | Aklog et al. | Jun 2012 | A1 |
20120165919 | Cox et al. | Jun 2012 | A1 |
20120172918 | Fifer et al. | Jul 2012 | A1 |
20120179181 | Straub et al. | Jul 2012 | A1 |
20120197277 | Stinis | Aug 2012 | A1 |
20120232655 | Lorrison et al. | Sep 2012 | A1 |
20120271105 | Nakamura et al. | Oct 2012 | A1 |
20120271231 | Agrawal | Oct 2012 | A1 |
20120277788 | Cattaneo | Nov 2012 | A1 |
20120310166 | Huff | Dec 2012 | A1 |
20130030460 | Marks et al. | Jan 2013 | A1 |
20130046332 | Jones et al. | Feb 2013 | A1 |
20130066348 | Fiorella et al. | Mar 2013 | A1 |
20130092012 | Marchand et al. | Apr 2013 | A1 |
20130096571 | Massicotte et al. | Apr 2013 | A1 |
20130102996 | Strauss | Apr 2013 | A1 |
20130116708 | Ziniti et al. | May 2013 | A1 |
20130116721 | Takagi et al. | May 2013 | A1 |
20130123705 | Holm et al. | May 2013 | A1 |
20130126559 | Cowan et al. | May 2013 | A1 |
20130144326 | Brady et al. | Jun 2013 | A1 |
20130150793 | Beissel et al. | Jun 2013 | A1 |
20130165871 | Fiorella et al. | Jun 2013 | A1 |
20130184703 | Shireman et al. | Jul 2013 | A1 |
20130190701 | Kirn | Jul 2013 | A1 |
20130197454 | Shibata et al. | Aug 2013 | A1 |
20130197567 | Brady et al. | Aug 2013 | A1 |
20130204297 | Melsheimer et al. | Aug 2013 | A1 |
20130226196 | Smith | Aug 2013 | A1 |
20130270161 | Kumar et al. | Oct 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130289608 | Tanaka et al. | Oct 2013 | A1 |
20130317589 | Martin et al. | Nov 2013 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140005712 | Martin | Jan 2014 | A1 |
20140005713 | Bowman | Jan 2014 | A1 |
20140005715 | Castella et al. | Jan 2014 | A1 |
20140005717 | Martin et al. | Jan 2014 | A1 |
20140025048 | Ward | Jan 2014 | A1 |
20140031856 | Martin | Jan 2014 | A1 |
20140046133 | Nakamura et al. | Feb 2014 | A1 |
20140046243 | Ray et al. | Feb 2014 | A1 |
20140052161 | Cully et al. | Feb 2014 | A1 |
20140074144 | Shrivastava et al. | Mar 2014 | A1 |
20140121672 | Folk | May 2014 | A1 |
20140155830 | Bonnette et al. | Jun 2014 | A1 |
20140155980 | Turjman | Jun 2014 | A1 |
20140163615 | Gadlage et al. | Jun 2014 | A1 |
20140180055 | Glynn et al. | Jun 2014 | A1 |
20140180397 | Gerberding et al. | Jun 2014 | A1 |
20140155908 | Rosenbluth et al. | Jul 2014 | A1 |
20140188127 | Dubrul et al. | Jul 2014 | A1 |
20140188143 | Martin et al. | Jul 2014 | A1 |
20140222070 | Belson et al. | Aug 2014 | A1 |
20140236219 | Dubrul et al. | Aug 2014 | A1 |
20140243882 | Ma | Aug 2014 | A1 |
20140257253 | Jemison | Sep 2014 | A1 |
20140257363 | Lippert | Sep 2014 | A1 |
20140276403 | Follmer et al. | Sep 2014 | A1 |
20140296868 | Garrison et al. | Oct 2014 | A1 |
20140303658 | Bonnette et al. | Oct 2014 | A1 |
20140318354 | Thompson et al. | Oct 2014 | A1 |
20140324091 | Rosenbluth et al. | Oct 2014 | A1 |
20140330286 | Wallace et al. | Nov 2014 | A1 |
20140336691 | Jones et al. | Nov 2014 | A1 |
20140343593 | Chin et al. | Nov 2014 | A1 |
20140364896 | Consigny | Dec 2014 | A1 |
20140371779 | Vale et al. | Dec 2014 | A1 |
20150005781 | Lund-Clausen et al. | Jan 2015 | A1 |
20150005792 | Ahn | Jan 2015 | A1 |
20150018859 | Quick et al. | Jan 2015 | A1 |
20150018860 | Quick | Jan 2015 | A1 |
20150018929 | Martin et al. | Jan 2015 | A1 |
20150025555 | Sos | Jan 2015 | A1 |
20150032144 | Holloway | Jan 2015 | A1 |
20150059908 | Mollen | Mar 2015 | A1 |
20150088190 | Jensen | Mar 2015 | A1 |
20150127035 | Trapp et al. | May 2015 | A1 |
20150133990 | Davidson | May 2015 | A1 |
20150150672 | Ma | Jun 2015 | A1 |
20150164523 | Brady et al. | Jun 2015 | A1 |
20150164666 | Johnson et al. | Jun 2015 | A1 |
20150173782 | Garrison et al. | Jun 2015 | A1 |
20150190155 | Ulm, III | Jul 2015 | A1 |
20150190156 | Ulm, III | Jul 2015 | A1 |
20150196380 | Berrada et al. | Jul 2015 | A1 |
20150196744 | Aboytes | Jul 2015 | A1 |
20150209058 | Ferrera et al. | Jul 2015 | A1 |
20150209165 | Grandfield et al. | Jul 2015 | A1 |
20150238207 | Cox et al. | Aug 2015 | A1 |
20150250578 | Cook et al. | Sep 2015 | A1 |
20150265299 | Cooper et al. | Sep 2015 | A1 |
20150305756 | Rosenbluth | Oct 2015 | A1 |
20150305859 | Eller | Oct 2015 | A1 |
20150352325 | Quick | Dec 2015 | A1 |
20150360001 | Quick | Dec 2015 | A1 |
20150366690 | Lumauig | Dec 2015 | A1 |
20150374391 | Quick | Dec 2015 | A1 |
20160022293 | Dubrul et al. | Jan 2016 | A1 |
20160030708 | Casiello et al. | Feb 2016 | A1 |
20160038267 | Allen et al. | Feb 2016 | A1 |
20160058540 | Don Michael | Mar 2016 | A1 |
20160074627 | Cottone | Mar 2016 | A1 |
20160106353 | Schuetz et al. | Apr 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113664 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160113666 | Quick | Apr 2016 | A1 |
20160128857 | Kao | May 2016 | A1 |
20160135829 | Holoehwost et al. | May 2016 | A1 |
20160143721 | Rosenbluth | May 2016 | A1 |
20160151605 | Welch et al. | Jun 2016 | A1 |
20160192912 | Kassab et al. | Jul 2016 | A1 |
20160206344 | Bruzzi et al. | Jul 2016 | A1 |
20160008014 | Rosenbluth | Aug 2016 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20160220795 | Korkuch et al. | Aug 2016 | A1 |
20160228134 | Martin et al. | Aug 2016 | A1 |
20160262774 | Honda | Sep 2016 | A1 |
20160262790 | Rosenbluth et al. | Sep 2016 | A1 |
20160287276 | Cox et al. | Oct 2016 | A1 |
20160367285 | Sos | Dec 2016 | A1 |
20170014560 | Minskoff et al. | Jan 2017 | A1 |
20170021130 | Dye | Jan 2017 | A1 |
20170037548 | Lee | Feb 2017 | A1 |
20170042571 | Levi | Feb 2017 | A1 |
20170049942 | Conlan et al. | Feb 2017 | A1 |
20170056032 | Look et al. | Mar 2017 | A1 |
20170058623 | Jaffrey et al. | Mar 2017 | A1 |
20170079672 | Quick | Mar 2017 | A1 |
20170086864 | Greenhalgh et al. | Mar 2017 | A1 |
20170100142 | Look et al. | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170105745 | Rosenbluth et al. | Apr 2017 | A1 |
20170112514 | Marchand et al. | Apr 2017 | A1 |
20170113005 | Lindner et al. | Apr 2017 | A1 |
20170143359 | Nguyen et al. | May 2017 | A1 |
20170143880 | Luxon et al. | May 2017 | A1 |
20170143938 | Ogle et al. | May 2017 | A1 |
20170172591 | Ulm, III | Jun 2017 | A1 |
20170112513 | Marchand et al. | Jul 2017 | A1 |
20170189041 | Cox et al. | Jul 2017 | A1 |
20170196576 | Long et al. | Jul 2017 | A1 |
20170233908 | Kroczynski et al. | Aug 2017 | A1 |
20170252057 | Bonnette et al. | Sep 2017 | A1 |
20170265878 | Marchand et al. | Sep 2017 | A1 |
20170281204 | Garrison et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170319221 | Chu | Nov 2017 | A1 |
20170325839 | Rosenbluth et al. | Nov 2017 | A1 |
20170340867 | Accisano, II | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20180014840 | Panian | Jan 2018 | A1 |
20180042623 | Batiste | Feb 2018 | A1 |
20180042624 | Greenhalgh et al. | Feb 2018 | A1 |
20180042626 | Greenhalgh et al. | Feb 2018 | A1 |
20180055999 | Bare et al. | Mar 2018 | A1 |
20180064453 | Garrison et al. | Mar 2018 | A1 |
20180064454 | Losordo et al. | Mar 2018 | A1 |
20180070968 | Wallace et al. | Mar 2018 | A1 |
20180092652 | Marchand et al. | Apr 2018 | A1 |
20180104404 | Ngo-Chu | Apr 2018 | A1 |
20180105963 | Quick | Apr 2018 | A1 |
20180125512 | Nguyen et al. | May 2018 | A1 |
20180184912 | Al-Ali | Jul 2018 | A1 |
20180193043 | Marchand et al. | Jul 2018 | A1 |
20180236205 | Krautkremer et al. | Aug 2018 | A1 |
20180250498 | Stern et al. | Sep 2018 | A1 |
20180256177 | Cooper et al. | Sep 2018 | A1 |
20180256178 | Cox et al. | Sep 2018 | A1 |
20180296240 | Rosenbluth et al. | Oct 2018 | A1 |
20180344339 | Cox et al. | Dec 2018 | A1 |
20180361116 | Quick et al. | Dec 2018 | A1 |
20190000492 | Casey et al. | Jan 2019 | A1 |
20190015298 | Beatty et al. | Jan 2019 | A1 |
20190046219 | Marchand et al. | Feb 2019 | A1 |
20190070401 | Merritt et al. | Mar 2019 | A1 |
20190117244 | Wallace et al. | Apr 2019 | A1 |
20190133622 | Wallace et al. | May 2019 | A1 |
20190133623 | Wallace et al. | May 2019 | A1 |
20190133624 | Wallace et al. | May 2019 | A1 |
20190133625 | Wallace et al. | May 2019 | A1 |
20190133626 | Wallace et al. | May 2019 | A1 |
20190133627 | Wallace et al. | May 2019 | A1 |
20190150959 | Cox et al. | May 2019 | A1 |
20190223893 | Gilvarry et al. | Jul 2019 | A1 |
20190231373 | Quick | Aug 2019 | A1 |
20190239910 | Brady et al. | Aug 2019 | A1 |
20190321071 | Marchand et al. | Oct 2019 | A1 |
20190328411 | Vale et al. | Oct 2019 | A1 |
20190336142 | Torrie et al. | Nov 2019 | A1 |
20190336148 | Greenhalgh et al. | Nov 2019 | A1 |
20190365395 | Tran et al. | Dec 2019 | A1 |
20190366036 | Jalgaonkar et al. | Dec 2019 | A1 |
20190366049 | Hannon et al. | Dec 2019 | A1 |
20200022711 | Look et al. | Jan 2020 | A1 |
20200046368 | Merritt et al. | Feb 2020 | A1 |
20200046940 | Carrison et al. | Feb 2020 | A1 |
20200054861 | Korkuch et al. | Feb 2020 | A1 |
20200113412 | Jensen | Apr 2020 | A1 |
20200121334 | Galdonik et al. | Apr 2020 | A1 |
20200129741 | Kawwas et al. | Apr 2020 | A1 |
20210022843 | Hauser | Jan 2021 | A1 |
20210038385 | Popp et al. | Feb 2021 | A1 |
20210113224 | Dinh | Apr 2021 | A1 |
20210128182 | Teigen et al. | May 2021 | A1 |
20210137667 | Sonnette et al. | May 2021 | A1 |
20210138194 | Carrison et al. | May 2021 | A1 |
20210186541 | Thress | Jun 2021 | A1 |
20210205577 | Jalgaonkar et al. | Jul 2021 | A1 |
20210290925 | Merritt et al. | Sep 2021 | A1 |
20210315598 | Buck et al. | Oct 2021 | A1 |
20210316127 | Buck et al. | Oct 2021 | A1 |
20210330344 | Rosenbluth et al. | Oct 2021 | A1 |
20210378694 | Thress et al. | Dec 2021 | A1 |
20210393278 | O'Malley et al. | Dec 2021 | A1 |
20210404464 | Patoskie | Dec 2021 | A1 |
20220000505 | Hauser | Jan 2022 | A1 |
20220000506 | Hauser | Jan 2022 | A1 |
20220000507 | Hauser | Jan 2022 | A1 |
20220015798 | Marchand et al. | Jan 2022 | A1 |
20220022898 | Cox et al. | Jan 2022 | A1 |
20220033888 | Schnall-Levin et al. | Feb 2022 | A1 |
20220039815 | Thress et al. | Feb 2022 | A1 |
20220125451 | Hauser | Apr 2022 | A1 |
20220142638 | Enright et al. | May 2022 | A1 |
20220151647 | Dolendo et al. | May 2022 | A1 |
20220152355 | Dolendo et al. | May 2022 | A1 |
20220160381 | Hauser | May 2022 | A1 |
20220160382 | Hauser | May 2022 | A1 |
20220160383 | Hauser | May 2022 | A1 |
20220211400 | Cox et al. | Jul 2022 | A1 |
20220211992 | Merritt et al. | Jul 2022 | A1 |
20220240959 | Quick | Aug 2022 | A1 |
20220346800 | Merritt et al. | Nov 2022 | A1 |
20220346801 | Merritt et al. | Nov 2022 | A1 |
20220346814 | Quick | Nov 2022 | A1 |
20220347455 | Merritt et al. | Nov 2022 | A1 |
20220362512 | Quick et al. | Nov 2022 | A1 |
20220370761 | Chou et al. | Nov 2022 | A1 |
20230046775 | Quick | Feb 2023 | A1 |
20230059721 | Chou et al. | Feb 2023 | A1 |
20230062809 | Merritt et al. | Mar 2023 | A1 |
20230070120 | Cox et al. | Mar 2023 | A1 |
20230122587 | Chou et al. | Apr 2023 | A1 |
20230200970 | Merritt et al. | Jun 2023 | A1 |
20230218310 | Scheinblum et al. | Jul 2023 | A1 |
20230218313 | Rosenbluth et al. | Jul 2023 | A1 |
20230218383 | Merritt et al. | Jul 2023 | A1 |
20230233311 | Merritt et al. | Jul 2023 | A1 |
20230240705 | Rosenbluth et al. | Aug 2023 | A1 |
20230240706 | Rosenbluth et al. | Aug 2023 | A1 |
20230241302 | Merritt et al. | Aug 2023 | A1 |
20230248380 | Long et al. | Aug 2023 | A1 |
20230270991 | Merritt et al. | Aug 2023 | A1 |
20230310137 | Merritt et al. | Oct 2023 | A1 |
20230310138 | Merritt et al. | Oct 2023 | A1 |
20230310751 | Merritt et al. | Oct 2023 | A1 |
20230320834 | Merritt et al. | Oct 2023 | A1 |
20230329734 | Marchand et al. | Oct 2023 | A1 |
20230338130 | Merritt et al. | Oct 2023 | A1 |
20230338131 | Merritt et al. | Oct 2023 | A1 |
20230355256 | Dinh | Nov 2023 | A1 |
20230355259 | Marchand et al. | Nov 2023 | A1 |
20230355938 | Merritt et al. | Nov 2023 | A1 |
20230363776 | Quick | Nov 2023 | A1 |
20230363883 | Merritt et al. | Nov 2023 | A1 |
20230389932 | Ozenne et al. | Dec 2023 | A1 |
20230390045 | Merritt et al. | Dec 2023 | A1 |
20240058113 | Strauss et al. | Feb 2024 | A1 |
20240074771 | Quick et al. | Mar 2024 | A1 |
20240082540 | Brodt et al. | Mar 2024 | A1 |
Number | Date | Country |
---|---|---|
2015210338 | Aug 2015 | AU |
102186427 | Sep 2011 | CN |
103764049 | Apr 2014 | CN |
103932756 | Jul 2014 | CN |
104068910 | Oct 2014 | CN |
106178227 | Dec 2016 | CN |
108348319 | Jul 2018 | CN |
110652645 | Jan 2020 | CN |
111281482 | Jun 2020 | CN |
102017004383 | Jul 2018 | DE |
1254634 | Nov 2002 | EP |
1867290 | Feb 2013 | EP |
2942624 | Nov 2015 | EP |
3583972 | Dec 2019 | EP |
3589348 | Jan 2020 | EP |
3620204 | Mar 2020 | EP |
3013404 | Apr 2020 | EP |
4137070 | Feb 2023 | EP |
1588072 | Apr 1981 | GB |
2498349 | Jul 2013 | GB |
H6190049 | Jul 1994 | JP |
H07323090 | Dec 1995 | JP |
2001522631 | May 1999 | JP |
2004097807 | Apr 2004 | JP |
2005-095242 | Jun 2005 | JP |
2005230132 | Sep 2005 | JP |
2005323702 | Nov 2005 | JP |
2006094876 | Apr 2006 | JP |
2011526820 | Jan 2010 | JP |
05694718 | Apr 2015 | JP |
WO1997017889 | May 1997 | WO |
WO9833443 | Aug 1998 | WO |
WO9838920 | Sep 1998 | WO |
WO9839053 | Sep 1998 | WO |
WO9851237 | Nov 1998 | WO |
WO1999044542 | Sep 1999 | WO |
WO0032118 | Jun 2000 | WO |
WO2000053120 | Sep 2000 | WO |
WO0202162 | Jan 2002 | WO |
WO03015840 | Feb 2003 | WO |
WO2004018916 | Mar 2004 | WO |
WO2004093696 | Nov 2004 | WO |
WO2005046736 | May 2005 | WO |
WO2006029270 | Mar 2006 | WO |
WO2006110186 | Oct 2006 | WO |
WO2006124307 | Nov 2006 | WO |
WO2007092820 | Aug 2007 | WO |
WO2009082513 | Jul 2009 | WO |
WO2009086482 | Jul 2009 | WO |
WO2009155571 | Dec 2009 | WO |
WO2010002549 | Jan 2010 | WO |
WO2010010545 | Jan 2010 | WO |
WO2010023671 | Mar 2010 | WO |
WO2010049121 | May 2010 | WO |
WO2010102307 | Sep 2010 | WO |
WO2011032712 | Mar 2011 | WO |
WO2011054531 | May 2011 | WO |
WO2011073176 | Jun 2011 | WO |
WO2012009675 | Jan 2012 | WO |
WO2012011097 | Jan 2012 | WO |
WO2012049652 | Apr 2012 | WO |
WO2012065748 | May 2012 | WO |
WO2012114633 | Aug 2012 | WO |
WO2012120490 | Sep 2012 | WO |
WO2012162437 | Nov 2012 | WO |
WO2014047650 | Mar 2014 | WO |
WO2014081892 | May 2014 | WO |
WO2015006782 | Jan 2015 | WO |
WO2015061365 | Apr 2015 | WO |
WO2015121424 | Aug 2015 | WO |
WO2015179329 | Nov 2015 | WO |
WO2015189354 | Dec 2015 | WO |
WO2015191646 | Dec 2015 | WO |
WO2016014955 | Jan 2016 | WO |
WO2017024258 | Feb 2017 | WO |
WO2017058280 | Apr 2017 | WO |
WO2017070702 | Apr 2017 | WO |
WO2017106877 | Jun 2017 | WO |
WO2017189535 | Nov 2017 | WO |
WO2017189550 | Nov 2017 | WO |
WO2017189591 | Nov 2017 | WO |
WO2017189615 | Nov 2017 | WO |
WO2017210487 | Dec 2017 | WO |
WO2018049317 | Mar 2018 | WO |
WO2018065092 | Apr 2018 | WO |
WO2018080590 | May 2018 | WO |
WO2018148174 | Aug 2018 | WO |
WO2019010318 | Jan 2019 | WO |
WO2019050765 | Mar 2019 | WO |
WO2019075444 | Apr 2019 | WO |
WO2019094456 | May 2019 | WO |
WO2019173475 | Sep 2019 | WO |
WO2019222117 | Nov 2019 | WO |
WO2019246240 | Dec 2019 | WO |
WO2020036809 | Feb 2020 | WO |
WO2021067134 | Apr 2021 | WO |
WO2021076954 | Apr 2021 | WO |
WO2021127202 | Jun 2021 | WO |
WO2021248042 | Dec 2021 | WO |
WO2022032173 | Feb 2022 | WO |
WO2022103848 | May 2022 | WO |
WO2022109021 | May 2022 | WO |
WO2022109034 | May 2022 | WO |
WO2023137341 | Jul 2023 | WO |
WO2023147353 | Aug 2023 | WO |
WO2023154612 | Aug 2023 | WO |
WO2023192925 | Oct 2023 | WO |
WO2023215779 | Nov 2023 | WO |
Entry |
---|
European Patent Application No. 13838945.7, Extended European Search Report, 9 pages, dated Apr. 15, 2016. |
Gibbs, et al., “Temporary Stent as a bail-out device during percutaneous transluminal coronary angioplasty preliminary clinical experience,” British Heart Journal, 1994, 71:372-377, Oct. 12, 1993, 6 pgs. |
Gupta, S. et al., “Acute Pulmonary Embolism Advances in Treatment”, JAPI, Association of Physicians India, Mar. 2008, vol. 56, 185-191. |
International Search Report and Written Opinion for International App. No. PCT/US13/61470, dated Jan. 17, 2014, 7 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2014/046567, dated Nov. 3, 2014, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2014/061645, dated Jan. 23, 2015, 15 pages. |
International Search Report for International App. No. PCT/US13/71101, dated Mar. 31, 2014, 4 pages. |
Konstantinides, S. et al., “Pulmonary embolism hotline 2012—Recent and expected trials”, Thrombosis and Haemostasis, Jan. 9, 2013:33; 43-50. |
Konstantinides, S. et al., “Pulmonary embolism: risk assessment and management”, European Society of Cardiology; European Heart Journal, Sep. 7, 2012:33, 3014-3022. |
Kucher, N. et al., “Percutaneous Catheter Thrombectomy Device for Acute Pulmonary Embolism: In Vitro and in Vivo Testing”, Circulation, Sep. 2005:112:e28-e32. |
Kucher, N., “Catheter Interventions in Massive Pulmonary Embolism”, Cardiology Rounds, Mar. 2006 vol. 10, Issue 3, 6 pages. |
Kucher, N. et al., “Management of Massive Pulmonary Embolism”, Radiology, Sep. 2005:236:3 852-858. |
Kucher, N. et al., “Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism.” Circulation, 2014, 129, pp. 9 pages. |
Kuo, W. et al., “Catheter-directed Therapy for the Treatment of Massive Pulmonary Embolism: Systematic Review and Meta-analysis of Modern Techniques”, Journal of Vascular and Interventional Radiology, Nov. 2009:20:1431-1440. |
Kuo, W. et al., “Catheter-Directed Embolectomy, Fragmentation, and Thrombolysis for the Treatment of Massive Pulmonary Embolism After Failure of Systemic Thrombolysis”, American College of CHEST Physicians 2008: 134:250-254. |
Kuo, W. MD, “Endovascular Therapy for Acute Pulmonary Embolism”, Continuing Medical Education Society of Interventional Radiology (“CME”); Journal of Vascular and Interventional Radiology, Feb. 2012:23:167-179. |
Lee, L. et al., “Massive pulmonary embolism: review of management strategies with a focus on catheter-based techniques”, Expert Rev. Cardiovasc. Ther. 8(6), 863-873 (2010). |
Liu, S. et al., “Massive Pulmonary Embolism: Treatment with the Rotarex Thrombectomy System”, Cardiovascular Interventional Radiology; 2011: 34:106-113. |
Muller-Hulsbeck, S. et al. “Mechanical Thrombectomy of Major and Massive Pulmonary Embolism with Use of the Amplatz Thrombectomy Device”, Investigative Radiology, Jun. 2001:36:6:317-322. |
Reekers, J. et al., “Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism”, Cardiovascular and Interventional Radiology, 2003: 26:246-250. |
Schmitz-Rode et al., “New Mesh Basket for Percutaneous Removal of Wall-Adherent Thrombi in Dialysis Shunts,” Cardiovasc Intervent Radiol 16:7-10 1993 4 pgs. |
Schmitz-Rode et al., “Temporary Pulmonary Stent Placement as Emergency Treatment of Pulmonary Embolism,” Journal of the American College of Cardiology, vol. 48, No. 4, 2006 (5 pgs.). |
Schmitz-Rode, T. et al., “Massive Pulmonary Embolism: Percutaneous Emergency Treatment by Pigtail Rotation Catheter”, JACC Journal of the American College of Cardiology, Aug. 2000:36:2:375-380. |
Spioita, A et al., “Evolution of thrombectomy approaches and devices for acute stroke: a technical review.” J NeuroIntervent Surg 2015, 7, pp. 7 pages. |
Svilaas, T. et al., “Thrombus Aspiration During Primary Percutaneous Coronary Intervention.” The New England Journal of Medicine, 2008, vol. 358, No. 6, 11 pages. |
Tapson, V., “Acute Pulmonary Embolism”, The New England Journal of Medicine, Mar. 6, 2008:358:2037-52. |
The Penumbra Pivotal Stroke Trial Investigators, “The Penumbra Pivotal Stroke Trial: Safety and Effectiveness of a New Generation of Mechanical Devices for Clot Removal in Intracranial Large Vessel Occlusive Disease.” Stroke, 2009, 40: p. 9 pages. |
Truong et al., “Mechanical Thrombectomy of Iliocaval Thrombosis Using a Protective Expandable Sheath,” Cardiovasc Intervent Radiol27-254-258, 2004, 5 pgs. |
Turk et al., “ADAPT FAST study: a direct aspiration first pass technique for acute stroke thrombectomy.” J NeuroIntervent Surg, vol. 6, 2014, 6 pages. |
Uflacker, R., “Interventional Therapy for Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, Feb. 2001: 12:147-164. |
Verma, R., MD et al. “Evaluation of a Newly Developed Percutaneous Thrombectomy Basket Device in Sheep With Central Pulmonary Embolisms”, Investigative Radiology, Oct. 2006, 41, 729-734. |
International Search Report and Written Opinion for International App. No. PCT/US2015/034987 filed Jun. 9, 2015, Applicant: Inceptus Medical, LLC, dated Sep. 17, 2015, 12 pages. |
English translation of Japanese Office Action received for JP Application No. 2016-564210, Applicant Inceptus Medical, LLC, dated Sep. 4, 2017, 4 pages. |
Australian Exam Report received for AU Application No. 2015274704, Applicant: Inceptus Medical, LLC, dated Sep. 7, 2017, 3 pages. |
European Search Report received for EP Application No. 15805810.7, Applicant: Inceptus Medical, LLC, dated Sep. 4, 2017, 6 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2016/067628 filed Dec. 19, 2016, Applicant: Inari Medical, Inc., dated Apr. 10, 2017, 11 pages. |
Goldhaber, S. et al. “Percutaneous Mechanical Thrombectomy for Acute Pulmonary Embolism—A Double-Edged Sword,” American College of CHEST Physicians, Aug. 2007, 132:2, 363-372. |
Goldhaber, S., “Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy,” Journal of Thrombosis and Haemostasis, 2009: 7 (Suppl. 1): 322-327. |
International Search Report and Written Opinion for International App. No. PCT/US2017/029696, Date of Filing: Apr. 26, 2017, Applicant: Inari Medical, Inc., dated Sep. 15, 2017, 19 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2016/058536, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Mar. 13, 2017, 14 pages. |
European First Office Action received for EP Application No. 13838945.7, Applicant: Inari Medical, Inc., dated Oct. 26, 2018, 7 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2018/048786, Date of Filing: Aug. 30, 2018, Applicant: Inari Medical, Inc., dated Dec. 13, 2018, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2018/055780, Date of Filing: Oct. 13, 2018, Applicant: Inceptus Medical LLC., dated Jan. 22, 2019, 8 pages. |
European Search Report for European Application No. 16876941.2, Date of Filing: Dec. 19, 2016, Applicant: Inari Medical, Inc., dated Jul. 18, 2019, 7 pages. |
Extended European Search Report for European Application No. 16858462.1, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Jun. 3, 2019, 10 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2019/045794, Date of Filing: Aug. 8, 2019, Applicant: Inari Medical, Inc., dated Nov. 1, 2019, 17 pages. |
Partial Supplementary European Search Report for European Application No. 17864818.4, Date of Filing: May 21, 2019, Applicant: Inari Medical, Inc., dated Apr. 24, 2020, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2020/056067, Date of Filing: Oct. 16, 2020; Applicant: Inari Medical, Inc., dated Jan. 22, 2021, 8 pages. |
Extended European Search Report for European Application No. 20191581.6, Applicant: Inari Medical, Inc., dated Mar. 31, 2021, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2020/055645, Date of Filing: Dec. 17, 2020; Applicant: Inari Medical, Inc., dated Apr. 14, 2021, 12 pages. |
Extended European Search Report for European Application No. 18853465.5, Applicant: Inari Medical, Inc., dated May 7, 2021, 2021, 7 pages. |
Vorwerk, D. MD, et al., “Use of a Temporary Caval Filter to Assist Percutaneous lliocaval Thrombectomy: Experimental Results.” SCVIR, 1995, 4 pages. |
Wikipedia; Embolectomy; retrieved from the internet: https://en.wikipedia.org/wiki/Embolectomy; 4 pgs. retrieved/printed: Mar. 24, 2016. |
O'Sullivan; Thrombolysis versus thrombectomy in acute deep vein thrombosis; Interventional Cardiology; 3(5); pp. 589-596; Oct. 2011. |
Capture Vascular Systems; (company website); retrieved from the internet: http://www.capturevascular.com; 3 pgs.; retrieved/printed: Mar. 24, 2016. |
Edwards Lifesciences; Fogarty® Occlusion Catheters (product brochure); retrieved from the internet http://web.archive.org/web/20150228193218/http://www.edwards.com/products/vascular/atraumaticocclusion/pages/occlusioncatheter.aspx; © 2011; 2 pgs.; retrieved/printed: Mar. 24, 2011. |
Boston Scientific; Fetch(TM) 2 Aspiration Catheter (product information);retrieved from the internet: http://www.bostonscientific.com/en-US/products/thrombectomy-systems/fetch2-aspiration-catheter.html; 2 pgs.; retrieved/printed: Mar. 24, 2016. |
Penumbra, Inc.; Indigo® System (product information); retrieved from the internet: http://www.penumbrainc.com/peripherallpercutaneous-thromboembolectomy/indigo-system; 7 pgs.; retrieved/printed: Mar. 24, 2016. |
Youtube; Merci Retrieval System X Series Animation; uploaded Mar. 16, 2009 (product information) posted on May 7, 2009 by SSMDePAUL, time 1:09, retrieved from the internet: https://www.youtube.com/watch?v=MGX7deuFkhc; 3 pgs.; retrieved/printed: Mar. 24, 2016. |
Covidien; Solitaire(TM) AS Neurovascular Remodeling Device (product information); retrieved from the internet: http://www.ev3.net/neuro/intl/remodeling-devices/solitaire-ab. htm; © 2015; 2 pgs.; retrieved/printed: Mar. 24, 2016. |
International Search Report and Written Opinion for International App. No. PCT/US21/35965, Date of Filing: Jun. 4, 2021, Applicant: Inari Medical, Inc., dated Sep. 28, 2021, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/45072 Date of Filing: Aug. 6, 2021, Applicant: Inari Medical, Inc., dated Jan. 20, 2022, 10 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/58793; Date of Filing: Nov. 10, 2021, Applicant: Inari Medical, Inc., dated Mar. 16, 2022, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/59718; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., dated Mar. 22, 2022, 13 pages. |
International Search Report and Written Opinion for International App. No. PCT/US21/59735; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., dated Mar. 22, 2022, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/60502; Date of Filing: Jan. 11, 2023, Applicant: Inari Medical, Inc., Date of Mailing: May 25, 2023, 9 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/61256; Date of Filing: Jan. 25, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Jun. 7, 2023, 8 pages. |
Gross et al., “Dump the pump: manual aspiration thrombectomy (MAT) with a syringe is technically effective, expeditious, and cost-efficient,” J NeuroIntervent Surg, 2018, 4 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/60927; Date of Filing: Jan. 19, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Jul. 20, 2023, 12 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/66538; Date of Filing: May 3, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Jan. 4, 2024, 14 pages. |
Extended European Search Report issued for EP Application No. 20877370.5, Date of Mailing: Oct. 17, 2023, 11 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2023/65128; Date of Filing: Mar. 30, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Nov. 14, 2023, 14 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/65128; Date of Filing: Mar. 30, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Nov. 14, 2023, 14 pages. |
English translation of Japanese Office Action received for JP Application No. 2022-574456, Applicant: Inari Medical, Inc, Date of Mailing: Jan. 23, 2024, 12 pages. |
English translation of Japanese Office Action mailed Jan. 19, 2024 for Japanese Application No. 2022-160947, 8 pages. |
International Search Report and Written Opinion for International App. No. PCT/US2024/010875; Applicant: Inari Medical, Inc., Date of Mailing: Apr. 26, 2024, 15 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/73765; Date of Filing: Sep. 8, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Feb. 28, 2024, 7 pages. |
International Search Report and Written Opinion for International App. No. PCT/US23/69892; Date of Filing: Jul. 10, 2023, Applicant: Inari Medical, Inc., Date of Mailing: Feb. 29, 2024, 12 pages. |
Chinese First Office Action received for CN Application No. 201980067623.1, Applicant: Inari Medical, Inc., Date of Mailing: Jan. 31, 2024, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20220346813 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62622691 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17498642 | Oct 2021 | US |
Child | 17865297 | US | |
Parent | 16258344 | Jan 2019 | US |
Child | 17498642 | US |