The present invention relates to biopsy devices, and, more particularly, to a single insertion multiple sample biopsy apparatus.
A biopsy may be performed on a patient to help in determining whether the tissue in a region of interest includes cancerous cells. One biopsy technique used to evaluate breast tissue, for example, involves inserting a biopsy probe into the breast tissue region of interest to capture one or more tissue samples from the region. Such a biopsy technique often utilizes a vacuum to pull the tissue to be sampled into a sample notch of the biopsy probe, after which the tissue is severed and collected. Efforts continue in the art to improve the ability of the biopsy device to sever a tissue sample, and to transport the severed tissue sample to a sample collection container.
What is needed in the art is a biopsy device that has the ability to promote effective severing of a tissue sample and effective transport of the tissue sample to a sample collection container.
The present invention provides a biopsy device that has the ability to promote effective severing of a tissue sample and effective transport of the tissue sample to a sample collection container.
The invention in one form is directed to a biopsy apparatus that includes a driver assembly and a biopsy probe assembly. The driver assembly has an electromechanical power source and a vacuum source. The biopsy probe assembly is releasably attached to the driver assembly. The biopsy probe assembly has a vacuum cannula and a stylet cannula coaxially arranged along a longitudinal axis, with the vacuum cannula being positioned inside the stylet cannula. The vacuum cannula is coupled in fluid communication with the vacuum source. The vacuum cannula has an elongate portion and a flared portion that extends distally from the elongate portion. The stylet cannula is coupled in driving communication with the electromechanical power source. The stylet cannula is movable relative to the vacuum cannula between a first extended position and a first retracted position. The stylet cannula has a proximal portion and a distal portion. The distal portion has a sample notch and a protrusion member that extends proximally in a lumen of the stylet cannula along a portion of a longitudinal extent of the sample notch, wherein when the stylet cannula is in the first retracted position, the protrusion member is received within the flared portion of the vacuum cannula.
The biopsy apparatus may further include a controller circuit that has a virtual energy reservoir, and the controller circuit executes program instructions to control current to motors when engaging dense tissue.
The invention in another form is directed to a biopsy apparatus that includes a driver assembly and a biopsy probe assembly. The driver assembly has an electromechanical power source, a vacuum source, and a controller circuit. The controller circuit is electrically and communicatively coupled to the electromechanical power source and to the vacuum source. The biopsy probe assembly is releasably attached to the driver assembly. The biopsy probe assembly has a vacuum cannula, a stylet cannula, and a cutter cannula coaxially arranged along a longitudinal axis. The vacuum cannula is positioned inside the stylet cannula, and the stylet cannula is positioned inside the cutter cannula. The vacuum cannula is coupled in fluid communication with the vacuum source. The vacuum cannula has an elongate portion and a flared portion that extends distally from the elongate portion. The stylet cannula is coupled in driving communication with the electromechanical power source. The stylet cannula is movable relative to the vacuum cannula between a first extended position and a first retracted position. The stylet cannula has a proximal portion and a distal portion. The distal portion has a sample notch and a protrusion member that extends proximally in a lumen of the stylet cannula along a portion of a longitudinal extent of the sample notch. When the stylet cannula is in the retracted position, the protrusion member of the stylet cannula is received within the flared portion of the vacuum cannula. The cutter cannula is coupled in driving communication with the electromechanical power source. The cutter cannula is movable relative to the stylet cannula between a second extended position to cover the sample notch and a second retracted position to expose the sample notch when the stylet cannula is in the first extended position.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate at least one embodiment of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Referring to
Referring to
Controller circuit 18 is electrically and communicatively coupled to electromechanical power source 20, vacuum source 22, vacuum sensor 24, and user interface 28, such as by one or more wires or circuit traces. Controller circuit 18 may be assembled on an electrical circuit board, and includes, for example, a processor circuit 18-1 and a memory circuit 18-2.
Processor circuit 18-1 has one or more programmable microprocessors and associated circuitry, such as an input/output interface, clock, buffers, memory, etc. Memory circuit 18-2 is communicatively coupled to processor circuit 18-1, e.g., via a bus circuit, and is a non-transitory electronic memory that may include volatile memory circuits, such as random access memory (RAM), and non-volatile memory circuits, such as read only memory (ROM), electronically erasable programmable ROM (EEPROM), NOR flash memory, NAND flash memory, etc. Controller circuit 18 may be formed as one or more Application Specific Integrated Circuits (ASIC).
Controller circuit 18 is configured via software and/or firmware residing in memory circuit 18-2 to execute program instructions to perform functions associated with the retrieval of biopsy tissue samples, such as that of controlling and/or monitoring one or more components of electromechanical power source 20, vacuum source 22, and vacuum sensor 24.
Electromechanical power source 20 may include, for example, a cutter module 30, a transport module 32, and a piercing module 34, each being respectively electrically coupled to battery 26. Each of cutter module 30, transport module 32, and piercing module 34 is electrically and controllably coupled to controller circuit 18 by one or more electrical conductors, e.g., wires or circuit traces.
Cutter module 30 may include an electrical motor 30-1 having a shaft to which a drive gear 30-2 is attached. Transport module 32 may include an electrical motor 32-1 having a shaft to which a drive gear 32-2 is attached. Piercing module 34 may include an electrical motor 34-1, a drive spindle 34-2, and a piercing shot drive 34-3. Each electrical motor 30-1, 32-1, 34-1 may be, for example, a direct current (DC) motor or stepper motor. As an alternative to the arrangement described above, each of cutter module 30, transport module 32, and piercing module 34 may include one or more of a gear, gear train, belt/pulley arrangement, etc., interposed between the respective motor and drive gear or drive spindle.
Piercing module 34 is configured such that an activation of electrical motor 34-1 and a drive spindle 34-2 causes a piercing shot drive 34-3 to move in a proximal direction 36-1 to compress a firing spring, e.g., one or more coil springs, and to latch piercing shot drive 34-3 in a ready position. Upon actuation of prime/pierce button 28-2 of user interface 28, piercing shot drive 34-3 is propelled, i.e., fired, in a distal direction 36-2 (see
Vacuum source 22 is electrically and controllably coupled to battery 26 by one or more electrical conductors, e.g., wires or circuit traces. Vacuum source 22 may include, for example, an electric motor 22-1 that drives a vacuum pump 22-2. Vacuum source 22 has a vacuum source port 22-3 coupled to vacuum pump 22-2 for establishing vacuum in biopsy probe assembly 14. Electric motor 22-1 may be, for example, a rotary, linear or vibratory DC motor. Vacuum pump 22-2 may be, for example, a peristaltic pump or a diaphragm pump, or one or more of each connected in series or parallel.
Vacuum sensor 24 is electrically coupled to controller circuit 18 by one or more electrical conductors, e.g., wires or circuit traces. Vacuum sensor 24 may be a pressure differential sensor that provides vacuum (negative pressure) feedback signals to controller circuit 18. In some implementations, vacuum sensor 24 may be incorporated into vacuum source 22.
Referring to
Referring to the exploded view of
Referring to
Vacuum cannula 44, stylet cannula 46, and cutter cannula 50 are coaxially arranged along a longitudinal axis 58 in a nested tube arrangement, with vacuum cannula 44 being the innermost tube, cutter cannula 50 being the outermost tube, and stylet cannula 46 being the intermediate tube that is interposed between vacuum cannula 44 and cutter cannula 50. In other words, vacuum cannula 44 is positioned inside stylet cannula 46, and stylet cannula 46 is positioned inside cutter cannula 50.
Vacuum cannula 44 is mounted to be stationary relative to probe sub-housing 42. Vacuum cannula 44 is coupled in fluid communication with vacuum source 22 via sample manifold 54.
Referring to
Referring again to
Referring also to
Piercing tip 62 has a tip portion 62-1, a mounting portion 62-2, and a protrusion member 62-3. Piercing tip 62 is inserted into lumen 46-4 of stylet cannula 46 at distal portion 46-2, with mounting portion 62-2 being attached to distal portion 46-2 of stylet cannula 46, such as an adhesive or weld. As such, tip portion 62-1 extends distally from distal portion 46-2 of stylet cannula 46, and protrusion member 62-3 extends proximally (i.e., in proximal direction 36-1) in lumen 46-4 along a portion of the longitudinal extent 60-1 of sample notch 60. Accordingly, as depicted in
Referring again to
Referring to
Accordingly, a tissue sample severed by cutter cannula 50 at sample notch 60 of stylet cannula 46 may be transported by vacuum applied by vacuum source 22 at sample cup 56, through vacuum cannula 44, and into sample cup 56.
Referring again to
Proximal threaded portion 42-1 in probe sub-housing 42 has a threaded hole that threadably receives threaded spindle 48-2 of stylet gear-spindle set 48, such that rotation of driven gear 48-1 of stylet gear-spindle set 48 results in a linear translation of stylet cannula 46 along longitudinal axis 58, with a direction of rotation correlating to a direction of translation of stylet cannula 46 in one of proximal direction 36-1 and distal direction 36-2. Driven gear 48-1 of stylet gear-spindle set 48 engages drive gear 32-2 of transport module 32 when biopsy probe assembly 14 is attached to driver assembly 12 (see
Likewise, distal threaded portion 42-2 of probe sub-housing 42 has a threaded hole that threadably receives threaded spindle 52-2 of cutter gear-spindle set 52, such that rotation of driven gear 52-1 of cutter gear-spindle set 52 results in a combined rotation and linear translation of cutter cannula 50 along longitudinal axis 58, with a direction of rotation correlating to a direction of translation of cutter cannula 50. Driven gear 52-1 of cutter gear-spindle set 52 engages drive gear 30-2 of cutter module 30 when biopsy probe assembly 14 is attached to driver assembly 12 (see
Also, when biopsy probe assembly 14 is attached to driver assembly 12, referring also to
To effect the described movements of stylet cannula 46, controller circuit 18 executes program instructions and sends respective control signals to transport module 32 of driver assembly 12, which in turn transfers the motion to stylet gear-spindle set 48 of biopsy probe assembly 14. Likewise, to effect the described movements of cutter cannula 50, controller circuit 18 executes program instructions and sends respective control signals to cutter module 30 of driver assembly 12, which in turn transfers the motion to cutter gear-spindle set 52 of biopsy probe assembly 14. Controller circuit 18 may determine an axial position of each of stylet cannula 46 and cutter cannula 50, relative to the respective zero position, by counting the respective number of motor drive pulses, or alternatively, the respective number of motor shaft revolutions.
In the sequence step illustrated in
In the sequence step illustrated in
In the cutting sequence step illustrated in
In the sequence step illustrated in
In the sequence step illustrated in
The sequence steps illustrated in
In the sequence step illustrated in
In the sequence step illustrated in
It is noted that the sample transport sequence illustrated in
Referring to the vacuum graph of
By comparing an actual vacuum pressure to the baseline vacuum graph depicted in
In accordance with an aspect of the invention, vacuum sensor 24 provides vacuum pressure feedback signals to controller circuit 18, and controller circuit 18 executes program instructions to determine whether the actual vacuum pressure provided by vacuum sensor 24 deviates by more than a predetermined amount from the baseline pressure of the vacuum graph of
For example, if the vacuum pressure falls below the baseline by more than the allowable deviation during the time period between times T1 and T2, this may be an indication of an incomplete cut, and thus controller circuit 18 may repeat the cutting sequence depicted in
Referring again to
During operation, vacuum pump 22-2 of vacuum source 22 will build up vacuum (negative pressure) in the vacuum reservoir formed by sample manifold 54 and sample cup 56. More particularly, the volume of sample cup 56 and sample manifold 54 will define the strength of a “vacuum boost”, and also defines the cycle time for vacuum pump 22-2 of vacuum source 22. In the present embodiment, for example, the volume is approximately 10 milliliters.
Regarding the “vacuum boost”, stylet cannula 46 has one or more vent openings 80, e.g., annularly arranged, at a predetermined distance proximal from tip portion 62-1, and these vent openings 80 (see
Referring again to
Each of cutter motor 30-1 and transport motor 32-1 has a maximum continuous current rating (load) at which the motor can run indefinitely, and when the respective motor exceeds this continuous current (load), the motor can only run for a limited time before the motor is damaged (e.g., the windings burn in the motor), wherein the higher the load the shorter the time. The current monitoring program executed by controller circuit 18 monitors the current for each motor, and when the current exceeds the maximum continuous level for a respective motor, then it is determined that the motor has entered dense tissue, and driver assembly will go into a dense tissue mode.
When dense tissue is encountered, controller circuit 18 controls the current supplied to the respective motor to provide motor protection and to permit the motor current to exceed the maximum continuous current rating for short periods of time, based on the status (virtual energy level) of a virtual energy reservoir that is established in memory circuit 18-2 of controller circuit 18.
The idea is to exert as much strength of the motor as possible without damaging the motor windings, when such challenging dense tissue is encountered. Once the motor, e.g., cutter motor 30-1 and/or transport motor 32-1, starts running in any of the phases, the motor speed (revolutions per minute (rpm)) is set as 100% based on the voltage being set in controller circuit 18, e.g., to e.g. 6 volts, and then an increase in load (torque) will increase the current consumption and potentially slow down the motor until it stalls. Controller circuit 18 has the option of increasing the voltage from 6 volts to, e.g., 9 volts and by that increase the speed (rpm) and stall torque, and thus overcome more dense tissue. In the present example, it is assumed that each motor has three separate windings, or phases. It was recognized, however, that some very dense tissue could potentially stall the motor from rotating, and meanwhile only one of the motor phases or windings is in conduction, which will lead a dramatic temperature increase in this single phase and lead to burn-out of the motor. The virtual energy reservoir is used for monitoring the heat when running between continues torque level and stall torque level, where there is a risk to burn the motor windings.
In accordance with an aspect of the invention, it is possible to exceed the continuous current level, e.g., when encountering dense tissue, and still protect the motor without sacrificing motor performance.
It is assumed that each of the motor is initialized at rest, and the ambient temperature is the normal room temperature. By keep tracking of the instant current consumption over the operation time, a corresponding increment of motor winding temperature can be predicted. Thus, for dense tissue detection/motor protection, a virtual energy reservoir is established in memory circuit 18-2 for each motor cutter motor 30-1 and transport motor 32-1. The virtual energy reservoir can be filled up or drained at runtime based on integrating the difference of the actual motor winding current and the nominal motor winding current (maximum continuous current) over time. The motor winding temperature starts to increase when the actual motor winding current is higher than the nominal motor winding current (maximum continuous current), and vice versa.
Controller circuit 18 thus executes program instructions to predict when the winding temperature is above its thermal limit, and if so determined, controller circuit 18 will send control signals to the respective cutter module 30 or transport module 32 to lower the motor torque before the respective motor gets too hot. The algorithm executed as program instructions by controller circuit 18 is as follows:
∫(I2−In2)t wherein: “I” represents the actual motor winding current;
“In” represents the nominal current of the motor windings; and
“t” represent time.
Referring to
In the present embodiment, the dense tissue mode is entered automatically when driver assembly 12 is powered on, and runs all the time after driver assembly 12 has been powered.
The following items also relate to the invention:
In one form, the invention relates to a biopsy apparatus that includes a driver assembly and a biopsy probe. The driver assembly has an electromechanical power source and a vacuum source. The biopsy probe assembly is releasably attached to the driver assembly. The biopsy probe assembly has a vacuum cannula and a stylet cannula coaxially arranged along a longitudinal axis. The vacuum cannula is positioned inside the stylet cannula. The vacuum cannula is coupled in fluid communication with the vacuum source. The vacuum cannula has an elongate portion and a flared portion that extends distally from the elongate portion. The stylet cannula is coupled in driving communication with the electromechanical power source. The stylet cannula is movable relative to the vacuum cannula between a first extended position and a first retracted position. The stylet cannula has a proximal portion and a distal portion. The distal portion has a sample notch and a protrusion member that extends proximally in a lumen of the stylet cannula along a portion of a longitudinal extent of the sample notch. When the stylet cannula is in the first retracted position, the protrusion member is received within the flared portion of the vacuum cannula.
The flared portion of the vacuum cannula may have a first flared stage that diverges from the elongate portion at a first acute angle relative to the elongate portion, and a second flared stage that diverges from the first flared stage at a second acute angle relative to the elongate portion. Optionally, the second acute angle is larger than the first acute angle.
The biopsy probe assembly may further include a cutter cannula coaxial with the stylet cannula and the vacuum cannula, wherein the stylet cannula is positioned within the cutter cannula. The cutter cannula is movable relative to the stylet cannula between a second extended position to cover the sample notch and a second retracted position to expose the sample notch when the stylet cannula is in the first extended position.
In any of the embodiments, the driver assembly optionally includes a driver housing that has a front surface. The biopsy probe assembly has a probe housing with an elongate portion, and in any of the embodiments, may include a front plate. When the biopsy probe assembly is attached to the driver assembly, the front plate is positioned distally adjacent to an entirety of the front surface of the driver housing so as to shield the entirety of the front surface of the driver assembly from contact with a patient.
In any of the embodiments, the driver assembly may include a controller circuit and an electromechanical power source. The controller circuit is electrically and communicatively coupled to the electromechanical power source. The electromechanical power source has a cutter module and a transport module. The cutter module has a first motor and the transport module has a second motor. When the biopsy probe assembly is attached to the driver assembly, the cutter module is drivably coupled to the cutter cannula and the transport module is drivably coupled to the stylet cannula. Each of the first motor and the second motor has a maximum continuous current rating at which the respective motor can run indefinitely. The controller circuit is configured to execute program instructions to control the current for each of the first motor and the second motor. The controller circuit is configured to determine that the motor has entered dense tissue, when the current exceeds the maximum continuous level for a respective motor.
In any of the embodiments having a controller circuit, the controller circuit may include a processor circuit and memory circuit, and may have a virtual energy reservoir established in the memory circuit for each of the first motor and the second motor. The processor is configured to execute program instructions to control the current supplied to a respective motor to provide motor protection and to permit the respective motor current to exceed the maximum continuous current rating for short periods of time, based on the status of the virtual energy reservoir.
In any of the embodiments having at least one virtual energy reservoir, each virtual energy reservoir can be filled up or drained. The controller circuit may be configured to integrate a difference between an actual motor winding current for a respective motor and the maximum continuous current rating over time. The controller circuit may be configured to take action to reduce the current supplied to the respective motor, when an energy accumulation level in the virtual energy reservoir is over an upper threshold. The controller circuit may be configured to take action to increase the current supplied to the respective motor, when the energy accumulation level of the virtual energy reservoir level drops below a lower threshold. The apparatus may be controlled such that when an energy accumulation level in the virtual energy reservoir is over an upper threshold, the controller circuit then takes action to reduce the current supplied to the respective motor. The apparatus may be controlled such that when the energy accumulation level of the virtual energy reservoir level drops below a lower threshold, the controller circuit then takes action to increase the current supplied to the respective motor.
In any of the embodiments having a controller circuit, the controller circuit may be configured to execute program instructions to repeatedly move the protrusion member of the stylet cannula into and away from the flared portion of the vacuum cannula to aid in delivering a tissue sample into the flared portion of the vacuum cannula. The apparatus may be controlled such that vacuum may be continuously applied to the vacuum cannula during the time that the protrusion member of the stylet cannula is repeatedly moved into and away from the flared portion of the vacuum cannula.
In another form, the invention relates to a biopsy apparatus having a driver assembly that has an electromechanical power source, a vacuum source, and a controller circuit electrically and communicatively coupled to the electromechanical power source and to the vacuum source. A biopsy probe assembly is releasably attached to the driver assembly. The biopsy probe assembly has a vacuum cannula, a stylet cannula, and a cutter cannula coaxially arranged along a longitudinal axis. The vacuum cannula is positioned inside the stylet cannula. The stylet cannula is positioned inside the cutter cannula. The vacuum cannula is coupled in fluid communication with the vacuum source. The vacuum cannula has an elongate portion and a flared portion that extends distally from the elongate portion. The stylet cannula is coupled in driving communication with the electromechanical power source. The stylet cannula is movable relative to the vacuum cannula between a first extended position and a first retracted position. The stylet cannula has a proximal portion and a distal portion. The distal portion has a sample notch and a protrusion member that extends proximally in a lumen of the stylet cannula along a portion of a longitudinal extent of the sample notch. When the stylet cannula is in the retracted position, the protrusion member is received within the flared portion of the vacuum cannula. The cutter cannula is coupled in driving communication with the electromechanical power source. The cutter cannula is movable relative to the stylet cannula between a second extended position to cover the sample notch and a second retracted position to expose the sample notch when the stylet cannula is in the first extended position.
The controller circuit may be configured to execute program instructions to control the apparatus such that the protrusion member of the stylet cannula is repeatedly moved into and away from the flared portion of the vacuum cannula to aid in delivering a tissue sample into the flared portion of the vacuum cannula. The apparatus may be controlled such that vacuum is continuously applied to the vacuum cannula during the time that the protrusion member of the stylet cannula is repeatedly moved into and away from the flared portion of the vacuum cannula.
The electromechanical power source may include a cutter module and a transport module. The cutter module has a first motor and the transport module has a second motor. When the biopsy probe assembly is attached to the driver assembly, the cutter module is drivably coupled to the cutter cannula and the transport module is drivably coupled to the stylet cannula.
Each of the first motor and the second motor has a maximum continuous current rating at which the respective motor can run indefinitely. The controller circuit is configured to execute program instructions to control the current for each of the first motor and the second motor. The controller circuit may be configured to determine that the motor has entered dense tissue, when the current exceeds the maximum continuous level for a respective motor.
The controller circuit may include a processor circuit and memory circuit. The controller circuit may have a virtual energy reservoir established in the memory circuit for each of the first motor and the second motor. The processor may be configured to execute program instructions to control the current supplied to a respective motor to provide motor protection and to permit the respective motor current to exceed the maximum continuous current rating for short periods of time, based on the status of the virtual energy reservoir.
In any of the embodiments having at least one virtual energy reservoir, each virtual energy reservoir can be filled up or drained. The controller circuit is configured to integrate a difference between an actual motor winding current for a respective motor and the maximum continuous current rating over time. The controller circuit may be configured to reduce the current supplied to the respective motor, when an energy accumulation level in the virtual energy reservoir is over an upper threshold. The controller circuit may be configured to increase the current supplied to the respective motor, when the energy accumulation level of the virtual energy reservoir level drops below a lower threshold. The apparatus may be controlled such that when an energy accumulation level in the virtual energy reservoir is over an upper threshold, the controller circuit then takes action to reduce the current supplied to the respective motor. The apparatus may be controlled such that when the energy accumulation level of the virtual energy reservoir level drops below a lower threshold, the controller circuit then takes action to increase the current supplied to the respective motor.
The flared portion of the vacuum cannula may have a first flared stage that diverges from the elongate portion at a first acute angle relative to the elongate portion, and a second flared stage that diverges from the first flared stage at a second acute angle relative to the elongate portion. Optionally, the second acute angle is larger than the first acute angle.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 16/349,334, filed May 13, 2019, which is a U.S. national phase of International Application No. PCT/US2017/062961, filed Nov. 22, 2017, which claims priority to U.S. provisional patent application Ser. No. 62/425,974 filed Nov. 23, 2016, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3800783 | Jamshidi | Apr 1974 | A |
3929123 | Jamshidi | Dec 1975 | A |
4517965 | Ellison | May 1985 | A |
5031634 | Simon | Jul 1991 | A |
5125521 | Somogyi | Jun 1992 | A |
5148813 | Bucalo | Sep 1992 | A |
5201716 | Richard | Apr 1993 | A |
5601585 | Banik | Feb 1997 | A |
5634918 | Richards | Jun 1997 | A |
5794626 | Kieturakis | Aug 1998 | A |
5857981 | Bucalo et al. | Jan 1999 | A |
5959433 | Rohde | Sep 1999 | A |
6238355 | Daum | May 2001 | B1 |
6312429 | Burbank et al. | Nov 2001 | B1 |
6416484 | Miller et al. | Jul 2002 | B1 |
D463555 | Etter et al. | Sep 2002 | S |
6497706 | Burbank et al. | Dec 2002 | B1 |
6551253 | Worm et al. | Apr 2003 | B2 |
6607528 | Quick et al. | Aug 2003 | B1 |
D491268 | Hickingbotham | Jun 2004 | S |
D497427 | Hickingbotham | Oct 2004 | S |
6870475 | Fitch et al. | Mar 2005 | B2 |
6872185 | Fisher | Mar 2005 | B2 |
D535748 | Wolf | Jan 2007 | S |
7189206 | Quick et al. | Mar 2007 | B2 |
7456606 | Legg | Nov 2008 | B1 |
7488295 | Burbank et al. | Feb 2009 | B2 |
7654997 | Makower | Feb 2010 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
D643531 | van der Weiden | Aug 2011 | S |
8002732 | Visconti | Aug 2011 | B2 |
8169185 | Partovi et al. | May 2012 | B2 |
8207906 | Tiscareno et al. | Jun 2012 | B2 |
8282321 | Thiel | Oct 2012 | B2 |
8298213 | Singh | Oct 2012 | B2 |
8413811 | Arendt | Apr 2013 | B1 |
8629654 | Partovi et al. | Jan 2014 | B2 |
8696674 | Howard et al. | Apr 2014 | B2 |
8702623 | Parihar et al. | Apr 2014 | B2 |
8845546 | Speeg et al. | Sep 2014 | B2 |
9000720 | Stulen et al. | Apr 2015 | B2 |
9072506 | Seiger et al. | Jul 2015 | B1 |
9101347 | McGhie et al. | Aug 2015 | B2 |
9107691 | Fojtik | Aug 2015 | B2 |
9155527 | Vetter et al. | Oct 2015 | B2 |
9178369 | Partovi | Nov 2015 | B2 |
9381058 | Houser et al. | Jul 2016 | B2 |
9421062 | Houser et al. | Aug 2016 | B2 |
9496732 | Partovi | Nov 2016 | B2 |
9717482 | Fiebig et al. | Aug 2017 | B2 |
D802763 | Sweitzer | Nov 2017 | S |
9909103 | Howard et al. | Mar 2018 | B2 |
20020019596 | Eggers et al. | Feb 2002 | A1 |
20050113716 | Mueller, Jr. et al. | May 2005 | A1 |
20060108977 | Kagermeier et al. | May 2006 | A1 |
20060173377 | Mccullough et al. | Aug 2006 | A1 |
20090079386 | Gallagher et al. | Mar 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20110071432 | Carrillo, Jr. et al. | Mar 2011 | A1 |
20130020201 | Yotoriyama et al. | Jan 2013 | A1 |
20140191709 | Celentano et al. | Jul 2014 | A1 |
20140276665 | Lopez et al. | Sep 2014 | A1 |
20150025415 | Videbaek et al. | Jan 2015 | A1 |
20160038127 | Hashimshony | Feb 2016 | A1 |
20160199150 | Field et al. | Jul 2016 | A1 |
20160256138 | Videbaek et al. | Sep 2016 | A1 |
20180000463 | Keller | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
1700887 | Nov 2005 | CN |
1799513 | Jul 2006 | CN |
101125093 | Feb 2008 | CN |
101125093 | Feb 2008 | CN |
101237822 | Aug 2008 | CN |
101877564 | Nov 2010 | CN |
102036849 | Apr 2011 | CN |
102307529 | Jan 2012 | CN |
102348418 | Feb 2012 | CN |
102639066 | Aug 2012 | CN |
103037762 | Apr 2013 | CN |
103281970 | Sep 2013 | CN |
104703549 | Jun 2015 | CN |
106028799 | Oct 2016 | CN |
1698282 | Sep 2006 | EP |
1815798 | Aug 2007 | EP |
1965190 | Sep 2008 | EP |
2006305260 | Nov 2006 | JP |
2004075728 | Sep 2004 | WO |
2005070470 | Aug 2005 | WO |
2007021905 | Feb 2007 | WO |
2016178656 | Nov 2016 | WO |
Entry |
---|
Office Action dated Aug. 3, 2021 corresponding to Chinese Paten Application 201780080429.8. |
Number | Date | Country | |
---|---|---|---|
20210177387 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62425974 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16349334 | US | |
Child | 17168441 | US |