This invention relates to a tissue biopsy sampling device.
It is sometimes desirable or necessary to obtain specimens of tissue from humans and other animals, particularly in the diagnosis and treatment of patients with cancerous tumors, premalignant conditions, and other diseases or disorders. For example, when it is discovered that suspicious conditions exist, either by means of x-ray or ultrasound imaging in various tissues of the body, a physician usually performs a biopsy to determine if the cells at the suspected site are cancerous or benign.
A biopsy can be done either by an open or percutaneous technique. Open biopsy is an invasive procedure using a scalpel, by either a portion (incisional biopsy) being removed or the entire mass (excisional biopsy) is removed. Percutaneous biopsy is usually done with a needle-like instrument through a relatively small incision, and can be performed by fine needle aspiration (FNA) or through the taking of a core biopsy sample. In FNA biopsy, individual cells or clusters of cells are obtained for cytologic examination and can be prepared such as in a Papanicolaou smear. In a core biopsy, a core or fragment of the tissue is obtained for histological examination.
Uncontaminated and intact tissue from the organ, lesion, or tumor is preferred by medical personnel in order to arrive at a definitive diagnosis regarding the patient's condition. In most cases only part of the tissue in question needs to be sampled. The portions of tissue extracted must be indicative of the organ, lesion, or tumor as a whole. Often, multiple tissue samples from various locations of the mass being sampled may be taken.
The percutaneous biopsy procedure can be performed utilizing various techniques and devices. One such biopsy device can include an inner stylet positioned inside an outer cannula, where the stylet is able to slide into and out of the cannula. The stylet can be a solid, pointed needle having a tissue sampling recess, and the cannula can be a hollow, open-ended needle having a sharp tip. The stylet and cannula can be manipulated cooperatively to capture a tissue sample in the sample recess. Such existing devices can be manually operated, semi-automated, and automated.
U.S. Pat. No. 6,485,436 shows a multiple sample biopsy needle with a hydraulic mechanism that circulates fluid from the tip of the needle back to a receiving basket or baskets. A revolver-type array of receiving chambers is disclosed.
U.S. Pat. No. 5,827,305 shows a tissue sampling needle that pushes a sample proximally using a saline wash. Samples remain spaced apart within the needle such that the sequence of their collection is preserved. Samples can also be removed from a port while the needle remains in place. No mechanical transport mechanisms or drives are disclosed.
U.S. Pat. No. 5,526,822 shows a transport system that uses a cannula and knock-out pin combined with a vacuum source to shuttle a tissue sample to a multiple-chamber cassette where it is knocked out. The cannula is then repositioned for another sample. The vacuum source is external. A revolving sample cassette is also shown. A vent opening in each sample cylinder of the cassette is provided to eject the fluid used to transport the tissue sample. A removable disposable needle-bearing cassette interfaces with rotary and linear drives by means of long gears and shuttles that cradle the gears. Cutters operate in rotary and linear fashion (a counter-rotating cutters embodiment is included) and the cannula can be rotated to orient the sample opening.
U.S. Pat. No. 6,017,316 shows a transport system similar to U.S. Pat. No. 5,827,822 in which a cutter transports with vacuum assist. Multiple sampling with single insertion is described but not automated multiple sample-handling. The details of a drive system are not disclosed
U.S. Pat. No. 6,193,673 shows a needle with a durable part and a disposable part. An external cutting cannula rotates and advances axially to cut a sample. The tissue cutter is driven axially by a rack and pinion drive which are part of a durable component. A cradle connects the rack to the cutting cannula.
U.S. Pat. No. 5,944,673 describes a tissue extractor that rotates within a piercing needle to align with any one of multiple receiving ports while obstructing the remaining ports. The tissue sample is cut by advancing the cutter and removing by withdrawing the extractor. A vacuum holds the tissue sample in place during the removal of the tissue extractor from the cutter. The cutter rotates as it advances.
It is known to obtain a single sample with a single insertion. However, there are circumstances where there may be a need to obtain more than one samples. While the known biopsy needle can be re-inserted multiple times, such technique can cause pain and scarring of the body site.
It is known to leave a marker at the biopsied site. To do so, however, a physician or healthcare provider would typically need to withdraw the biopsy needle and insert a different device to leave a marker at the biopsied site. The additional step with the marker device concurrent with the tissue sampling may not allow the marker to be deposited at the actual biopsied site, which can lead to inaccurate post-biopsy diagnosis.
The present invention provides for exemplary embodiments of a single-insertion, multiple sampling biopsy device. The present invention also provides for exemplary embodiments of a single-insertion, multiple sampling device with integrated marker release.
According to an embodiment, a biopsy device has a stylet with a distal end and a proximal end, a sample opening being provided at the distal end. An interior volume lies within the stylet and runs between the distal and proximal ends. The sample opening provides access to the interior volume. The stylet has a recovery position proximal of the distal end. A shuttle is mounted in the stylet and free to travel from the sample opening to the recovery position. The shuttle has at least one bulkhead shaped and positioned to push a sample in the shuttle toward the proximal end of the stylet. For example, the shuttle could be a trough-shaped car that is transported along the stylet. A transport subassembly may be provided which is coupled to the shuttle. The shuttle may have at least one bulkhead positioned such that is moves any tissue sample placed therein from the sample port to the proximal end of the stylet. In use, this embodiment allows a sample to be drawn into and sample opening and into the shuttle. Once separated, the sample is carried to the recovery position at the proximal end of the stylet by the shuttle.
In a refinement of the above embodiment, the transport subassembly has a second shuttle (or more shuttles) may be provided which nests at least partly within the first (and others). In this case, multiple samples may be carried by a train of shuttles with the most deeply nested shuttle carrying a first sample and the non-nested one carrying the last. In this way, the transport subassembly moves the first shuttle and the second shuttle consecutively (and potentially further shuttles) to transport respective samples. In the above variations, within each shuttle or adjacent thereto, a bulkhead with a surface at least partly normal to a direction of travel thereof, may be provided to help push the samples in the proximal direction. For example, the bulkhead may be a wall of a trough-shaped cart. If provided, the second shuttle nested at least partly within the first, each shuttle may have a distal bulkhead that has a surface at least partly normal to a direction of travel thereof.
The transport subassembly may have a spooling tape that winds and unwinds to transport the shuttle in the proximal and distal directions. The spooling tape may winds and unwind to transport the shuttle in proximal and distal directions with the shuttle being defined by a distal portion of the tape.
The transport subassembly can have a loop that runs between the opening and the recovery position with the shuttle connected to the loop and the loop winding (and/or potentially unwinding) to transport the shuttle through the stylet. The stylet may have a recovery port at the recovery position and may include a recovery member with an engaging surface that engages the sample in the shuttle to move it out of the shuttle. The recovery member may be movable within the shuttle and may cause the engaging surface to move from a position in the shuttle toward the recovery port, whereby a sample in the shuttle may be removed from the shuttle through the recovery port.
In some embodiments, the transport subassembly may include a linear actuator. The stylet may have an internal surface with internal threads, with the linear actuator including a threaded cylindrical member having external threads that mesh with the stylet internal threads. The threaded cylindrical member may be rotatable within the stylet and rotatably coupled to the first shuttle. The stylet may have an internal surface with internal threads, the linear actuator may include a threaded cylindrical member having external threads that mesh with the stylet internal threads, the threaded cylindrical member may be rotatable within the stylet and rotatably coupled to the first shuttle and the first shuttle may have a member in engagement with the stylet that prevents the rotation of the first shuttle within the stylet. The linear actuator may include threaded cylindrical members having external and internal threads distributed among them such that when the cylindrical members are nested, one within another, mating pairs of the external and internal threads are in mesh, one of the cylindrical members may be rotatably coupled to the first shuttle.
The linear actuator may include threaded cylindrical members having external and internal threads distributed among them such that when the cylindrical members are nested, one within another, mating pairs of the external and internal threads are in mesh. Then, one of the cylindrical members may be rotatably coupled to the first shuttle. The first shuttle may have a member in engagement with the stylet that prevents the rotation of the first shuttle within the stylet.
According to another embodiment, a biopsy device has a stylet with a distal end and a proximal end. The stylet has a sample opening and an interior volume adjacent its distal end. The opening provides access to the interior volume and the stylet has a recovery position proximal of the distal end. A resilient tape, with a distal end that is guided by the stylet is movable along the stylet in proximal and distal directions. The stylet may have an edge guide that receives the tape distal end and which, when the tape distal is moved in the distal direction, shapes the tape distal end into an open shape that defines a recess to allow a sample to be received in the recess. The tape distal end may return to a closed shape when moved proximal of the edge guide thereby securing the sample for transport.
According to another embodiment, a biopsy device has a stylet with a distal end and a proximal end. The stylet has a sample opening near the distal end and a recovery position near the proximal end. The stylet has an interior volume adjacent the stylet distal end, the opening providing access to the interior volume. Also provided is a cassette with multiple recesses, each having an access and a fluid-permeable blind end. The cassette is positioned at the recovery position to align a selected one of the cassette recesses with the recovery position such that the selected cassette recess is in fluid communication with the interior volume of the stylet. A transport mechanism forces a fluid from the stylet distal end toward the stylet proximal end such that fluid exits the blind end of the selected cassette recess, whereby a specimen is flushed into the selected cassette recess and is caught by it. The transport mechanism may include a storage container and transports fluid from the storage container to the stylet distal end.
The transport mechanism may includes a reservoir, a pump, and a three way valve. The stylet may include a fluid lumen adjacent the interior volume. The three way valve may connect the fluid lumen, the reservoir, and the pump. The transport mechanism may operate the pump and the three way valve to transport fluid from the reservoir to the stylet distal end during a transport cycle and to recover fluid remaining in the fluid lumen by returning the fluid to the reservoir, during a reset cycle.
According to another embodiment, a biopsy device has a stylet having distal and proximal ends, a harvest position, at the distal end, where tissue samples are received, and a delivery position proximal of the harvest position. The stylet may have a marker held at the stylet distal end with a transport member within the stylet. The transport member may be movable in an axial direction between the harvest and delivery positions to receive samples at the harvest end and deliver samples at the delivery end. The transport member may be further movable beyond the harvest position, or further movable in a direction other than the axial direction, to push at least a portion of the marker to a position that causes the marker to be deployed. The transport member may be further movable beyond the harvest position to push at least a portion of the marker to a position that causes the marker to be deployed. The transport member may be further movable in a direction other than the axial direction to push at least a portion of the marker to a position that causes the marker to be deployed. The marker may include a wire coil which may be housed by the stylet prior to deployment and which may be deployed by rotating the transport member around the axial direction. The transport member may have a distal edge having a recess, the marker may include a hook which may be housed by the stylet prior to deployment and which may be deployed by rotating the transport member around the axial direction to move the recess away from the marker such that when the transport member may be advanced distally, the marker may be pushed by the distal edge.
The stylet may have a tip and the marker may include a deformable member that may be elastically secured to the tip, the marker may be deployable by moving the transport member beyond the harvest position to push the marker from the tip. The marker may include a split ring that may be elastically secured to the tip. The marker may be deployable by moving the transport member beyond the harvest position to push the marker from the tip. The marker may include a flexible member that may be elastically secured to the tip.
The transport member may have a distal tip with a ramp and the marker may have a deformable part that may be proximal of the ramp. In this case, the transport member may cause the deformable part to deform when the transport member may be moved proximally of the harvest position. The marker may have a blooming part that may be proximal of the ramp so that the transport member causes the deformable part to bloom when the transport member is moved proximally of the harvest position.
According to an embodiment, a biopsy device has a stylet with distal and proximal ends and a sample opening within an interior volume adjacent its distal end. The opening provides access to the interior volume. The stylet has a recovery position proximal of the distal end where samples are removed from the stylet. A shuttle mounted in the stylet is free to travel from the sample opening to the recovery position. The shuttle has at least one bulkhead shaped and positioned to push a sample in the shuttle toward the proximal end of the style. A transport subassembly coupled to the shuttle bulkhead moves a tissue sample from the sample port to the proximal end of the stylet. A second shuttle can be nested at least partly within the first to allow additional samples to be recovered without removing the needle.
The nested shuttles are preferably located at the sample opening. In this case, the transport subassembly moves the shuttles consecutively to transport respective samples to the recovery position. Preferably the shuttles are used once in a disposable needle portion so there is no need to place the shuttles back to the opening after transporting them to the recovery position.
Preferably, the shuttle has a distal bulkhead with a surface at least partly normal to a direction of travel so that that the distal bulkhead can push the sample in the proximal direction. The shuttles can be open at the bottom or closed.
In an alternative embodiment, the transport subassembly includes a spooling tape that winds and unwinds to transport the shuttle in a proximal direction. To harvest multiple samples, the tape can be extended and rewound repeatedly. The shuttle can be defined by the shape of a distal part of the tape in this case. The distal end of the tape preferably wraps naturally into a closed shape which is opened by engaging edges of the tape in slots at the distal end of the stylet. When the tape is pulled proximally, the edges disengage from the slots and the sample is held by the closed shape and protected from rubbing against the stylet as it is transported.
In another embodiment, the transport subassembly has a loop that runs between the opening and the recovery position, the shuttle being connected to the loop and the transport subassembly winding the loop to transport the shuttle through the stylet. Preferably, the stylet has a recovery port at the recovery position. S recovery member with an engaging surface is movable within the shuttle while at the recovery position so as to cause the engaging surface to move from a position in the shuttle toward the recovery port. In this way a sample in the shuttle is removed from the shuttle through the recovery port.
In another embodiment, the transport subassembly includes a linear actuator. One type of linear actuator employs threads on the internal surface of the stylet and a threaded cylindrical member with external threads that mesh with the stylet internal threads. The threaded cylindrical member is rotatable within the stylet and rotatably coupled to the first shuttle. Preferably, a longitudinal member in engagement with the stylet and the shuttle prevents the rotation of the shuttle within the stylet. In a variation of this, the linear actuator includes multiple threaded cylindrical members having external and internal threads distributed among them such that when the cylindrical members are nested, one within another, mating pairs of the external and internal threads are in mesh, one of the cylindrical members being rotatably coupled to the first shuttle. In this case, also, preferably, a longitudinal member in engagement with the stylet and the shuttle prevents the rotation of the shuttle within the stylet.
According to yet another embodiment, the biopsy device has a stylet having a distal end and a proximal end, the stylet having a sample opening near the distal end and a recovery position near the proximal end. The stylet has an interior volume adjacent the stylet distal end, the opening providing access to the interior volume. There is a cassette with multiple recesses, each having an access and a fluid-permeable blind end, positioned at the recovery position to align a selected one of the cassette recesses with the recovery position. The alignment is such that the selected cassette recess is in fluid communication with the interior volume of the stylet. A transport mechanism forces a fluid from the stylet distal end toward the stylet proximal end such that fluid exits the blind end of the selected cassette recess, whereby a specimen is flushed into the selected cassette recess and is caught by it.
Preferably, the transport mechanism includes a storage container and transports fluid from the storage container to the stylet distal end. More preferably, the transport mechanism includes: a reservoir, a pump, and a multi-way valve and the stylet includes a fluid lumen adjacent the interior volume. Preferably, the three way valve connects the fluid lumen, the reservoir, and the pump and the transport mechanism operates the pump and the multi-way valve to transport fluid from the reservoir to the stylet distal end during a transport cycle and to recover fluid remaining in the fluid lumen by returning the fluid to the reservoir, during a reset cycle. Preferably, the cassette recesses are linked together by flexible connections to form a bandolier.
Also, preferably, a vacuum source of the transport mechanism includes a vacuum connection from the vacuum source to the selected recess blind end to aid in drawing a specimen into the selected recess. In this case, preferably, the stylet has two parallel lumens, a primary lumen for transporting specimens and a secondary lumen for conveying fluid a proximal end of the stylet to the distal end of the stylet where the fluid returns through the primary lumen. The stylet has a sample opening for receiving specimens from a host at its distal end and the stylet carries a cutting cannula that surrounds the stylet and selectively covers the sample opening, the drive mechanism conveying fluid to transport specimens only when the cutting cannula covers the sample opening.
In another embodiment, a biopsy sample extraction needle has a sample extraction end, recovery end, and a transport channel linking the extraction and recovery ends. A pump with a multi-way valve is connected to a fluid reservoir linked to the transport channel such that the pump can: draw a vacuum at least the transport end with the multi-way valve in a first setting, draw fluid from the reservoir with the multi-way valve in a second setting, and flush the transport channel from the extraction end to the recovery end to transport a sample through the transport channel with the multi-way valve in a third setting.
Preferably. the first and third multi-way valve settings are identical. The pump is preferably a syringe which forms a part of disposable, single-use sterile set. The pump can recover residual saline from the transport channel and deliver it to the reservoir. A volume-reducing valve is preferably provided to reduces a total sealed volume in fluid with the recovery end when the vacuum is drawn by the pump. As a result of this, the vacuum can be stronger when the sample is harvested. The valve can be released after the sample is obtained. The valve can be a tube pinch valve that is part of the lumen through which samples are transported.
In another embodiment, a biopsy device has a tissue extraction portion and a recovery portion, remote from the tissue extraction portion. A channel connects the tissue extraction portion and the recovery portion. Preferably, the biopsy device includes a biopsy needle. The tissue extraction portion has a receiving lumen and a cutting blade. A syringe and a flow controller have a first configuration in which the syringe draws a vacuum at the tissue extraction portion, which in turn draws tissue from a host into the receiving portion. The syringe and flow controller have a second configuration in which the syringe flushes fluid from the tissue extraction portion to the recovery portion to transport tissue samples thereto.
Preferably a disposable component is provided as a sterilized single-use component which includes the syringe and a durable component that houses a motor to drive the syringe. Preferably, the syringe and flow controller have a third configuration in which the syringe draws fluid from a reservoir before flushing the fluid from the tissue extraction portion to the recovery portion.
In another embodiment, a biopsy device has a stylet with distal and proximal ends, a harvest position, at the distal end, where tissue samples are received, and a delivery position proximal of the harvest position. The stylet has a marker held at the stylet distal end. A transport member within the stylet is movable in an axial direction between the harvest and delivery positions to receive samples at the harvest end and deliver samples at the delivery end. The transport member is further movable beyond the harvest position, or further movable in a direction other than the axial direction, to push at least a portion of the marker to a position that causes the marker to be deployed.
Preferably, the transport member is further movable beyond the harvest position to push at least a portion of the marker to a position that causes the marker to be deployed. Alternatively, the transport member is further movable in a direction other than the axial direction to push at least a portion of the marker to a position that causes the marker to be deployed. In an embodiment, the marker includes a wire coil which is housed by the stylet prior to deployment and which is deployed by rotating the transport member around the axial direction.
In another embodiment of the marker device, the transport member has a distal edge having a recess, the marker includes a hook which is housed by the stylet prior to deployment and which is deployed by rotating the transport member around the axial direction to move the recess away from the marker such that when the transport member is advanced distally, the marker is pushed by the distal edge.
In yet another embodiment of the marker device, the stylet has a tip and the marker includes a deformable member that is elastically secured to the tip, the marker being deployable by moving the transport member beyond the harvest position to push the marker from the tip. In still another embodiment, the stylet has a tip and the marker includes a split ring that is elastically secured to the tip, the marker being deployable by moving the transport member beyond the harvest position to push the marker from the tip.
In another embodiment, the stylet has a tip and the marker includes a flexible member that is elastically secured to the tip. The marker is deployable by moving the transport member beyond the harvest position to push the marker from the tip. In this case, the transport member preferably has a distal tip with a ramp and the marker has a deformable part that is proximal of the ramp, the transport member causing the deformable part to deform when the transport member is moved proximally of the harvest position. Preferably, the transport member has a distal tip with a ramp and the marker has a blooming part that is proximal of the ramp. The transport member causes the deformable part to bloom when the transport member is moved proximally of the harvest position.
In an embodiment, a method of performing a tissue biopsy includes severing a tissue sample from a host within a shuttle located inside a biopsy needle, the shuttle being movable within the biopsy needle, holding the tissue sample in the shuttle while moving the shuttle from a distal end of the biopsy needle to a proximal end to transport the tissue sample, and repeating the severing and holding steps without removing the biopsy needle from the host. In a preferred embodiment, the shuttle is connected to a loop and the moving includes revolving the loop around endpoints located at the distal and proximal ends. In another preferred embodiment, a removal member is extended into the shuttle at the proximal end and removing it from the shuttle.
Preferably, the method includes applying a vacuum to the biopsy needle prior to severing the tissue sample. In an embodiment, moving of the shuttle includes retracting a linear actuator or, in yet another embodiment, it includes rotating a threaded lumen to which the shuttle is threaded. A first instance of the severing and holding steps to transport a first sample is preferably done with a different shuttle from a second instance. More preferably, moving the shuttle includes separating it from a nested set of shuttles.
In another embodiment, a method of performing a tissue biopsy includes transporting an excised tissue sample to the end of a flat elongate member held within a biopsy needle. The transporting includes wrapping the end of the elongate member over the sample to prevent it from rubbing against the biopsy needle. Preferably, the elongate member is elastic at its end and the wrapping is a result of the release of a deformation of the elongate member end. Also, preferably, the transporting includes wrapping the elongate member about a spool.
In another embodiment, a tissue biopsy includes drawing a vacuum in a biopsy needle with a pump to move a portion of a host to be sampled into the biopsy needle for excision and transporting an excised sample of the host through the needle by flushing fluid from the pump. Preferably, the pump is a syringe. Preferably, the pump has a chamber and the vacuum is drawn by expanding the chamber and the fluid is flushed by compressing the chamber. Also, preferably, the vacuum is drawn by expanding the chamber and the flushing includes filling the chamber by expanding it while in fluid communication with a fluid reservoir and subsequently compressing the chamber to expel the fluid.
In another embodiment, a method of performing a tissue biopsy includes cutting a tissue sample by axially moving a cutting cannula of a biopsy needle relative a stylet that holds a sample within the cutting cannula in a first direction and deploying a marker by moving the at least a portion of the stylet in a second direction relative to the cutting cannula. Preferably, the marker is a split ring held on the stylet until pushed off by the cutting cannula. Alternatively the marker is a hook and the deploying is performed by rotating a shuttle held by the stylet.
According to another embodiment, a multiple sample biopsy device has a sampling mechanism that cuts tissue samples and a flexible sock wrapped over a support so as to define a recess holding open an access to the sock. A transport mechanism conveys a first tissue sample into the recess of the sock and partially everts by pulling a blind end thereof thereby extending a length of the recess to provide room for another sample and simultaneously transporting the first tissue sample along a direction of the pulling. Preferably, the sampling mechanism includes a hollow cannula having an interior, the sock being located in the interior. Preferably, the sock is of a mesh. The sample can be moved into the sock using suction or by pushing it with fluid. The sample can be drawn into the sock just by moving the sock like a 360 degree conveyor belt. In that case fluid could be provided to just lubricate the sample. Also, the sock is preferably porous and the transport mechanism conveys tissue samples into the recess by flushing against the sample pushing it into the recess and wherein the fluid flows out of the sock. Alternatively a vacuum can be used to pull the into the sock. The vacuum can be the same vacuum provided for drawing the sample into the sample recess before cutting the sample.
According to another embodiment, a multiple sample biopsy device has a sampling mechanism that cuts tissue samples. The device has a flexible sock with an access to the sock interior, the sock being an elongate member having a longitudinal axis. A transport mechanism conveys a first tissue sample into the recess of the sock after a first tissue sample is cut and conveys a second tissue sample into the recess of the sock after the second tissue sample is cut such that the tissue samples are arranged in a row along the longitudinal axis. Preferably, the sampling mechanism includes a hollow cannula having an interior, the sock being located in the interior. Preferably, the sock is of a mesh. Preferably, the sock is porous and the transport mechanism conveys tissue samples into the recess by flushing against the sample pushing it into the recess and wherein the fluid flows out of the sock. Preferably, when the transport mechanism conveys a first tissue sample into the recess of the sock, it partially everts the sock by pulling a blind end thereof thereby extending a length of the recess to provide room for the second sample and simultaneously transports the first tissue sample along a direction of the pulling. Alternatively, when the transport mechanism conveys a first tissue sample into the recess of the sock, it partially everts the sock by pulling a blind end of the sock along the longitudinal axis thereof, thereby extending a length of the recess to provide room for the second sample and simultaneously transports the first tissue sample along the longitudinal axis.
According to another embodiment, a method of performing a tissue biopsy includes, in a biopsy needle, cutting a succession of tissue samples and forcing each in turn into a sock, aligning them along the length of the sock and removing the biopsy needle and recovering the tissue samples by removing the sock. Preferably, the order of the samples in the sock at the end of the method corresponds to the order in which the samples were cut.
According to another embodiment of a multiple sample biopsy device a sampling mechanism cuts tissue samples and a chain of paddles connected together such that they can be nested together and pulled as a chain by expanding the chain by pulling only one of the paddles. The sampling mechanism conveys a first tissue sample adjacent a first one of the paddles on a proximal side thereof. A drive moves the first one in the proximal direction less than a distance required for the first one to engage a second adjacent one of the paddles such that the first paddle moves the first tissue sample proximally without causing the second paddle to move. The sampling mechanism conveys a second tissue sample adjacent a second one of the paddles on a proximal side thereof. The drive moves the second one in the proximal direction less than a distance required for the second one to engage a third adjacent one of the paddles such that the first and second paddles move the first and second tissue samples, respectively, without causing a third of the paddles to move. Preferably, the sampling mechanism includes a hollow cannula having an interior, the chain of paddles being arranged in a series within and along the interior.
In all of the above devices, a vacuum source and a power source may be provided in a self-contained hand-held biopsy device. In all of the methods, a biopsy unit may contain a controller programmed to execute the methods automatically or contingent on consecutive command being entered through the biopsy device.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred exemplary embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention.
FIGS. 6A1-6A4 illustrate a tissue transport using a threaded type inner cannula.
FIGS. 6B1-6B3 illustrate a tissue transport using a telescoping drive.
The transport subassembly 100 operates by retracting the outer cannula 20 proximally to expose the first port 10A. Vacuum can be provided to the lumen 10B with orifices 10C to allow the lumen 10B to siphon biological tissue into the port 10A (
Referring to
Referring to
While in the foregoing embodiment, a boss 26 is illustrated as a means for spreading the closed section 22D to open it into the open configuration 22A to release the sample, other means for opening the section 22D are possible. For example, guides similar to rails 23A can be provided at the proximal end which catch the edges of the rolled section 22D and gradually unwrap it. Such guides could be provided in the form of an insert in the stylet 10.
Referring to
A passageway 10B is provided to permit fluid communication between the mesh tube 30 and the passage 10B. In one embodiment, saline is provided via passage 10B while vacuum is provided in the mesh tube 30, which causes tissue BSM to be moved into the tube 30. A support tube 49 allows the mesh tube 30 to be everted over the inner cannula 28 as samples BSM are forced into it. Preferably the mesh tube 30 has a surface that helps to ensure positive engagement with samples, such as a surface covered with spines or hooks as illustrated. As each sample is drawn into the mesh tube 30, the mesh tube becomes ready to accept another sample. The mesh tube 30 itself may serve as a removable carrier that holds the samples BSM and separates them for delivery to a biopsy laboratory.
A saline flush may be provided to help ensure samples are moved into the mesh tube 30. This may provide lubrication as well as positive transfer into the mesh tube 30. The proximal end 32 of the mesh tube 30 may be pulled by a line 47. The drive mechanism for pulling the line 47 may include a pulley, for example. Extraction of the tissue BSM can be achieved by back flushing the tube 30 with saline, causing the sample to be ejected from the tube 30 as the tube 30 is counter-everted at a recovery position. In this case, the support tube 49 and the mesh tube 30 may be transported through the stylet 10 to recover position and the mesh tube 30 counter-everted by pulling at the leading edge 51 by a tow line (not shown).
After the samples are harvested, the mesh tube 30 can be removed from the biopsy device. The samples can remain in a row in the tube thereby keeping the samples organized according to the order in which they were taken.
As is the case above, an outer cannula 20 (not shown for clarity) is used to sever the tissue from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used. positioned in second port 20A.
Referring to
Referring to
The vacuuming action draws in a tissue sample 53. To trigger the cutting of the sample, sensors (not shown) may be used to detect the movement of the tissue sample 53 into the lumen 10B, or the passage of an elapsed time interval or user action may be used to determine that a sample 53 has been drawn into the passage 10B. The outer cannula 20 can be used to sever the tissue sample from the host. Alternatively, a cannula disposed internally of the stylet 10 can also be used.
At this point, shown here in
Referring to
FIGS. 6A1-6A3 illustrate a rotary-to-linear type tissue transport assembly 57 utilizing a shuttle 10. In this embodiment, the shuttle 34 is coupled to a helically threaded member via a suitable joint coupling. The joint coupling allows the shuttle to remain in a generally fixed orientation (e.g., upwardly oriented) while an inner cannula 21 with external threads are rotated against the stylet 10 (provided with internal threads), which allows the inner cannula 21 to convert the rotary motion of the cannula 21 into a linear motion while the stylet 10 remains stationary. The number and nature of the internal threads can be designed to achieve a sufficient transport speed with little or no back drive or backlash in the system. A fixed elongate slide 34B passing through and engaged in a slot 34A in the shuttle 34 may be used to prevent the shuttle 34 from rotating while permitting it to travel along the cannula 20. An outer cannula 20 can be used to sever the tissue sample from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used. Thereafter, the internal cannula 21 is rotated against the internal threads of the stylet 10 to transport the shuttle 34 to a tissue ejection port 20A.
FIGS. 6B1-6B3 illustrate a linear motion by longitudinal expansion of a plurality of nested elongated members. The shuttle 34 is connected to a first elongated member 21A that is nestable to second elongated member 21B, that is nestable to a third elongated member 21C and so on. The shuttle 34 and nested elongated members are disposed inside the stylet 10 (not shown for clarity). There may be any desired number of nested members such as 21A through 21C. Further, any of a variety of linear actuator devices may be employed. As in the embodiment of FIGS. 6A1-6A4, a fixed elongate slide 34B passing through and engaged in a slot 34A in the shuttle 34 may be used to prevent the shuttle 34 from rotating while permitting it to travel along the cannula 20. Each of the nested members may be provided with a stop so that when it reaches the end of a permitted range of travel relative to the member in which it is inserted, it is prevented from rotating further. In this way, only the most proximal member (e.g., 21C) needs to be rotated to extend and retract the shuttle 34.
As is the case above, the outer cannula 20 can be used to sever the tissue sample from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used. With the tissue contained in the shuttle 34, a suitable mechanism can be used to translate the shuttle in a linear motion between the first port 10A and second port 20A. For example, a Bowden type cable can be connected to the first elongated member through the interior of the second and third elongated members so that one to one movement of the cable would force the first elongated member 21A to telescope out of the interior of the second elongated member 21B. Further expansion of the cable would force the second elongated member 21B to telescope out of the interior of the third elongated member 21C (FIG. 6B2). Retraction of the cable would force the member to be nested inside each other in proximal direction (FIG. 6B3). Alternatively, a hydraulic mechanism can be used to telescopically expand these members by pressurizing the interiors of the elongated members 21B and 21C with a suitable bio-compatible liquid. Retraction of the members 21A, 21B, and 21C into a nested configuration can be achieved by providing a vacuum that extracts the liquid out of the interiors of the elongated members. Orifices 34A can be formed in the underside of shuttle 34 (e.g.,
Each of the above embodiments can be utilized with a suitably sized stylet. For a 14 gauge stylet or needle, the internal volume is sufficient to capture a mass of at least 150 milligrams of biological tissues, e.g., turkey breast tissues. For a 10 gauge stylet 10, the internal volume is sufficient to capture a mass of at least 50 milligrams or more of biological tissues, e.g., turkey breast tissues. The length of the stylet 10 can be of any suitable lengths, such as, for example, about 250 to about 300 millimeters. The volume V of the housing containing all of the components of the device 100 is preferably 500 cubic centimeters or less and preferably about 320 cubic centimeters with particularly preferable dimensions of about 40 millimeters by about 40 millimeters and about 200 millimeters. As used herein, the term “about” or “approximately” for any numerical values indicates a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as a biopsy cutter, biopsy system or the combination of both the system and cutter.
The cutting action by the cannula 20 can be by translation, rotation, translation and rotation or a combination of these movements along with back and forth axial movements of the cannula 20 as part of the cutting strategy. In the preferred embodiments, the drive unit can be a suitable drive unit such as the one shown and described, by way of example, in FIGS. 2, 9A, and 10A of U.S. Patent Application Publication No. 2005/0165328 published on Jul. 28, 2005, which publication is incorporated by reference in its entirety into this application.
The examples shown in the illustrations and described in detail above can be integrated with one or more of four exemplary marking systems. In particular, each of four marking systems can be integrated with each of the examples described above to provide for at least 32 different integrated biopsy cutter and marker systems. For clarity, only the four marking systems will be described and shown below. However, those skilled in the art can combine each marker system with each of the biopsy cutter systems as appropriate to arrive at a suitable permutation of biopsy sampling device and integrated marker.
Referring to
Referring to
Referring to
Referring to
The materials suitable for use as part of each marker can be, for example, stainless steel, gold, titanium, platinum, tantalum, barium sulfate, biodegradable iron or shape memory polymer or metal alloy such as Nitinol. It is noted that Nitinol is radio-opaque, ultrasonically opaque and MRI compatible and therefore would be preferred by itself or in combination with other materials described herein and as known to those skilled in the art. Further, the markers can be of any suitable size so that it can be fitted onto a 7, 8, 9, 10, 11, 12, 14, or 16 gauge needle.
Although the markers have been shown as a single deployment marker, some of the embodiments disclosed herein can be utilized in a multiple deployment aspect. For example, the tip 11 can be configured to store a plurality of harpoon markers 50; the stylet 10 can be mounted with a longitudinal series of split-ring markers 60; the tip 11 can be configured with a cutter so that multiple helical markers 80 can be deployed.
Moreover, while specific embodiments have been described, various combinations of components and features can be obtained. For example, the paddle transport of
Referring to
While the present invention has been disclosed with reference to certain preferred embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, which is described, by way of example, above. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it have the full scope and equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 11/997,404 filed Jul. 7, 2008, now U.S. Pat. No. 8,282,574, which is a U.S. national application under 35 U.S.C. 371 of International Application No. PCT/US2006/031326, filed Aug. 10, 2006, which claims benefit of priority to U.S. Provisional Patent Application Ser. No. 60/707,228 filed Aug. 10, 2005, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
737293 | Summerfeldt | Aug 1903 | A |
1585934 | Muir | May 1926 | A |
1663761 | Johnson | Mar 1928 | A |
2953934 | Sundt | Sep 1960 | A |
3019733 | Braid | Feb 1962 | A |
3224434 | Molomut et al. | Dec 1965 | A |
3289669 | Dwyer et al. | Dec 1966 | A |
3477423 | Griffith | Nov 1969 | A |
3512519 | Hall | May 1970 | A |
3561429 | Jewett et al. | Feb 1971 | A |
3565074 | Foti | Feb 1971 | A |
3606878 | Kellogg | Sep 1971 | A |
3727602 | Hyden et al. | Apr 1973 | A |
3732858 | Banko | May 1973 | A |
3785380 | Brumfield | Jan 1974 | A |
3800783 | Jamshidi | Apr 1974 | A |
3844272 | Banko | Oct 1974 | A |
3882849 | Jamshidi | May 1975 | A |
3889682 | Denis et al. | Jun 1975 | A |
3916948 | Benjamin | Nov 1975 | A |
4275730 | Hussein | Jun 1981 | A |
4282884 | Boebel | Aug 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4354092 | Manabe et al. | Oct 1982 | A |
4393879 | Milgrom | Jul 1983 | A |
4445509 | Auth | May 1984 | A |
4490137 | Moukheibir | Dec 1984 | A |
4549554 | Markham | Oct 1985 | A |
4577629 | Martinez | Mar 1986 | A |
4589414 | Yoshida et al. | May 1986 | A |
4603694 | Wheeler | Aug 1986 | A |
4605011 | Naslund | Aug 1986 | A |
4616215 | Maddalena | Oct 1986 | A |
4617430 | Bryant | Oct 1986 | A |
4620539 | Andrews et al. | Nov 1986 | A |
4643197 | Greene et al. | Feb 1987 | A |
4645153 | Granzow et al. | Feb 1987 | A |
4678459 | Onik et al. | Jul 1987 | A |
4696298 | Higgins et al. | Sep 1987 | A |
4702260 | Wang | Oct 1987 | A |
4706687 | Rogers | Nov 1987 | A |
4776346 | Beraha et al. | Oct 1988 | A |
4792327 | Swartz | Dec 1988 | A |
4832044 | Garg | May 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4844087 | Garg | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4893635 | de Groot et al. | Jan 1990 | A |
4907598 | Bauer | Mar 1990 | A |
RE33258 | Onik et al. | Jul 1990 | E |
4940061 | Terwilliger et al. | Jul 1990 | A |
4952817 | Bolan et al. | Aug 1990 | A |
4958625 | Bates et al. | Sep 1990 | A |
4967762 | DeVries | Nov 1990 | A |
4986278 | Ravid et al. | Jan 1991 | A |
4986279 | O'Neill | Jan 1991 | A |
4986807 | Farr | Jan 1991 | A |
4989614 | Dejter, Jr. et al. | Feb 1991 | A |
5025797 | Baran | Jun 1991 | A |
5048538 | Terwilliger et al. | Sep 1991 | A |
5057822 | Hoffman | Oct 1991 | A |
5078603 | Cohen | Jan 1992 | A |
5125413 | Baran | Jun 1992 | A |
5138245 | Mattinger et al. | Aug 1992 | A |
5146921 | Terwilliger et al. | Sep 1992 | A |
5156160 | Bennett | Oct 1992 | A |
5158528 | Walker et al. | Oct 1992 | A |
5172702 | Leigh et al. | Dec 1992 | A |
5176628 | Charles et al. | Jan 1993 | A |
5197484 | Kornberg et al. | Mar 1993 | A |
5223012 | Best et al. | Jun 1993 | A |
5225763 | Krohn et al. | Jul 1993 | A |
5234000 | Hakky et al. | Aug 1993 | A |
5236334 | Bennett | Aug 1993 | A |
5242404 | Conley et al. | Sep 1993 | A |
5249583 | Mallaby | Oct 1993 | A |
5282476 | Terwilliger | Feb 1994 | A |
5282477 | Bauer | Feb 1994 | A |
5290253 | Kira | Mar 1994 | A |
5324306 | Makower et al. | Jun 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5335671 | Clement | Aug 1994 | A |
5368029 | Holcombe et al. | Nov 1994 | A |
5368045 | Clement et al. | Nov 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5397462 | Higashijima et al. | Mar 1995 | A |
5400798 | Baran | Mar 1995 | A |
5439474 | Li | Aug 1995 | A |
5458112 | Weaver | Oct 1995 | A |
5469860 | De Santis | Nov 1995 | A |
5471994 | Guirguis | Dec 1995 | A |
5479486 | Saji | Dec 1995 | A |
5485917 | Early | Jan 1996 | A |
5492130 | Chiou | Feb 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5535755 | Heske | Jul 1996 | A |
5546957 | Heske | Aug 1996 | A |
5554151 | Hinchliffe | Sep 1996 | A |
5560373 | De Santis | Oct 1996 | A |
5564436 | Hakky et al. | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5575293 | Miller et al. | Nov 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5601583 | Donahue et al. | Feb 1997 | A |
5601585 | Banik et al. | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5617874 | Baran | Apr 1997 | A |
5649547 | Ritchart et al. | Jul 1997 | A |
5655542 | Weilandt | Aug 1997 | A |
5655657 | Roshdy | Aug 1997 | A |
5665101 | Becker et al. | Sep 1997 | A |
5669394 | Bergey et al. | Sep 1997 | A |
5699909 | Foster | Dec 1997 | A |
5700265 | Romano | Dec 1997 | A |
5709697 | Ratcliff et al. | Jan 1998 | A |
5720760 | Becker et al. | Feb 1998 | A |
5735264 | Siczek et al. | Apr 1998 | A |
5752923 | Terwilliger | May 1998 | A |
5755714 | Murphy-Chutorian | May 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5769086 | Ritchart et al. | Jun 1998 | A |
5769795 | Terwilliger | Jun 1998 | A |
5775333 | Burbank et al. | Jul 1998 | A |
5779649 | Herbert | Jul 1998 | A |
5788651 | Weilandt | Aug 1998 | A |
5792167 | Kablik et al. | Aug 1998 | A |
5807282 | Fowler | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817034 | Milliman et al. | Oct 1998 | A |
5823970 | Terwilliger | Oct 1998 | A |
5827305 | Gordon | Oct 1998 | A |
5830219 | Bird et al. | Nov 1998 | A |
D403405 | Terwilliger | Dec 1998 | S |
5857982 | Milliman et al. | Jan 1999 | A |
5871699 | Ruggeri | Feb 1999 | A |
5879365 | Whitfield et al. | Mar 1999 | A |
5908233 | Heskett et al. | Jun 1999 | A |
5913857 | Ritchart et al. | Jun 1999 | A |
5916198 | Dillow | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5928164 | Burbank et al. | Jul 1999 | A |
5944673 | Gregoire et al. | Aug 1999 | A |
5951490 | Fowler | Sep 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5964716 | Gregoire et al. | Oct 1999 | A |
5971939 | DeSantis et al. | Oct 1999 | A |
5976164 | Bencini et al. | Nov 1999 | A |
5980469 | Burbank et al. | Nov 1999 | A |
5980545 | Pacala et al. | Nov 1999 | A |
6007495 | Matula | Dec 1999 | A |
6007497 | Huitema | Dec 1999 | A |
6007556 | Kablik et al. | Dec 1999 | A |
6017316 | Ritchart et al. | Jan 2000 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6019733 | Farascioni | Feb 2000 | A |
6022324 | Skinner | Feb 2000 | A |
6022325 | Siczek et al. | Feb 2000 | A |
6027458 | Janssens | Feb 2000 | A |
6036657 | Milliman et al. | Mar 2000 | A |
6050955 | Bryan et al. | Apr 2000 | A |
6055870 | Jaeger | May 2000 | A |
6071247 | Kennedy | Jun 2000 | A |
6077230 | Gregoire et al. | Jun 2000 | A |
6083176 | Terwilliger | Jul 2000 | A |
6083237 | Huitema et al. | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6106484 | Terwilliger | Aug 2000 | A |
6110129 | Terwilliger | Aug 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6123957 | Jernberg | Sep 2000 | A |
6126617 | Weilandt et al. | Oct 2000 | A |
6142955 | Farascioni et al. | Nov 2000 | A |
6162187 | Buzzard et al. | Dec 2000 | A |
6165136 | Nishtala | Dec 2000 | A |
6193673 | Viola et al. | Feb 2001 | B1 |
6196978 | Weilandt et al. | Mar 2001 | B1 |
6213957 | Milliman et al. | Apr 2001 | B1 |
6220248 | Voegele et al. | Apr 2001 | B1 |
6231522 | Voegele et al. | May 2001 | B1 |
6241687 | Voegele et al. | Jun 2001 | B1 |
6267759 | Quick | Jul 2001 | B1 |
6273861 | Bates et al. | Aug 2001 | B1 |
6273862 | Privitera et al. | Aug 2001 | B1 |
6280398 | Ritchart et al. | Aug 2001 | B1 |
6283925 | Terwilliger | Sep 2001 | B1 |
6322523 | Weilandt et al. | Nov 2001 | B2 |
6328701 | Terwilliger | Dec 2001 | B1 |
6331166 | Burbank et al. | Dec 2001 | B1 |
6358217 | Bourassa | Mar 2002 | B1 |
6402701 | Kaplan et al. | Jun 2002 | B1 |
6419641 | Mark et al. | Jul 2002 | B1 |
6428486 | Ritchart et al. | Aug 2002 | B2 |
6428487 | Burdorff et al. | Aug 2002 | B1 |
6432064 | Hibner et al. | Aug 2002 | B1 |
6432065 | Burdorff et al. | Aug 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6436054 | Viola et al. | Aug 2002 | B1 |
6461302 | Thompson | Oct 2002 | B1 |
6471659 | Eggers et al. | Oct 2002 | B2 |
6482158 | Mault | Nov 2002 | B2 |
6485436 | Truckai et al. | Nov 2002 | B1 |
6488636 | Bryan et al. | Dec 2002 | B2 |
6488766 | Balkum | Dec 2002 | B2 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6540694 | Van Bladel et al. | Apr 2003 | B1 |
6540761 | Houser | Apr 2003 | B2 |
6544194 | Kortenbach et al. | Apr 2003 | B1 |
6551255 | Van Bladel et al. | Apr 2003 | B2 |
6554779 | Viola et al. | Apr 2003 | B2 |
6585664 | Burdorff et al. | Jul 2003 | B2 |
6585694 | Smith et al. | Jul 2003 | B1 |
6586585 | Bastian | Jul 2003 | B1 |
6626849 | Huitema et al. | Sep 2003 | B2 |
6638235 | Miller et al. | Oct 2003 | B2 |
6656133 | Voegele et al. | Dec 2003 | B2 |
6659105 | Burbank et al. | Dec 2003 | B2 |
6659338 | Dittmann et al. | Dec 2003 | B1 |
6683439 | Takano et al. | Jan 2004 | B2 |
6689072 | Kaplan et al. | Feb 2004 | B2 |
6695786 | Wang et al. | Feb 2004 | B2 |
6702832 | Ross et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6712774 | Voegele et al. | Mar 2004 | B2 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6753671 | Harvey | Jun 2004 | B1 |
6755802 | Bell | Jun 2004 | B2 |
6758824 | Miller et al. | Jul 2004 | B1 |
6764495 | Lee et al. | Jul 2004 | B2 |
6832990 | Kortenbach et al. | Dec 2004 | B2 |
6849080 | Lee et al. | Feb 2005 | B2 |
6860860 | Viola | Mar 2005 | B2 |
6875183 | Cervi | Apr 2005 | B2 |
6887210 | Quay | May 2005 | B2 |
6908440 | Fisher | Jun 2005 | B2 |
D508458 | Solland et al. | Aug 2005 | S |
6926676 | Turturro et al. | Aug 2005 | B2 |
6984213 | Horner et al. | Jan 2006 | B2 |
7004174 | Eggers et al. | Feb 2006 | B2 |
7010332 | Irvin et al. | Mar 2006 | B1 |
7025732 | Thompson et al. | Apr 2006 | B2 |
D525583 | Vu | Jul 2006 | S |
7108660 | Stephens et al. | Sep 2006 | B2 |
7153274 | Stephens et al. | Dec 2006 | B2 |
7156814 | Williamson, IV et al. | Jan 2007 | B1 |
7182754 | Brigham et al. | Feb 2007 | B2 |
7189206 | Quick et al. | Mar 2007 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7219867 | Kalis et al. | May 2007 | B2 |
7226424 | Ritchart et al. | Jun 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7276032 | Hibner | Oct 2007 | B2 |
7328794 | Lubs et al. | Feb 2008 | B2 |
7347828 | Francese et al. | Mar 2008 | B2 |
7347829 | Mark et al. | Mar 2008 | B2 |
7374544 | Freeman et al. | May 2008 | B2 |
7390306 | Mark | Jun 2008 | B2 |
7397654 | Mori | Jul 2008 | B2 |
7402140 | Spero et al. | Jul 2008 | B2 |
7405536 | Watts | Jul 2008 | B2 |
7407054 | Seiler et al. | Aug 2008 | B2 |
7432813 | Postma | Oct 2008 | B2 |
7452367 | Rassman et al. | Nov 2008 | B2 |
7458940 | Miller | Dec 2008 | B2 |
7464040 | Joao | Dec 2008 | B2 |
7473232 | Teague | Jan 2009 | B2 |
7481775 | Weikel, Jr. et al. | Jan 2009 | B2 |
7490048 | Joao | Feb 2009 | B2 |
7491177 | Hibner | Feb 2009 | B2 |
7494473 | Eggers et al. | Feb 2009 | B2 |
7497833 | Miller | Mar 2009 | B2 |
7510534 | Burdorff et al. | Mar 2009 | B2 |
7513877 | Viola | Apr 2009 | B2 |
7517321 | McCullough et al. | Apr 2009 | B2 |
7517322 | Weikel, Jr. et al. | Apr 2009 | B2 |
7549978 | Carlson et al. | Jun 2009 | B2 |
7575557 | Morton et al. | Aug 2009 | B2 |
7648466 | Stephens et al. | Jan 2010 | B2 |
7670299 | Beckman et al. | Mar 2010 | B2 |
7717861 | Weikel et al. | May 2010 | B2 |
7727164 | Cicenas et al. | Jun 2010 | B2 |
7740594 | Hibner | Jun 2010 | B2 |
7740596 | Hibner | Jun 2010 | B2 |
7740597 | Cicenas et al. | Jun 2010 | B2 |
7758515 | Hibner | Jul 2010 | B2 |
7762961 | Heske et al. | Jul 2010 | B2 |
7806834 | Beckman et al. | Oct 2010 | B2 |
7828746 | Teague | Nov 2010 | B2 |
7854706 | Hibner | Dec 2010 | B2 |
7862517 | Tsonton et al. | Jan 2011 | B2 |
7871384 | Thompson et al. | Jan 2011 | B2 |
7883476 | Miller et al. | Feb 2011 | B2 |
7883494 | Martin | Feb 2011 | B2 |
7906076 | Fischer | Mar 2011 | B2 |
7914462 | Hutchins et al. | Mar 2011 | B2 |
7974681 | Wallace et al. | Jul 2011 | B2 |
8002713 | Heske et al. | Aug 2011 | B2 |
8016844 | Privitera et al. | Sep 2011 | B2 |
8052615 | Reuber et al. | Nov 2011 | B2 |
8057402 | Hibner et al. | Nov 2011 | B2 |
8073008 | Mehta et al. | Dec 2011 | B2 |
8075495 | Andreyko et al. | Dec 2011 | B2 |
8083671 | Boulais et al. | Dec 2011 | B2 |
8109885 | Heske et al. | Feb 2012 | B2 |
8118755 | Hibner et al. | Feb 2012 | B2 |
8152738 | Li et al. | Apr 2012 | B2 |
8172771 | Miller et al. | May 2012 | B2 |
8187204 | Miller et al. | May 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8206409 | Privitera et al. | Jun 2012 | B2 |
8251916 | Speeg et al. | Aug 2012 | B2 |
8277393 | Miller et al. | Oct 2012 | B2 |
8313444 | Thompson et al. | Nov 2012 | B2 |
8343069 | Uchiyama et al. | Jan 2013 | B2 |
8597205 | Seiger et al. | Dec 2013 | B2 |
20010007925 | Ritchart et al. | Jul 2001 | A1 |
20010011156 | Viola et al. | Aug 2001 | A1 |
20010012919 | Terwilliger | Aug 2001 | A1 |
20010014779 | Burbank et al. | Aug 2001 | A1 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010047183 | Privitera et al. | Nov 2001 | A1 |
20020029007 | Bryan et al. | Mar 2002 | A1 |
20020065474 | Viola | May 2002 | A1 |
20020067151 | Tanishita | Jun 2002 | A1 |
20020068878 | Jasonni et al. | Jun 2002 | A1 |
20020082518 | Weiss et al. | Jun 2002 | A1 |
20020107043 | Adamson et al. | Aug 2002 | A1 |
20020115942 | Stanford et al. | Aug 2002 | A1 |
20020120212 | Ritchart et al. | Aug 2002 | A1 |
20020143269 | Neuenfeldt | Oct 2002 | A1 |
20020156395 | Stephens et al. | Oct 2002 | A1 |
20030023188 | Kritzman et al. | Jan 2003 | A1 |
20030023239 | Burbank et al. | Jan 2003 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030130593 | Gonzalez | Jul 2003 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
20030163142 | Paltieli et al. | Aug 2003 | A1 |
20030229293 | Hibner et al. | Dec 2003 | A1 |
20030233101 | Lubock et al. | Dec 2003 | A1 |
20040015079 | Berger et al. | Jan 2004 | A1 |
20040019297 | Angel | Jan 2004 | A1 |
20040030367 | Yamaki et al. | Feb 2004 | A1 |
20040034280 | Privitera et al. | Feb 2004 | A1 |
20040049128 | Miller et al. | Mar 2004 | A1 |
20040054299 | Burdorff et al. | Mar 2004 | A1 |
20040092980 | Cesarini et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040167427 | Quick et al. | Aug 2004 | A1 |
20040167428 | Quick et al. | Aug 2004 | A1 |
20040186393 | Leigh et al. | Sep 2004 | A1 |
20040210161 | Burdorff et al. | Oct 2004 | A1 |
20040215103 | Mueller, Jr. et al. | Oct 2004 | A1 |
20040220495 | Cahir et al. | Nov 2004 | A1 |
20040230135 | Merkle | Nov 2004 | A1 |
20040249278 | Krause | Dec 2004 | A1 |
20040267157 | Miller et al. | Dec 2004 | A1 |
20050004492 | Burbank et al. | Jan 2005 | A1 |
20050004559 | Quick et al. | Jan 2005 | A1 |
20050010131 | Burbank et al. | Jan 2005 | A1 |
20050020909 | Moctezuma de la Barrera et al. | Jan 2005 | A1 |
20050027210 | Miller | Feb 2005 | A1 |
20050049489 | Foerster et al. | Mar 2005 | A1 |
20050049521 | Miller et al. | Mar 2005 | A1 |
20050054947 | Goldenberg | Mar 2005 | A1 |
20050065453 | Shabaz et al. | Mar 2005 | A1 |
20050080355 | Mark | Apr 2005 | A1 |
20050085838 | Thompson et al. | Apr 2005 | A1 |
20050088120 | Avis | Apr 2005 | A1 |
20050101879 | Shidham et al. | May 2005 | A1 |
20050113715 | Schwindt et al. | May 2005 | A1 |
20050113716 | Mueller, Jr. et al. | May 2005 | A1 |
20050124914 | Dicarlo et al. | Jun 2005 | A1 |
20050124915 | Eggers et al. | Jun 2005 | A1 |
20050165328 | Heske et al. | Jul 2005 | A1 |
20050165329 | Taylor et al. | Jul 2005 | A1 |
20050177117 | Crocker et al. | Aug 2005 | A1 |
20050193451 | Quistgaard et al. | Sep 2005 | A1 |
20050203439 | Heske et al. | Sep 2005 | A1 |
20050209530 | Pflueger | Sep 2005 | A1 |
20050215921 | Hibner et al. | Sep 2005 | A1 |
20050275378 | Canino et al. | Dec 2005 | A1 |
20050277829 | Tsonton et al. | Dec 2005 | A1 |
20050277871 | Selis | Dec 2005 | A1 |
20050288605 | Pellegrino et al. | Dec 2005 | A1 |
20060030784 | Miller et al. | Feb 2006 | A1 |
20060074344 | Hibner | Apr 2006 | A1 |
20060074345 | Hibner | Apr 2006 | A1 |
20060074350 | Cash | Apr 2006 | A1 |
20060113958 | Lobert et al. | Jun 2006 | A1 |
20060116603 | Shibazaki et al. | Jun 2006 | A1 |
20060122535 | Daum | Jun 2006 | A1 |
20060129063 | Thompson et al. | Jun 2006 | A1 |
20060149162 | Daw et al. | Jul 2006 | A1 |
20060173377 | McCullough et al. | Aug 2006 | A1 |
20060178666 | Cosman et al. | Aug 2006 | A1 |
20060184063 | Miller | Aug 2006 | A1 |
20060241515 | Jones et al. | Oct 2006 | A1 |
20060258956 | Haberstich et al. | Nov 2006 | A1 |
20060260994 | Mark et al. | Nov 2006 | A1 |
20070016101 | Feldman et al. | Jan 2007 | A1 |
20070027407 | Miller | Feb 2007 | A1 |
20070032741 | Hibner et al. | Feb 2007 | A1 |
20070032743 | Hibner | Feb 2007 | A1 |
20070055173 | DeLonzor et al. | Mar 2007 | A1 |
20070073326 | Miller et al. | Mar 2007 | A1 |
20070090788 | Hansford et al. | Apr 2007 | A1 |
20070106176 | Mark et al. | May 2007 | A1 |
20070118048 | Stephens et al. | May 2007 | A1 |
20070118049 | Viola | May 2007 | A1 |
20070123797 | Krause | May 2007 | A1 |
20070149894 | Heske et al. | Jun 2007 | A1 |
20070161925 | Quick et al. | Jul 2007 | A1 |
20070167736 | Dietz et al. | Jul 2007 | A1 |
20070167782 | Callahan et al. | Jul 2007 | A1 |
20070167828 | Saadat | Jul 2007 | A1 |
20070167943 | Janssen et al. | Jul 2007 | A1 |
20070179401 | Hibner | Aug 2007 | A1 |
20070213590 | Squicciarini | Sep 2007 | A1 |
20070213630 | Beckman et al. | Sep 2007 | A1 |
20070213632 | Okazaki et al. | Sep 2007 | A1 |
20070219572 | Deck et al. | Sep 2007 | A1 |
20070236180 | Rodgers | Oct 2007 | A1 |
20070239067 | Hibner et al. | Oct 2007 | A1 |
20070255173 | Hibner | Nov 2007 | A1 |
20070270710 | Frass et al. | Nov 2007 | A1 |
20070276288 | Khaw | Nov 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20070292858 | Chen et al. | Dec 2007 | A1 |
20070293788 | Entrekin et al. | Dec 2007 | A1 |
20070293830 | Martin | Dec 2007 | A1 |
20080004545 | Garrison | Jan 2008 | A1 |
20080007217 | Riley | Jan 2008 | A1 |
20080015429 | Tsonton et al. | Jan 2008 | A1 |
20080021487 | Heisler | Jan 2008 | A1 |
20080021488 | Berberich | Jan 2008 | A1 |
20080030170 | Dacquay et al. | Feb 2008 | A1 |
20080064925 | Gill et al. | Mar 2008 | A1 |
20080064984 | Pflueger | Mar 2008 | A1 |
20080071193 | Reuber et al. | Mar 2008 | A1 |
20080079391 | Schroeck et al. | Apr 2008 | A1 |
20080103411 | Van Bladel et al. | May 2008 | A1 |
20080110261 | Randall et al. | May 2008 | A1 |
20080125634 | Ryan et al. | May 2008 | A1 |
20080135443 | Frojd et al. | Jun 2008 | A1 |
20080146962 | Ritchie et al. | Jun 2008 | A1 |
20080146965 | Privitera et al. | Jun 2008 | A1 |
20080154151 | Ritchart et al. | Jun 2008 | A1 |
20080161682 | Kendrick et al. | Jul 2008 | A1 |
20080161718 | Schwindt | Jul 2008 | A1 |
20080161719 | Miller et al. | Jul 2008 | A1 |
20080161720 | Nicoson et al. | Jul 2008 | A1 |
20080183099 | Jorgensen et al. | Jul 2008 | A1 |
20080195066 | Speeg et al. | Aug 2008 | A1 |
20080200833 | Hardin et al. | Aug 2008 | A1 |
20080200836 | Speeg et al. | Aug 2008 | A1 |
20080208194 | Bickenbach | Aug 2008 | A1 |
20080214955 | Speeg et al. | Sep 2008 | A1 |
20080215056 | Miller et al. | Sep 2008 | A1 |
20080221443 | Ritchie et al. | Sep 2008 | A1 |
20080221444 | Ritchie et al. | Sep 2008 | A1 |
20080221478 | Ritchie et al. | Sep 2008 | A1 |
20080221479 | Ritchie et al. | Sep 2008 | A1 |
20080221480 | Hibner et al. | Sep 2008 | A1 |
20080228104 | Uber et al. | Sep 2008 | A1 |
20080232604 | Dufresne et al. | Sep 2008 | A1 |
20080234715 | Pesce et al. | Sep 2008 | A1 |
20080281225 | Spero et al. | Nov 2008 | A1 |
20080287826 | Videbaek et al. | Nov 2008 | A1 |
20080306406 | Thompson et al. | Dec 2008 | A1 |
20080308607 | Timm et al. | Dec 2008 | A1 |
20080319341 | Taylor et al. | Dec 2008 | A1 |
20090030405 | Quick et al. | Jan 2009 | A1 |
20090048532 | Stephens et al. | Feb 2009 | A1 |
20090048533 | Miller | Feb 2009 | A1 |
20090062624 | Neville | Mar 2009 | A1 |
20090082695 | Whitehead | Mar 2009 | A1 |
20090087249 | Flagle et al. | Apr 2009 | A1 |
20090088666 | Miller et al. | Apr 2009 | A1 |
20090112118 | Quick, Jr. et al. | Apr 2009 | A1 |
20090125062 | Arnin | May 2009 | A1 |
20090137927 | Miller | May 2009 | A1 |
20090171242 | Hibner | Jul 2009 | A1 |
20090171243 | Hibner et al. | Jul 2009 | A1 |
20090204022 | Schwindt | Aug 2009 | A1 |
20090281453 | Tsonton et al. | Nov 2009 | A1 |
20100030020 | Sanders et al. | Feb 2010 | A1 |
20100030108 | Anderson et al. | Feb 2010 | A1 |
20100063416 | Cicenas et al. | Mar 2010 | A1 |
20100106053 | Videbaek et al. | Apr 2010 | A1 |
20100152611 | Parihar et al. | Jun 2010 | A1 |
20100160820 | Weikel, Jr. et al. | Jun 2010 | A1 |
20100210966 | Videbaek | Aug 2010 | A1 |
20100222700 | Hibner | Sep 2010 | A1 |
20100234760 | Almazan | Sep 2010 | A1 |
20100292607 | Moore et al. | Nov 2010 | A1 |
20100312140 | Smith et al. | Dec 2010 | A1 |
20100317995 | Hibner et al. | Dec 2010 | A1 |
20100317997 | Hibner et al. | Dec 2010 | A1 |
20100317998 | Hibner et al. | Dec 2010 | A1 |
20100324449 | Rostaing et al. | Dec 2010 | A1 |
20110152715 | Delap et al. | Jun 2011 | A1 |
20110160611 | Ritchart et al. | Jun 2011 | A1 |
20110208085 | McCullough et al. | Aug 2011 | A1 |
20110295150 | McCullough et al. | Dec 2011 | A1 |
20120071787 | Reuber et al. | Mar 2012 | A1 |
20120095366 | Heske et al. | Apr 2012 | A1 |
20120184873 | Jorgensen et al. | Jul 2012 | A1 |
20120191009 | Hoon et al. | Jul 2012 | A1 |
20120203135 | Heske et al. | Aug 2012 | A1 |
20120215130 | Field et al. | Aug 2012 | A1 |
20120238905 | Heske et al. | Sep 2012 | A1 |
20120310109 | Almazan | Dec 2012 | A1 |
20120323120 | Taylor et al. | Dec 2012 | A1 |
20120323140 | Taylor et al. | Dec 2012 | A1 |
20130023789 | Anderson et al. | Jan 2013 | A1 |
20130023791 | Thompson et al. | Jan 2013 | A1 |
20130289441 | Videbaek et al. | Oct 2013 | A1 |
20140228706 | McCullough et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
101011268 | Aug 2007 | CN |
101032420 | Sep 2007 | CN |
3924291 | Jan 1991 | DE |
4041614 | Oct 1992 | DE |
3924291 | Jul 2000 | DE |
10034297 | Apr 2001 | DE |
10026303 | Feb 2002 | DE |
20204363 | May 2002 | DE |
20209525 | Nov 2002 | DE |
10235480 | Feb 2004 | DE |
0433717 | Jun 1991 | EP |
0890339 | Jan 1999 | EP |
0995400 | Apr 2000 | EP |
1074271 | Feb 2001 | EP |
1520518 | Apr 2005 | EP |
1579809 | Sep 2005 | EP |
1604615 | Dec 2005 | EP |
1665989 | Jun 2006 | EP |
1698282 | Sep 2006 | EP |
1829487 | Sep 2007 | EP |
2095772 | Sep 2009 | EP |
2106750 | Oct 2009 | EP |
1569561 | Oct 2010 | EP |
1345429 | Dec 1963 | FR |
2739293 | Apr 1997 | FR |
2018601 | Oct 1979 | GB |
1-126957 | Sep 1987 | JP |
H10508504 | Aug 1998 | JP |
2005530554 | Oct 2005 | JP |
2006509545 | Mar 2006 | JP |
2006528907 | Dec 2006 | JP |
2007502159 | Feb 2007 | JP |
9508945 | Apr 1995 | WO |
9624289 | Aug 1996 | WO |
9628097 | Sep 1996 | WO |
9734531 | Sep 1997 | WO |
9825522 | Jun 1998 | WO |
9831285 | Jul 1998 | WO |
9835615 | Aug 1998 | WO |
9846290 | Oct 1998 | WO |
9933501 | Jul 1999 | WO |
0004832 | Feb 2000 | WO |
0030546 | Jun 2000 | WO |
0059378 | Oct 2000 | WO |
0172230 | Oct 2001 | WO |
0222023 | Mar 2002 | WO |
0232318 | Apr 2002 | WO |
02069808 | Sep 2002 | WO |
2005013830 | Feb 2005 | WO |
2006005342 | Jan 2006 | WO |
2006015302 | Feb 2006 | WO |
2007047128 | Apr 2007 | WO |
2007095330 | Aug 2007 | WO |
2007112751 | Oct 2007 | WO |
2008021687 | Feb 2008 | WO |
2008024684 | Feb 2008 | WO |
2008040812 | Apr 2008 | WO |
2008131362 | Oct 2008 | WO |
Entry |
---|
Merriam-Webster.com, Within—Definition and More from the Free Merriam-Webster Dictionary, downloaded Aug. 15, 2014, 3 pages. |
Merriam-Webster.com, Series—Definition and More from the Free Merriam-Webster Dictionary, downloaded Aug. 15, 2014, 3 pages. |
Merriam-Webster.com, Restrain—Definition and More from the Free Merriam-Webster Dictionary, downloaded Aug. 17, 2014, 3 pages. |
Merriam-Webster.com, While—Definition and More from the Free Merriam-Webster Dictionary, downloaded Aug. 17, 2014, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20120330185 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
60707228 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11997404 | US | |
Child | 13608609 | US |