Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers

Information

  • Patent Grant
  • 11849928
  • Patent Number
    11,849,928
  • Date Filed
    Wednesday, June 19, 2019
    4 years ago
  • Date Issued
    Tuesday, December 26, 2023
    4 months ago
Abstract
A marker system includes a biopsy apparatus having a cannula and a stylet. The cannula has a distal end, the stylet has a distal stylet tip, and the stylet is received in the cannula. A tissue marker is coupled to the distal stylet tip. The tissue marker is configured to be contacted by the distal end of the cannula. The tissue marker is detached from the stylet distal tip by either of a proximal movement of the stylet relative to the cannula or a distal movement of the cannula relative to the stylet.
Description
FIELD OF THE INVENTION

This invention relates to a tissue biopsy sampling device.


BACKGROUND OF THE INVENTION

It is sometimes desirable or necessary to obtain specimens of tissue from humans and other animals, particularly in the diagnosis and treatment of patients with cancerous tumors, premalignant conditions, and other diseases or disorders. For example, when it is discovered that suspicious conditions exist, either by means of x-ray or ultrasound imaging in various tissues of the body, a physician usually performs a biopsy to determine if the cells at the suspected site are cancerous or benign.


A biopsy can be done either by an open or percutaneous technique. Open biopsy is an invasive procedure using a scalpel, by either a portion (incisional biopsy) being removed or the entire mass (excisional biopsy) is removed. Percutaneous biopsy is usually done with a needle-like instrument through a relatively small incision, and can be performed by fine needle aspiration (FNA) or through the taking of a core biopsy sample. In FNA biopsy, individual cells or clusters of cells are obtained for cytologic examination and can be prepared such as in a Papanicolaou smear. In a core biopsy, a core or fragment of the tissue is obtained for histological examination.


Uncontaminated and intact tissue from the organ, lesion, or tumor is preferred by medical personnel in order to arrive at a definitive diagnosis regarding the patient's condition. In most cases only part of the tissue in question needs to be sampled. The portions of tissue extracted must be indicative of the organ, lesion, or tumor as a whole. Often, multiple tissue samples from various locations of the mass being sampled may be taken.


The percutaneous biopsy procedure can be performed utilizing various techniques and devices. One such biopsy device can include an inner stylet positioned inside an outer cannula, where the stylet is able to slide into and out of the cannula. The stylet can be a solid, pointed needle having a tissue sampling recess, and the cannula can be a hollow, open-ended needle having a sharp tip. The stylet and cannula can be manipulated cooperatively to capture a tissue sample in the sample recess. Such existing devices can be manually operated, semi-automated, and automated.


U.S. Pat. No. 6,485,436 shows a multiple sample biopsy needle with a hydraulic mechanism that circulates fluid from the tip of the needle back to a receiving basket or baskets. A revolver-type array of receiving chambers is disclosed.


U.S. Pat. No. 5,827,305 shows a tissue sampling needle that pushes a sample proximally using a saline wash. Samples remain spaced apart within the needle such that the sequence of their collection is preserved. Samples can also be removed from a port while the needle remains in place. No mechanical transport mechanisms or drives are disclosed.


U.S. Pat. No. 5,526,822 shows a transport system that uses a cannula and knock-out pin combined with a vacuum source to shuttle a tissue sample to a multiple-chamber cassette where it is knocked out. The cannula is then repositioned for another sample. The vacuum source is external. A revolving sample cassette is also shown. A vent opening in each sample cylinder of the cassette is provided to eject the fluid used to transport the tissue sample. A removable disposable needle-bearing cassette interfaces with rotary and linear drives by means of long gears and shuttles that cradle the gears. Cutters operate in rotary and linear fashion (a counter-rotating cutters embodiment is included) and the cannula can be rotated to orient the sample opening.


U.S. Pat. No. 6,017,316 shows a transport system similar to U.S. Pat. No. 5,827,822 in which a cutter transports with vacuum assist. Multiple sampling with single insertion is described but not automated multiple sample-handling. The details of a drive system are not disclosed.


U.S. Pat. No. 6,193,673 shows a needle with a durable part and a disposable part. An external cutting cannula rotates and advances axially to cut a sample. The tissue cutter is driven axially by a rack and pinion drive which are part of a durable component. A cradle connects the rack to the cutting cannula.


U.S. Pat. No. 5,944,673 describes a tissue extractor that rotates within a piercing needle to align with any one of multiple receiving ports while obstructing the remaining ports. The tissue sample is cut by advancing the cutter and removing by withdrawing the extractor. A vacuum holds the tissue sample in place during the removal of the tissue extractor from the cutter. The cutter rotates as it advances.


It is known to obtain a single sample with a single insertion. However, there are circumstances where there may be a need to obtain more than one samples. While the known biopsy needle can be re-inserted multiple times, such technique can cause pain and scarring of the body site.


It is known to leave a marker at the biopsied site. To do so, however, a physician or healthcare provider would typically need to withdraw the biopsy needle and insert a different device to leave a marker at the biopsied site. The additional step with the marker device concurrent with the tissue sampling may not allow the marker to be deposited at the actual biopsied site, which can lead to inaccurate post-biopsy diagnosis.


SUMMARY OF THE INVENTION

The present invention provides for exemplary embodiments of a single-insertion, multiple sampling biopsy device. The present invention also provides for exemplary embodiments of a single-insertion, multiple sampling device with integrated marker release.


According to an embodiment, a biopsy device has a stylet with a distal end and a proximal end, a sample opening being provided at the distal end. An interior volume lies within the stylet and runs between the distal and proximal ends. The sample opening provides access to the interior volume. The stylet has a recovery position proximal of the distal end. A shuttle is mounted in the stylet and free to travel from the sample opening to the recovery position. The shuttle has at least one bulkhead shaped and positioned to push a sample in the shuttle toward the proximal end of the stylet. For example, the shuttle could be a trough-shaped car that is transported along the stylet. A transport subassembly may be provided which is coupled to the shuttle. The shuttle may have at least one bulkhead positioned such that it moves any tissue sample placed therein from the sample port to the proximal end of the stylet. In use, this embodiment allows a sample to be drawn into a sample opening and into the shuttle. Once separated, the sample is carried to the recovery position at the proximal end of the stylet by the shuttle.


In a refinement of the above embodiment, the transport subassembly has a second shuttle (or more shuttles) may be provided which nests at least partly within the first (and others). In this case, multiple samples may be carried by a train of shuttles with the most deeply nested shuttle carrying a first sample and the non-nested one carrying the last. In this way, the transport subassembly moves the first shuttle and the second shuttle consecutively (and potentially further shuttles) to transport respective samples. In the above variations, within each shuttle or adjacent thereto, a bulkhead with a surface at least partly normal to a direction of travel thereof, may be provided to help push the samples in the proximal direction. For example, the bulkhead may be a wall of a trough-shaped cart. If provided, the second shuttle nested at least partly within the first, each shuttle may have a distal bulkhead that has a surface at least partly normal to a direction of travel thereof.


The transport subassembly may have a spooling tape that winds and unwinds to transport the shuttle in the proximal and distal directions. The spooling tape may wind and unwind to transport the shuttle in proximal and distal directions with the shuttle being defined by a distal portion of the tape.


The transport subassembly can have a loop that runs between the opening and the recovery position with the shuttle connected to the loop and the loop winding (and/or potentially unwinding) to transport the shuttle through the stylet. The stylet may have a recovery port at the recovery position and may include a recovery member with an engaging surface that engages the sample in the shuttle to move it out of the shuttle. The recovery member may be movable within the shuttle and may cause the engaging surface to move from a position in the shuttle toward the recovery port, whereby a sample in the shuttle may be removed from the shuttle through the recovery port.


In some embodiments, the transport subassembly may include a linear actuator. The stylet may have an internal surface with internal threads, with the linear actuator including a threaded cylindrical member having external threads that mesh with the stylet internal threads. The threaded cylindrical member may be rotatable within the stylet and rotatably coupled to the first shuttle. The stylet may have an internal surface with internal threads, the linear actuator may include a threaded cylindrical member having external threads that mesh with the stylet internal threads, the threaded cylindrical member may be rotatable within the stylet and rotatably coupled to the first shuttle and the first shuttle may have a member in engagement with the stylet that prevents the rotation of the first shuttle within the stylet. The linear actuator may include threaded cylindrical members having external and internal threads distributed among them such that when the cylindrical members are nested, one within another, mating pairs of the external and internal threads are in mesh, one of the cylindrical members may be rotatably coupled to the first shuttle.


The linear actuator may include threaded cylindrical members having external and internal threads distributed among them such that when the cylindrical members are nested, one within another, mating pairs of the external and internal threads are in mesh. Then, one of the cylindrical members may be rotatably coupled to the first shuttle. The first shuttle may have a member in engagement with the stylet that prevents the rotation of the first shuttle within the stylet.


According to another embodiment, a biopsy device has a stylet with a distal end and a proximal end. The stylet has a sample opening and an interior volume adjacent its distal end. The opening provides access to the interior volume and the stylet has a recovery position proximal of the distal end. A resilient tape, with a distal end that is guided by the stylet is movable along the stylet in proximal and distal directions. The stylet may have an edge guide that receives the tape distal end and which, when the tape distal is moved in the distal direction, shapes the tape distal end into an open shape that defines a recess to allow a sample to be received in the recess. The tape distal end may return to a closed shape when moved proximal of the edge guide thereby securing the sample for transport.


According to another embodiment, a biopsy device has a stylet with a distal end and a proximal end. The stylet has a sample opening near the distal end and a recovery position near the proximal end. The stylet has an interior volume adjacent the stylet distal end, the opening providing access to the interior volume. Also provided is a cassette with multiple recesses, each having an access and a fluid-permeable blind end. The cassette is positioned at the recovery position to align a selected one of the cassette recesses with the recovery position such that the selected cassette recess is in fluid communication with the interior volume of the stylet. A transport mechanism forces a fluid from the stylet distal end toward the stylet proximal end such that fluid exits the blind end of the selected cassette recess, whereby a specimen is flushed into the selected cassette recess and is caught by it. The transport mechanism may include a storage container and transports fluid from the storage container to the stylet distal end.


The transport mechanism may include a reservoir, a pump, and a three way valve. The stylet may include a fluid lumen adjacent the interior volume. The three way valve may connect the fluid lumen, the reservoir, and the pump. The transport mechanism may operate the pump and the three way valve to transport fluid from the reservoir to the stylet distal end during a transport cycle and to recover fluid remaining in the fluid lumen by returning the fluid to the reservoir, during a reset cycle.


According to another embodiment, a biopsy device has a stylet having distal and proximal ends, a harvest position, at the distal end, where tissue samples are received, and a delivery position proximal of the harvest position. The stylet may have a marker held at the stylet distal end with a transport member within the stylet. The transport member may be movable in an axial direction between the harvest and delivery positions to receive samples at the harvest end and deliver samples at the delivery end. The transport member may be further movable beyond the harvest position, or further movable in a direction other than the axial direction, to push at least a portion of the marker to a position that causes the marker to be deployed. The transport member may be further movable beyond the harvest position to push at least a portion of the marker to a position that causes the marker to be deployed. The transport member may be further movable in a direction other than the axial direction to push at least a portion of the marker to a position that causes the marker to be deployed. The marker may include a wire coil which may be housed by the stylet prior to deployment and which may be deployed by rotating the transport member around the axial direction. The transport member may have a distal edge having a recess, the marker may include a hook which may be housed by the stylet prior to deployment and which may be deployed by rotating the transport member around the axial direction to move the recess away from the marker such that when the transport member may be advanced distally, the marker may be pushed by the distal edge.


The stylet may have a tip and the marker may include a deformable member that may be elastically secured to the tip, the marker may be deployable by moving the transport member beyond the harvest position to push the marker from the tip. The marker may include a split ring that may be elastically secured to the tip. The marker may be deployable by moving the transport member beyond the harvest position to push the marker from the tip. The marker may include a flexible member that may be elastically secured to the tip.


The transport member may have a distal tip with a ramp and the marker may have a deformable part that may be proximal of the ramp. In this case, the transport member may cause the deformable part to deform when the transport member may be moved proximally of the harvest position. The marker may have a blooming part that may be proximal of the ramp so that the transport member causes the deformable part to bloom when the transport member is moved proximally of the harvest position.


According to an embodiment, a biopsy device has a stylet with distal and proximal ends and a sample opening within an interior volume adjacent its distal end. The opening provides access to the interior volume. The stylet has a recovery position proximal of the distal end where samples are removed from the stylet. A shuttle mounted in the stylet is free to travel from the sample opening to the recovery position. The shuttle has at least one bulkhead shaped and positioned to push a sample in the shuttle toward the proximal end of the stylet. A transport subassembly coupled to the shuttle bulkhead moves a tissue sample from the sample port to the proximal end of the stylet. A second shuttle can be nested at least partly within the first to allow additional samples to be recovered without removing the needle.


The nested shuttles are preferably located at the sample opening. In this case, the transport subassembly moves the shuttles consecutively to transport respective samples to the recovery position. Preferably the shuttles are used once in a disposable needle portion so there is no need to place the shuttles back to the opening after transporting them to the recovery position.


Preferably, the shuttle has a distal bulkhead with a surface at least partly normal to a direction of travel so that that the distal bulkhead can push the sample in the proximal direction. The shuttles can be open at the bottom or closed.


In an alternative embodiment, the transport subassembly includes a spooling tape that winds and unwinds to transport the shuttle in a proximal direction. To harvest multiple samples, the tape can be extended and rewound repeatedly. The shuttle can be defined by the shape of a distal part of the tape in this case. The distal end of the tape preferably wraps naturally into a closed shape which is opened by engaging edges of the tape in slots at the distal end of the stylet. When the tape is pulled proximally, the edges disengage from the slots and the sample is held by the closed shape and protected from rubbing against the stylet as it is transported.


In another embodiment, the transport subassembly has a loop that runs between the opening and the recovery position, the shuttle being connected to the loop and the transport subassembly winding the loop to transport the shuttle through the stylet. Preferably, the stylet has a recovery port at the recovery position. A recovery member with an engaging surface is movable within the shuttle while at the recovery position so as to cause the engaging surface to move from a position in the shuttle toward the recovery port. In this way a sample in the shuttle is removed from the shuttle through the recovery port.


In another embodiment, the transport subassembly includes a linear actuator. One type of linear actuator employs threads on the internal surface of the stylet and a threaded cylindrical member with external threads that mesh with the stylet internal threads. The threaded cylindrical member is rotatable within the stylet and rotatably coupled to the first shuttle. Preferably, a longitudinal member in engagement with the stylet and the shuttle prevents the rotation of the shuttle within the stylet. In a variation of this, the linear actuator includes multiple threaded cylindrical members having external and internal threads distributed among them such that when the cylindrical members are nested, one within another, mating pairs of the external and internal threads are in mesh, one of the cylindrical members being rotatably coupled to the first shuttle. In this case, also, preferably, a longitudinal member in engagement with the stylet and the shuttle prevents the rotation of the shuttle within the stylet.


According to yet another embodiment, the biopsy device has a stylet having a distal end and a proximal end, the stylet having a sample opening near the distal end and a recovery position near the proximal end. The stylet has an interior volume adjacent the stylet distal end, the opening providing access to the interior volume. There is a cassette with multiple recesses, each having an access and a fluid-permeable blind end, positioned at the recovery position to align a selected one of the cassette recesses with the recovery position. The alignment is such that the selected cassette recess is in fluid communication with the interior volume of the stylet. A transport mechanism forces a fluid from the stylet distal end toward the stylet proximal end such that fluid exits the blind end of the selected cassette recess, whereby a specimen is flushed into the selected cassette recess and is caught by it.


Preferably, the transport mechanism includes a storage container and transports fluid from the storage container to the stylet distal end. More preferably, the transport mechanism includes: a reservoir, a pump, and a multi-way valve and the stylet includes a fluid lumen adjacent the interior volume. Preferably, the three way valve connects the fluid lumen, the reservoir, and the pump and the transport mechanism operates the pump and the multi-way valve to transport fluid from the reservoir to the stylet distal end during a transport cycle and to recover fluid remaining in the fluid lumen by returning the fluid to the reservoir, during a reset cycle. Preferably, the cassette recesses are linked together by flexible connections to form a bandolier.


Also, preferably, a vacuum source of the transport mechanism includes a vacuum connection from the vacuum source to the selected recess blind end to aid in drawing a specimen into the selected recess. In this case, preferably, the stylet has two parallel lumens, a primary lumen for transporting specimens and a secondary lumen for conveying fluid a proximal end of the stylet to the distal end of the stylet where the fluid returns through the primary lumen. The stylet has a sample opening for receiving specimens from a host at its distal end and the stylet carries a cutting cannula that surrounds the stylet and selectively covers the sample opening, the drive mechanism conveying fluid to transport specimens only when the cutting cannula covers the sample opening.


In another embodiment, a biopsy sample extraction needle has a sample extraction end, recovery end, and a transport channel linking the extraction and recovery ends. A pump with a multi-way valve is connected to a fluid reservoir linked to the transport channel such that the pump can: draw a vacuum at at least the transport end with the multi-way valve in a first setting, draw fluid from the reservoir with the multi-way valve in a second setting, and flush the transport channel from the extraction end to the recovery end to transport a sample through the transport channel with the multi-way valve in a third setting.


Preferably, the first and third multi-way valve settings are identical. The pump is preferably a syringe which forms a part of disposable, single-use sterile set. The pump can recover residual saline from the transport channel and deliver it to the reservoir. A volume-reducing valve is preferably provided to reduce a total sealed volume in fluid with the recovery end when the vacuum is drawn by the pump. As a result of this, the vacuum can be stronger when the sample is harvested. The valve can be released after the sample is obtained. The valve can be a tube pinch valve that is part of the lumen through which samples are transported.


In another embodiment, a biopsy device has a tissue extraction portion and a recovery portion, remote from the tissue extraction portion. A channel connects the tissue extraction portion and the recovery portion. Preferably, the biopsy device includes a biopsy needle. The tissue extraction portion has a receiving lumen and a cutting blade. A syringe and a flow controller have a first configuration in which the syringe draws a vacuum at the tissue extraction portion, which in turn draws tissue from a host into the receiving portion. The syringe and flow controller have a second configuration in which the syringe flushes fluid from the tissue extraction portion to the recovery portion to transport tissue samples thereto.


Preferably a disposable component is provided as a sterilized single-use component which includes the syringe and a durable component that houses a motor to drive the syringe. Preferably, the syringe and flow controller have a third configuration in which the syringe draws fluid from a reservoir before flushing the fluid from the tissue extraction portion to the recovery portion.


In another embodiment, a biopsy device has a stylet with distal and proximal ends, a harvest position, at the distal end, where tissue samples are received, and a delivery position proximal of the harvest position. The stylet has a marker held at the stylet distal end. A transport member within the stylet is movable in an axial direction between the harvest and delivery positions to receive samples at the harvest end and deliver samples at the delivery end. The transport member is further movable beyond the harvest position, or further movable in a direction other than the axial direction, to push at least a portion of the marker to a position that causes the marker to be deployed.


Preferably, the transport member is further movable beyond the harvest position to push at least a portion of the marker to a position that causes the marker to be deployed. Alternatively, the transport member is further movable in a direction other than the axial direction to push at least a portion of the marker to a position that causes the marker to be deployed. In an embodiment, the marker includes a wire coil which is housed by the stylet prior to deployment and which is deployed by rotating the transport member around the axial direction.


In another embodiment of the marker device, the transport member has a distal edge having a recess, the marker includes a hook which is housed by the stylet prior to deployment and which is deployed by rotating the transport member around the axial direction to move the recess away from the marker such that when the transport member is advanced distally, the marker is pushed by the distal edge.


In yet another embodiment of the marker device, the stylet has a tip and the marker includes a deformable member that is elastically secured to the tip, the marker being deployable by moving the transport member beyond the harvest position to push the marker from the tip. In still another embodiment, the stylet has a tip and the marker includes a split ring that is elastically secured to the tip, the marker being deployable by moving the transport member beyond the harvest position to push the marker from the tip.


In another embodiment, the stylet has a tip and the marker includes a flexible member that is elastically secured to the tip. The marker is deployable by moving the transport member beyond the harvest position to push the marker from the tip. In this case, the transport member preferably has a distal tip with a ramp and the marker has a deformable part that is proximal of the ramp, the transport member causing the deformable part to deform when the transport member is moved proximally of the harvest position. Preferably, the transport member has a distal tip with a ramp and the marker has a blooming part that is proximal of the ramp. The transport member causes the deformable part to bloom when the transport member is moved proximally of the harvest position.


In an embodiment, a method of performing a tissue biopsy includes severing a tissue sample from a host within a shuttle located inside a biopsy needle, the shuttle being movable within the biopsy needle, holding the tissue sample in the shuttle while moving the shuttle from a distal end of the biopsy needle to a proximal end to transport the tissue sample, and repeating the severing and holding steps without removing the biopsy needle from the host. In a preferred embodiment, the shuttle is connected to a loop and the moving includes revolving the loop around endpoints located at the distal and proximal ends. In another preferred embodiment, a removal member is extended into the shuttle at the proximal end and removing it from the shuttle.


Preferably, the method includes applying a vacuum to the biopsy needle prior to severing the tissue sample. In an embodiment, moving of the shuttle includes retracting a linear actuator or, in yet another embodiment, it includes rotating a threaded lumen to which the shuttle is threaded. A first instance of the severing and holding steps to transport a first sample is preferably done with a different shuttle from a second instance. More preferably, moving the shuttle includes separating it from a nested set of shuttles.


In another embodiment, a method of performing a tissue biopsy includes transporting an excised tissue sample to the end of a flat elongate member held within a biopsy needle. The transporting includes wrapping the end of the elongate member over the sample to prevent it from rubbing against the biopsy needle. Preferably, the elongate member is elastic at its end and the wrapping is a result of the release of a deformation of the elongate member end. Also, preferably, the transporting includes wrapping the elongate member about a spool.


In another embodiment, a tissue biopsy includes drawing a vacuum in a biopsy needle with a pump to move a portion of a host to be sampled into the biopsy needle for excision and transporting an excised sample of the host through the needle by flushing fluid from the pump. Preferably, the pump is a syringe. Preferably, the pump has a chamber and the vacuum is drawn by expanding the chamber and the fluid is flushed by compressing the chamber. Also, preferably, the vacuum is drawn by expanding the chamber and the flushing includes filling the chamber by expanding it while in fluid communication with a fluid reservoir and subsequently compressing the chamber to expel the fluid.


In another embodiment, a method of performing a tissue biopsy includes cutting a tissue sample by axially moving a cutting cannula of a biopsy needle relative a stylet that holds a sample within the cutting cannula in a first direction and deploying a marker by moving the at least a portion of the stylet in a second direction relative to the cutting cannula. Preferably, the marker is a split ring held on the stylet until pushed off by the cutting cannula. Alternatively the marker is a hook and the deploying is performed by rotating a shuttle held by the stylet.


According to another embodiment, a multiple sample biopsy device has a sampling mechanism that cuts tissue samples and a flexible sock wrapped over a support so as to define a recess holding open an access to the sock. A transport mechanism conveys a first tissue sample into the recess of the sock and partially everts by pulling a blind end thereof thereby extending a length of the recess to provide room for another sample and simultaneously transporting the first tissue sample along a direction of the pulling. Preferably, the sampling mechanism includes a hollow cannula having an interior, the sock being located in the interior. Preferably, the sock is of a mesh. The sample can be moved into the sock using suction or by pushing it with fluid. The sample can be drawn into the sock just by moving the sock like a 360 degree conveyor belt. In that case fluid could be provided to just lubricate the sample. Also, the sock is preferably porous and the transport mechanism conveys tissue samples into the recess by flushing against the sample pushing it into the recess and wherein the fluid flows out of the sock. Alternatively a vacuum can be used to pull the sample into the sock. The vacuum can be the same vacuum provided for drawing the sample into the sample recess before cutting the sample.


According to another embodiment, a multiple sample biopsy device has a sampling mechanism that cuts tissue samples. The device has a flexible sock with an access to the sock interior, the sock being an elongate member having a longitudinal axis. A transport mechanism conveys a first tissue sample into the recess of the sock after a first tissue sample is cut and conveys a second tissue sample into the recess of the sock after the second tissue sample is cut such that the tissue samples are arranged in a row along the longitudinal axis. Preferably, the sampling mechanism includes a hollow cannula having an interior, the sock being located in the interior. Preferably, the sock is of a mesh. Preferably, the sock is porous and the transport mechanism conveys tissue samples into the recess by flushing against the sample pushing it into the recess and wherein the fluid flows out of the sock. Preferably, when the transport mechanism conveys a first tissue sample into the recess of the sock, it partially everts the sock by pulling a blind end thereof thereby extending a length of the recess to provide room for the second sample and simultaneously transports the first tissue sample along a direction of the pulling. Alternatively, when the transport mechanism conveys a first tissue sample into the recess of the sock, it partially everts the sock by pulling a blind end of the sock along the longitudinal axis thereof, thereby extending a length of the recess to provide room for the second sample and simultaneously transports the first tissue sample along the longitudinal axis.


According to another embodiment, a method of performing a tissue biopsy includes, in a biopsy needle, cutting a succession of tissue samples and forcing each in turn into a sock, aligning them along the length of the sock and removing the biopsy needle and recovering the tissue samples by removing the sock. Preferably, the order of the samples in the sock at the end of the method corresponds to the order in which the samples were cut.


According to another embodiment of a multiple sample biopsy device a sampling mechanism cuts tissue samples and a chain of paddles connected together such that they can be nested together and pulled as a chain by expanding the chain by pulling only one of the paddles. The sampling mechanism conveys a first tissue sample adjacent a first one of the paddles on a proximal side thereof. A drive moves the first one in the proximal direction less than a distance required for the first one to engage a second adjacent one of the paddles such that the first paddle moves the first tissue sample proximally without causing the second paddle to move. The sampling mechanism conveys a second tissue sample adjacent a second one of the paddles on a proximal side thereof. The drive moves the second one in the proximal direction less than a distance required for the second one to engage a third adjacent one of the paddles such that the first and second paddles move the first and second tissue samples, respectively, without causing a third of the paddles to move. Preferably, the sampling mechanism includes a hollow cannula having an interior, the chain of paddles being arranged in a series within and along the interior.


In all of the above devices, a vacuum source and a power source may be provided in a self-contained hand-held biopsy device. In all of the methods, a biopsy unit may contain a controller programmed to execute the methods automatically or contingent on consecutive command being entered through the biopsy device.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred exemplary embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention.



FIGS. 1A-1D illustrate a transport subassembly for a biopsy device according to one exemplary embodiment of the present invention.



FIGS. 2A-2E illustrate another transport assembly.



FIGS. 3A and 3B illustrate yet another biopsy transport system.



FIGS. 4A-4C illustrate yet another tissue transport system for a biopsy device.



FIGS. 5A-5H and 5J illustrate a tissue transport system utilizing saline for deposit into a bandolier type collection chamber.


FIGS. 6A1-6A4 illustrate a tissue transport using a threaded type inner cannula.


FIGS. 6B1-6B3 illustrate a tissue transport using a telescoping drive.



FIGS. 7A-7G illustrate an integrated biopsy marker system for each of the transport assembly of FIGS. 1-6.



FIGS. 8A-8D illustrate another integrated biopsy marker system for the transport assembly of FIGS. 1-6.


FIGS. 9A1, 9A2, 9A3, 9B and 9C illustrate a further integrated biopsy marker system for each of the transport assembly of FIGS. 1-6.



FIGS. 10A and 10B illustrate yet another integrated biopsy marker system for each of the transport assembly of FIGS. 1-6.



FIG. 11 shows a controller.



FIGS. 12A and 12B show an embodiment of a paddle transport mechanism.





DETAILED DESCRIPTION OF THE PREFERRED EXEMPLARY EMBODIMENTS


FIGS. 1-10 illustrate the preferred exemplary embodiments which utilize the same reference numeral to indicate generally similar components. In particular, FIG. 1A shows a perspective view of a stylet 10 coupled to the single-insertion, multiple samples biopsy transport subassembly 100 having distal end 100A and proximal end 100B that can be implemented in a multiple sampling biopsy device (not shown). The transport subassembly 100 includes the stylet 10, which has a tip 11 at the distal end 100A and an outer cutting cannula 20 covering a substantial portion of the stylet 10 and a first port 10A. Extending through a hollow portion of the stylet 10 are a plurality of nested paddles 12, 14, 16, and 18 coupled to a drive unit at the proximal end 100B, and other ancillary components of the device 100 such as respective saline or vacuum reservoirs, motor drive, reduction gears, switches and sensors (not shown).


The transport subassembly 100 operates by retracting the outer cannula 20 proximally to expose the first port 10A. Vacuum can be provided to the lumen 10B with orifices 10C to allow the lumen 10B to siphon biological tissue into the port 10A (FIG. 1A). The outer cannula 20 is extended distally to sever the tissue BSM from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used. Once the tissue BSM has separated from the main mass, two of the paddles 12 and 14 are retracted proximally. The longitudinal distance between the two paddles and the port 10A partly define the size of tissue sample per retraction of the two paddles. As shown in FIG. 1B, the device is now ready for a subsequent sample with paddles 14 and 16. As shown in FIG. 1C, to ensure that the plurality of paddles can be retained in the stylet 10 without reducing the internal volume that would be needed to transport the tissue BSM through the internal passage of stylet 10, each paddle and its corresponding connector can be mounted in an arcuate offset configuration.


Referring to FIGS. 12A and 12B, in an embodiment, the paddles 412, 413, 414 are linked together as a chain so that only the most proximal one 414 of the paddle elements needs to be moved by a drive 450. Thus, moving the most proximal paddle 414 first a particular distance in a proximal direction, which distance is less than or equal to a link 404 length, will not cause the next paddle 413 to move. But a further movement will cause the most proximal paddle 414 to engage the next paddle 413 causing it to move. Paddle 413 would then engage the next paddle 412 after it is moved beyond the length of its link 403. If a sample is received and moved by the paddle 414 while leaving the other paddles in place, then the drive 450 only needs to move the paddles 412, 413, and 414 in a single direction for multiple samples. The final result after multiple samples is shown in FIG. 12B. The links 402, 403 may be guided by openings or slots in the proximal adjacent paddle, for example as indicated at 432. In addition, to ensure the paddles don't move until positively engaged by the proximally adjacent paddle, the paddles themselves may be frictionally engaged within a surrounding cannula. This friction would be overcome by the drive 450.


Referring to FIG. 2A, a flexible transport mechanism is shown and described. In this embodiment, the transport trough 22A can be a similar material as extension 22B. Alternatively, the trough 22A can be an arcuate sectioned polymer tube 22A coupled to a flexible extender 22B, which is winds onto a roller 24. As is the case above, an outer cannula 20 (not shown for clarity) is used to sever the tissue from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used. Thereafter, the extender 22B is rolled counterclockwise to move the section 22A proximally. To ensure that the arcuate section 22A can retain the tissue sample on the surface 22C, the stylet 10 can be provided with tracks 23A and 23B to allow the section 22A to be flattened due to the plastic material of the section 22A as the extender 22B is moved distally. When the extender 22B is moved proximally, the edges of the section 22A can disengage from the rails 23A and 23B, thereby allowing the flexible arcuate section 22A to fold inward forming a folded-in configuration 22D. This folding in of the polymer section 22A allows the section 22A to clamp over the biopsy sample (FIG. 2C) for transport proximally. As the sample is transported proximally, the sample enters an area of stylet 10 proximate port 20A. A keyed boss portion 26 can be provided inside the stylet 10 so that as the section 22A reaches the port the boss 26 spreads the polymer section 22A apart, from the closed configuration 22D, back to the open configuration of 22A, thereby releasing the grip on the tissue sample. At the same time, the boss 26 forces the tissue into a collection chamber (FIG. 2D). The extender 22B can be unrolled to move the polymer section 22A for engagement against tracks 23A and 23B for a subsequent tissue sampling. The extender 22B can be any suitable materials that allow for application of axial force distally to move the section 22A while permitting the extender 22B to be rolled in a circular configuration.


While in the foregoing embodiment, a boss 26 is illustrated as a means for spreading the closed section 22D to open it into the open configuration 22A to release the sample, other means for opening the section 22D are possible. For example, guides similar to rails 23A can be provided at the proximal end which catch the edges of the rolled section 22D and gradually unwrap it. Such guides could be provided in the form of an insert in the stylet 10.


Referring to FIG. 3A, another transport subassembly is provided. In this embodiment, the transport includes an inner cannula 28 surrounded by a nylon mesh tube (or “sock”) 30. Nylon braid or weave having similar weight and elasticity similar to a woman's hose is suitable. This would allow the tube 30 to be stretched over the inner cannula 28 and to evert easily. Also, preferably, the tube 30 can be of hydrophobic material or have a hydrophobic surface to help prevent tissue samples adhering to it. For example a mesh coated with PolyTetraFluoroEthylene (PTFE) may be used.


A passageway 10B is provided to permit fluid communication between the mesh tube 30 and the passage 10B. In one embodiment, saline is provided via passage 10B while vacuum is provided in the mesh tube 30, which causes tissue BSM to be moved into the tube 30. A support tube 49 allows the mesh tube 30 to be everted over the inner cannula 28 as samples BSM are forced into it. Preferably the mesh tube 30 has a surface that helps to ensure positive engagement with samples, such as a surface covered with spines or hooks as illustrated. As each sample is drawn into the mesh tube 30, the mesh tube becomes ready to accept another sample. The mesh tube 30 itself may serve as a removable carrier that holds the samples BSM and separates them for delivery to a biopsy laboratory.


A saline flush may be provided to help ensure samples are moved into the mesh tube 30. This may provide lubrication as well as positive transfer into the mesh tube 30. The proximal end 32 of the mesh tube 30 may be pulled by a line 47. The drive mechanism for pulling the line 47 may include a pulley, for example. Extraction of the tissue BSM can be achieved by back flushing the tube 30 with saline, causing the sample to be ejected from the tube 30 as the tube 30 is counter-everted at a recovery position. In this case, the support tube 49 and the mesh tube 30 may be transported through the stylet 10 to recover position and the mesh tube 30 counter-everted by pulling at the leading edge 51 by a tow line (not shown).


After the samples are harvested, the mesh tube 30 can be removed from the biopsy device. The samples can remain in a row in the tube thereby keeping the samples organized according to the order in which they were taken.


As is the case above, an outer cannula 20 (not shown for clarity) is used to sever the tissue from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used, positioned in second port 20A.


Referring to FIG. 4A, a shuttle transport system utilizing pulleys is provided. In this system, a shuttle 34 (which defines a trough to receive tissue samples) is connected by a system of pulleys 36A, 36B, and belt or endless connector 36C. Orifices 34A can be formed on the underside of the shuttle 34 so that vacuum provided from a passage 10B can be used to siphon a tissue sample BSM from a main tissue mass. As is the case above, an outer cannula 20 (not shown for clarity) can be used to sever the sample from its main mass (FIG. 4B). Thereafter, the shuttle 34 is moved proximally towards port 20A via the system of pulleys and belt. Ejection of the sample BSM out of the port 20A can be accomplished by a series of plungers 34B that are sized for insertion through orifices 34A. Once the tissue BSM has been ejected into a collection vial or chamber (not shown), the shuttle 34 is translated towards port 10A for another collection of tissue (FIG. 4A).


Referring to FIG. 5A, a saline transport with a bandolier type collection cartridge is provided. In this embodiment, the stylet 10 is provided with a fluid passage 10B and main passage 10F. Fluid passage 10B can be connected via a suitable switching valve to allow saline to be pumped through the passage 10B in a distal direction while main passage 10F can be connected to a vacuum source to allow for saline and any other object entrained by the saline flow from passage 10B to flow through main passage 10F (FIG. 5B) and delivering the object (e.g.; tissue sample BSM) into a bandolier type collection cartridge 39. The bandolier cartridge 39 has design details that are believed to be advantageous. First, the bandolier cartridges 39 are designed to be indexed through a double sided port 20A so that each cartridge is indexed once through the stylet 10. Second, the cartridge has an open distal end 39A and a mesh material 39B formed over a proximal end to form a fluid permeable blind end 39C. This allows the tissue to be pushed through the open end 39A but to be retained by the mesh 39B at the fluid permeable blind end 39C with fluid maintaining its flow through the stylet 10. Third, the cartridges can be linked to each other via a flexible connector; chain link connection; or via a rigid connection.



FIGS. 5D-5H and 5J describe a saline pumping mechanism that may be used with the above and other embodiments. In FIG. 5D, a dual-action pump 40 (e.g., a syringe actuatable by a drive motor) can be used to generate negative pressure by forcing a piston 46 to expand the volume of a chamber 40A, which is in communication with the main passage 10F of the stylet 10. A four-way valve 44, with a vent 42 at one branch, is configured to empty the chamber 45 to the ambient through the four-way valve and out the air vent 42 as air is sucked into the chamber 40A. Note that the vent 42 may be fitted with a filter to prevent contamination leaking into the biopsy device.


The vacuuming action draws in a tissue sample 53. To trigger the cutting of the sample, sensors (not shown) may be used to detect the movement of the tissue sample 53 into the lumen 10B, or the passage of an elapsed time interval or user action may be used to determine that a sample 53 has been drawn into the passage 10B. The outer cannula 20 can be used to sever the tissue sample from the host. Alternatively, a cannula disposed internally of the stylet 10 can also be used.


At this point, shown here in FIG. 5E, the four-way valve 44, with a vent 42 at one branch, is configured to allow the dual-action pump 40 to draw saline into port 40B. With the outer cannula 20 covering the port 10A (not shown for clarity), the dual-action pump 40, via the four-way valve 44, forces saline to flow through passage 10B, causing the tissue sample to be transported proximally towards through-port 20A (FIG. 5F). As the sample encounters the mesh material 39B in a collection vial or cartridge, it remains in place while residual saline falls into the sump 55. Any remaining saline in the lumens can be drawn back into the reservoir 48 by first drawing from the lumens into the chamber 45 (FIG. 5G) and then pumping into the reservoir 48 (FIG. 5H) for subsequent use by the dual-action pump 40.


Referring to FIG. 5J, in an alternative embodiment, the passage 10F is provided with a flexible tube segment 10R that can be pinch-clamped by means of a valve actuator 10S. In this configuration, a pair of inline connectors 10V and 10W provides a smooth transition from a lead in part 10P to a lead out part 10Q to allow fluid and samples to pass through as in the earlier embodiment of passage 10F. The reason for adding this capability to close the valve is to allow a stronger vacuum to be developed in the sample area 10A by improving the volumetric efficiency of the dual action pump 40. To apply a vacuum to sample port 10A, the piston valve is configured as illustrated in FIG. 5F. However, unlike the situation in FIG. 5E, in this case, there is fluid only in the sump 48 as depicted in FIG. 5D. The clamp 10S is closed. The piston 46 is moved to the right to generate the vacuum by expanding the volume of chamber 45. Because the passage 10P is closed, the total volume evacuated, relative to the chamber volume 45, is markedly decreased. This configuration of passage 10P also has the advantage of avoiding the need for vacuum-competent sealing of the collection chamber 56 and sump 55.


FIGS. 6A1-6A3 illustrate a rotary-to-linear type tissue transport assembly 57 utilizing a shuttle 10. In this embodiment, the shuttle 34 is coupled to a helically threaded member via a suitable joint coupling. The joint coupling allows the shuttle to remain in a generally fixed orientation (e.g., upwardly oriented) while an inner cannula 21 with external threads are rotated against the stylet 10 (provided with internal threads), which allows the inner cannula 21 to convert the rotary motion of the cannula 21 into a linear motion while the stylet 10 remains stationary. The number and nature of the internal threads can be designed to achieve a sufficient transport speed with little or no back drive or backlash in the system. A fixed elongate slide 34B passing through and engaged in a slot 34A in the shuttle 34 may be used to prevent the shuttle 34 from rotating while permitting it to travel along the cannula 20. An outer cannula 20 can be used to sever the tissue sample from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used. Thereafter, the internal cannula 21 is rotated against the internal threads of the stylet 10 to transport the shuttle 34 to a tissue ejection port 20A.


FIGS. 6B1-6B3 illustrate a linear motion by longitudinal expansion of a plurality of nested elongated members. The shuttle 34 is connected to a first elongated member 21A that is nestable to second elongated member 21B, that is nestable to a third elongated member 21C and so on. The shuttle 34 and nested elongated members are disposed inside the stylet 10 (not shown for clarity). There may be any desired number of nested members such as 21A through 21C. Further, any of a variety of linear actuator devices may be employed. As in the embodiment of FIGS. 6A1-6A4, a fixed elongate slide 34B passing through and engaged in a slot 34A in the shuttle 34 may be used to prevent the shuttle 34 from rotating while permitting it to travel along the cannula 20. Each of the nested members may be provided with a stop so that when it reaches the end of a permitted range of travel relative to the member in which it is inserted, it is prevented from rotating further. In this way, only the most proximal member (e.g., 21C) needs to be rotated to extend and retract the shuttle 34.


As is the case above, the outer cannula 20 can be used to sever the tissue sample from its main mass. Alternatively, a cannula disposed internally of the stylet 10 can also be used. With the tissue contained in the shuttle 34, a suitable mechanism can be used to translate the shuttle in a linear motion between the first port 10A and second port 20A. For example, a Bowden type cable can be connected to the first elongated member through the interior of the second and third elongated members so that one to one movement of the cable would force the first elongated member 21A to telescope out of the interior of the second elongated member 21B. Further expansion of the cable would force the second elongated member 21B to telescope out of the interior of the third elongated member 21C (FIG. 6B2). Retraction of the cable would force the member to be nested inside each other in proximal direction (FIG. 6B3). Alternatively, a hydraulic mechanism can be used to telescopically expand these members by pressurizing the interiors of the elongated members 21B and 21C with a suitable bio-compatible liquid. Retraction of the members 21A, 21B, and 21C into a nested configuration can be achieved by providing a vacuum that extracts the liquid out of the interiors of the elongated members. Orifices 34A can be formed in the underside of shuttle 34 (e.g., FIGS. 4A and 4C) so that vacuum can be provided for siphoning of tissue at port 10A and ejection of the tissue by pressurized fluid at port 20A into a tissue vial or cartridge. Alternatively, a mechanical ejector 34B can also be used.


Each of the above embodiments can be utilized with a suitably sized stylet. For a 14 gauge stylet or needle, the internal volume is sufficient to capture a mass of at least 150 milligrams of biological tissues, e.g., turkey breast tissues. For a 10 gauge stylet 10, the internal volume is sufficient to capture a mass of at least 50 milligrams or more of biological tissues, e.g., turkey breast tissues. The length of the stylet 10 can be of any suitable lengths, such as, for example, about 250 to about 300 millimeters. The volume V of the housing containing all of the components of the device 100 is preferably 500 cubic centimeters or less and preferably about 320 cubic centimeters with particularly preferable dimensions of about 40 millimeters by about 40 millimeters and about 200 millimeters. As used herein, the term “about” or “approximately” for any numerical values indicates a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as a biopsy cutter, biopsy system or the combination of both the system and cutter.


The cutting action by the cannula 20 can be by translation, rotation, translation and rotation or a combination of these movements along with back and forth axial movements of the cannula 20 as part of the cutting strategy. In the preferred embodiments, the drive unit can be a suitable drive unit such as the one shown and described, by way of example, in FIGS. 2, 9A, and 10A of U.S. Patent Application Publication No. 2005/0165328 published on Jul. 28, 2005, which publication is incorporated by reference in its entirety into this application.


The examples shown in the illustrations and described in detail above can be integrated with one or more of four exemplary marking systems. In particular, each of four marking systems can be integrated with each of the examples described above to provide for at least 32 different integrated biopsy cutter and marker systems. For clarity, only the four marking systems will be described and shown below. However, those skilled in the art can combine each marker system with each of the biopsy cutter systems as appropriate to arrive at a suitable permutation of biopsy sampling device and integrated marker.


Referring to FIGS. 7A-7G, a marker system utilizing a hook type marker 50 (i.e., a “harpoon”) to prevent migration of the marker 50 once it has been deployed, is shown. The hook type marker 50 with hook 52 can be deployed in sequence or simultaneously with the sampling of biopsy tissues with the various technologies described in relation to FIGS. 1-6 above. As shown in FIGS. 7A and 7E, a member (e.g., an internal D-Rod 14A, 14B, or the outer cannula 20) can be used to eject a marker 50 stored in the stylet tip 11. In the exemplary embodiment of FIGS. 7A-7G, a second tracer 14B is provided with a cut-out portion 14B1 having a ramp 14B2 formed on a distal end of the rod 14B. The ramp 14B2 can be used (depending on whether the cannula 20 or rod 14B is axially translated only, rotated only or a combination of axial translation and rotation) to ensure that the marker 50 is deposited sufficiently near the tissue sampling site. Various marker configurations can be utilized. For example, as shown in FIG. 7D, a marker with wire like hooks 50A, square sectioned hook 50B, or marker with serrated edges 50C can be used in this system.


Referring to FIGS. 8A-8D, a marker system utilizing a split ring marker 60 can be utilized with various biopsy techniques described above in relation to FIGS. 1-5. In FIG. 8A, the split-ring marker 60 can be mounted to the stylet 10 via a suitable technique such as, for example, crimping, swaging or semi-permanent bonding. Optionally, an intermediate member 38 that forms a seal with the cannula or cutter 20 can be provided to maintain a generally constant outer diameter of the cannula 20 without an abrupt transition to the tip 11. The split-ring marker 60 can be deployed by itself, simultaneously with the sampling of the tissue, prior to sampling or subsequent to the sampling. As shown in FIG. 8B, the stylet tip 11 can be actuated proximally towards the user to force the split-ring marker 60 to detach from the tip 11. Alternatively, the outer cannula 20 can be actuated distally away from the user to force the split-ring marker 60 to separate from the stylet tip 11.


Referring to FIGS. 9A1, 9A2, 9A3, 9B and 9C, a marker system using a blossom-type marker 70 can be utilized with various biopsy techniques described above in relation to FIGS. 1 and 2. As shown in FIGS. 9A1 and 9B, the blossom marker 70 is mounted on a specially configured stylet tip 110 (see also FIG. 9C), which has grooves 112 and ramps 114 disposed about a longitudinal axis of the tip 110. The blossom marker 70 can be mounted by a suitable technique, such as, for example, crimping, swaging, or casting onto the specially configured stylet tip 110. As shown in FIGS. 9A1, 9A2 and 9B, the outer cannula 20 can be moved distally away from the user to force the blossom marker to be separated from the stylet tip 110. As the marker 70 is separated from the tip 110 (see FIGS. 9A3 and 9C), the ramps 114 on the tip 110 force the sectioned tips 72A-72E to blossom radially, thereby forming hooks 74A-74E. Alternatively, the stylet tip 110 can be actuated proximally towards the user so that the marker is deployed via contact against the outer cannula 20.


Referring to FIGS. 10A and 10B, another marker system is shown which uses a spiral-type marker 80 in conjunction with various biopsy systems described above in relation to FIGS. 1-6. As shown in FIG. 10A, a coiled marker wire 80 can be disposed in a hollowed out section 110 of the stylet tip 11. A suitable deployment mechanism can be used to eject the coiled marker wire out of its storage space in the stylet tip 11. The deployment mechanism can be a suitable mechanism, such as, for example, a linear-to-rotary motion converter that converts a linear motion into a rotary motion to rotatably expel the marker.


The materials suitable for use as part of each marker can be, for example, stainless steel, gold, titanium, platinum, tantalum, barium sulfate, biodegradable iron or shape memory polymer or metal alloy such as Nitinol. It is noted that Nitinol is radio-opaque, ultrasonically opaque and MRI compatible and therefore would be preferred by itself or in combination with other materials described herein and as known to those skilled in the art. Further, the markers can be of any suitable size so that it can be fitted onto a 7, 8, 9, 10, 11, 12, 14, or 16 gauge needle.


Although the markers have been shown as a single deployment marker, some of the embodiments disclosed herein can be utilized in a multiple deployment aspect. For example, the tip 11 can be configured to store a plurality of harpoon markers 50; the stylet 10 can be mounted with a longitudinal series of split-ring markers 60; the tip 11 can be configured with a cutter so that multiple helical markers 80 can be deployed.


Moreover, while specific embodiments have been described, various combinations of components and features can be obtained. For example, the paddle transport of FIGS. 1A-1D can be utilized with the threaded transport of FIGS. 6A1-6A3 by forming threads on the paddle connectors 18A, 16A, 14A, and 12A. The roller transport of FIGS. 2A-2E can be utilized for the paddle connectors of FIGS. 1A-1D. The bandolier type cartridges 39 of FIG. 5C can be utilized for any of the transport subassemblies described herein. The hydraulic and vacuum transport system of FIGS. 5D-5G can be utilized in any one of the embodiments described herein. Thus, it is clear to one skilled in the art that various permutations of components, sub-components and features can be utilized with the embodiments described herein and each seven transport devices is not limited only to the specific embodiment described herein.


Referring to FIG. 11, in all of the above embodiments, various motors, drives, valves, and other actuators are variously described along with their respective operations and operational sequences. It is clear from the particulars of each embodiment that a device may employ a controller 350 such as a programmable microprocessor controller, to provide the described functionality.


While the present invention has been disclosed with reference to certain preferred embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, which is described, by way of example, above. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it have the full scope and equivalents thereof.

Claims
  • 1. A marker system, comprising: a biopsy apparatus configured to biopsy a tissue sample and having a cutting cannula and a stylet, the cutting cannula having a distal end, the stylet having a closed distal stylet tip, and wherein the stylet is received in the cutting cannula; anda tissue marker coupled to an outer surface of the closed distal stylet tip, the tissue marker configured to be contacted by the distal end of the cutting cannula,wherein the tissue marker is configured to be detached from the closed distal stylet tip by either of a proximal movement of the stylet relative to the cutting cannula or a distal movement of the cutting cannula relative to the stylet.
  • 2. The marker system of claim 1, wherein the closed distal stylet tip lies on a longitudinal axis, and the closed distal stylet tip has a plurality of grooves disposed about the longitudinal axis, the plurality of grooves having a corresponding plurality of ramps disposed about the longitudinal axis of the closed distal stylet tip.
  • 3. The marker system of claim 2, wherein a portion of the tissue marker is disposed in the plurality of grooves of the closed distal stylet tip.
  • 4. The marker system of claim 3, wherein a proximal surface of the tissue marker is sized for engagement with the distal end of the cutting cannula.
  • 5. The marker system of claim 4, wherein when the cutting cannula is moved distally relative to the stylet, the tissue marker is separated from the closed distal stylet tip.
  • 6. The marker system of claim 5, the tissue marker having a plurality of sections, wherein as the tissue marker is separated from the closed distal stylet tip, the plurality of ramps on the closed distal stylet tip force the plurality of sections of the tissue marker to blossom radially.
  • 7. The marker system of claim 6, wherein in a deployed state, each of the plurality of sections forms a respective hook.
  • 8. The marker system of claim 6, wherein in a deployed state, the tissue marker has a plurality of radially oriented hooks.
  • 9. The marker system of claim 1, wherein the tissue marker is mounted onto the closed distal stylet tip by one of crimping, swaging, or casting.
  • 10. The marker system of claim 1, wherein the marker comprises a tapered surface thereby aligned with a tapered tip surface of the closed distal stylet tip, wherein a transition between the tapered surface of the marker and the tapered tip surface is substantially linear.
  • 11. A marker system, comprising: a biopsy apparatus configured to biopsy a tissue sample and having a cutting cannula and a stylet, the cutting cannula having a distal end, the stylet having a closed distal stylet tip, and wherein the stylet is received in the cutting cannula; anda blossom-type marker having a plurality of sections, the blossom-type marker being coupled to an outer surface of the closed distal stylet tip, the blossom-type marker configured to be contacted by the distal end of the cutting cannula,wherein the blossom-type marker is configured to be detached from the closed distal stylet tip by either of a proximal movement of the stylet relative to the cutting cannula or a distal movement of the cutting cannula relative to the stylet.
  • 12. The marker system of claim 11, wherein the closed distal stylet tip lies on a longitudinal axis, and the closed distal stylet tip has a plurality of grooves disposed about the longitudinal axis, and wherein the plurality of sections of the blossom-type marker reside in the plurality of grooves.
  • 13. The marker system of claim 12, wherein the plurality of grooves have a corresponding plurality of ramps disposed about the longitudinal axis of the closed distal stylet tip.
  • 14. The marker system of claim 13, wherein the plurality of sections of the blossom-type marker is disposed in the plurality of grooves of the closed distal stylet tip.
  • 15. The marker system of claim 14, wherein a proximal surface of the blossom-type marker is sized for engagement with the distal end of the cutting cannula.
  • 16. The marker system of claim 15, wherein when the cutting cannula is moved distally relative to the stylet, the blossom-type marker is moved over the closed distal stylet tip.
  • 17. The marker system of claim 16, wherein as the tissue marker is moved relative to the closed distal stylet tip, the plurality of ramps on the closed distal stylet tip force the plurality of sections of the blossom-type marker to blossom radially.
  • 18. The marker system of claim 17, wherein in a deployed state, each of the plurality of sections forms a respective hook.
  • 19. The marker system of claim 17, wherein in a deployed state, the blossom-type marker has a plurality of radially oriented hooks.
  • 20. The marker system of claim 11, wherein the blossom-type marker is mounted onto the closed distal stylet tip by one of crimping, swaging, or casting.
PRIORITY DATA AND INCORPORATION BY REFERENCE

This application is a continuation of U.S. patent application Ser. No. 14/625,996 filed Feb. 19, 2015, which is a continuation of U.S. patent application Ser. No. 13/608,609 filed Sep. 10, 2012, now U.S. Pat. No. 8,961,430, which is a divisional of U.S. patent application Ser. No. 11/997,404 filed Jul. 7, 2008, now U.S. Pat. No. 8,282,574, which is a U.S. national application under 35 U.S.C. 371 of International Application No. PCT/US2006/031326, filed Aug. 10, 2006, which claims benefit of priority to U.S. Provisional Patent Application Ser. No. 60/707,228 filed Aug. 10, 2005, each of which is incorporated by reference in its entirety.

US Referenced Citations (571)
Number Name Date Kind
737293 Summerfeldt Aug 1903 A
1585934 Muir May 1926 A
1663761 Johnson Mar 1928 A
2953934 Sundt Sep 1960 A
3019733 Braid Feb 1962 A
3224434 Molomut et al. Dec 1965 A
3289669 Dwyer et al. Dec 1966 A
3477423 Griffith Nov 1969 A
3512519 Hall May 1970 A
3561429 Jewett et al. Feb 1971 A
3565074 Foti Feb 1971 A
3606878 Kellogg Sep 1971 A
3727602 Hyden et al. Apr 1973 A
3732858 Banko May 1973 A
3785380 Brumfield Jan 1974 A
3800783 Jamshidi Apr 1974 A
3844272 Banko Oct 1974 A
3882849 Jamshidi May 1975 A
3889682 Denis et al. Jun 1975 A
3916948 Benjamin Nov 1975 A
4275730 Hussein Jun 1981 A
4282884 Boebel Aug 1981 A
4306570 Matthews Dec 1981 A
4354092 Manabe et al. Oct 1982 A
4393879 Milgrom Jul 1983 A
4445509 Auth May 1984 A
4490137 Moukheibir Dec 1984 A
4549554 Markham Oct 1985 A
4577629 Martinez Mar 1986 A
4589414 Yoshida et al. May 1986 A
4603694 Wheeler Aug 1986 A
4605011 Naslund Aug 1986 A
4616215 Maddalena Oct 1986 A
4617430 Bryant Oct 1986 A
4620539 Andrews et al. Nov 1986 A
4643197 Greene et al. Feb 1987 A
4645153 Granzow et al. Feb 1987 A
4678459 Onik et al. Jul 1987 A
4696298 Higgins et al. Sep 1987 A
4702260 Wang Oct 1987 A
4706687 Rogers Nov 1987 A
4735215 Goto et al. Apr 1988 A
4776346 Beraha et al. Oct 1988 A
4792327 Swartz Dec 1988 A
4832044 Garg May 1989 A
4844064 Thimsen et al. Jul 1989 A
4844087 Garg Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4893635 de Groot et al. Jan 1990 A
4907598 Bauer Mar 1990 A
RE33258 Onik et al. Jul 1990 E
4940061 Terwilliger et al. Jul 1990 A
4952817 Bolan et al. Aug 1990 A
4958625 Bates et al. Sep 1990 A
4967762 DeVries Nov 1990 A
4986278 Ravid et al. Jan 1991 A
4986279 O'Neill Jan 1991 A
4986807 Farr Jan 1991 A
4989614 Dejter, Jr. et al. Feb 1991 A
5025797 Baran Jun 1991 A
5048538 Terwilliger et al. Sep 1991 A
5057822 Hoffman Oct 1991 A
5078603 Cohen Jan 1992 A
5125413 Baran Jun 1992 A
5138245 Mattinger et al. Aug 1992 A
5146921 Terwilliger et al. Sep 1992 A
5156160 Bennett Oct 1992 A
5158528 Walker et al. Oct 1992 A
5172702 Leigh et al. Dec 1992 A
5176628 Charles et al. Jan 1993 A
5183052 Terwilliger Feb 1993 A
5197484 Komberg et al. Mar 1993 A
5211627 William May 1993 A
5223012 Best et al. Jun 1993 A
5225763 Krohn et al. Jul 1993 A
5234000 Hakky et al. Aug 1993 A
5236334 Bennett Aug 1993 A
5242404 Conley et al. Sep 1993 A
5249583 Mallaby Oct 1993 A
5254117 Rigby et al. Oct 1993 A
5282476 Terwilliger Feb 1994 A
5282477 Bauer Feb 1994 A
5290253 Kira Mar 1994 A
5305762 Acorn et al. Apr 1994 A
5324306 Makower et al. Jun 1994 A
5334183 Wuchinich Aug 1994 A
5335671 Clement Aug 1994 A
5368029 Holcombe et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5397462 Higashijima et al. Mar 1995 A
5400798 Baran Mar 1995 A
5439474 Li Aug 1995 A
5458112 Weaver Oct 1995 A
5469860 De Santis Nov 1995 A
5471994 Guirguis Dec 1995 A
5479486 Saji Dec 1995 A
5485917 Early Jan 1996 A
5492130 Chiou Feb 1996 A
5511556 DeSantis Apr 1996 A
5526822 Burbank et al. Jun 1996 A
5535755 Heske Jul 1996 A
5546957 Heske Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5560373 De Santis Oct 1996 A
5564436 Hakky et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575293 Miller et al. Nov 1996 A
5591170 Spievack et al. Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601585 Banik et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5612738 Kim Mar 1997 A
5617874 Baran Apr 1997 A
5649547 Ritchart et al. Jul 1997 A
5655542 Weilandt Aug 1997 A
5655657 Roshdy Aug 1997 A
5665101 Becker et al. Sep 1997 A
5669394 Bergey et al. Sep 1997 A
5699909 Foster Dec 1997 A
5700265 Romano Dec 1997 A
5709697 Ratcliff et al. Jan 1998 A
5720760 Becker et al. Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5752923 Terwilliger May 1998 A
5755714 Murphy-Chutorian May 1998 A
5766135 Terwilliger Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5769795 Terwilliger Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5779649 Herbert Jul 1998 A
5788651 Weilandt Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5807282 Fowler Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817034 Milliman et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
5827305 Gordon Oct 1998 A
5830219 Bird et al. Nov 1998 A
D403405 Terwilliger Dec 1998 S
5857982 Milliman et al. Jan 1999 A
5871699 Ruggeri Feb 1999 A
5879357 Heaton Mar 1999 A
5879365 Whitfield et al. Mar 1999 A
5908233 Heskett et al. Jun 1999 A
5913857 Ritchart et al. Jun 1999 A
5916198 Dillow Jun 1999 A
5916229 Evans Jun 1999 A
5928164 Burbank et al. Jul 1999 A
5944673 Gregoire et al. Aug 1999 A
5951490 Fowler Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5964716 Gregoire et al. Oct 1999 A
5971939 DeSantis et al. Oct 1999 A
5976164 Bencini et al. Nov 1999 A
5980469 Burbank et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
6007495 Matula Dec 1999 A
6007497 Tuitema Dec 1999 A
6007556 Kablik et al. Dec 1999 A
6017316 Ritchart et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019733 Farascioni Feb 2000 A
6022324 Skinner Feb 2000 A
6022325 Siczek et al. Feb 2000 A
6027458 Janssens Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036657 Milliman et al. Mar 2000 A
6050955 Bryan et al. Apr 2000 A
6055870 Jaeger May 2000 A
6071247 Kennedy Jun 2000 A
6077230 Gregoire et al. Jun 2000 A
6083176 Terwilliger Jul 2000 A
6083237 Huitema et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6106484 Terwilliger Aug 2000 A
6110129 Terwilliger Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6123957 Jernberg Sep 2000 A
6126617 Weilandt et al. Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6162187 Buzzard et al. Dec 2000 A
6165136 Nishtala Dec 2000 A
6193673 Viola et al. Feb 2001 B1
6196978 Weilandt et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6231522 Voegele et al. May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6267759 Quick Jul 2001 B1
6273861 Bates et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6322523 Weilandt et al. Nov 2001 B2
6328701 Terwilliger Dec 2001 B1
6331166 Burbank et al. Dec 2001 B1
6358217 Bourassa Mar 2002 B1
6361504 Shin Mar 2002 B1
6371904 Sirimanne Apr 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6428487 Burdorff et al. Aug 2002 B1
6432064 Hibner et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6461302 Thompson Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6482158 Mault Nov 2002 B2
6485436 Truckai et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6494844 Van Bladel et al. Dec 2002 B1
6527736 Attinger et al. Mar 2003 B1
6540694 Van Bladel et al. Apr 2003 B1
6540761 Houser Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6585694 Smith et al. Jul 2003 B1
6586585 Bastian Jul 2003 B1
6592530 Farhadi Jul 2003 B1
6626849 Huitema et al. Sep 2003 B2
6632182 Treat Oct 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6659105 Burbank et al. Dec 2003 B2
6659338 Dittmann et al. Dec 2003 B1
6683439 Takano et al. Jan 2004 B2
6689072 Kaplan et al. Feb 2004 B2
6695786 Wang et al. Feb 2004 B2
6702832 Ross et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712774 Voegele et al. Mar 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6753671 Harvey Jun 2004 B1
6755802 Bell Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6764495 Lee et al. Jul 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6849080 Lee et al. Feb 2005 B2
6850159 Mudge Feb 2005 B1
6860860 Viola Mar 2005 B2
6875183 Cervi Apr 2005 B2
6887210 Quay May 2005 B2
6908440 Fisher Jun 2005 B2
D508458 Solland et al. Aug 2005 S
6926676 Turturro et al. Aug 2005 B2
6984213 Horner et al. Jan 2006 B2
7004174 Eggers et al. Feb 2006 B2
7010332 Irvin et al. Mar 2006 B1
7025732 Thompson et al. Apr 2006 B2
D525583 Vu Jul 2006 S
7108660 Stephens et al. Sep 2006 B2
7153274 Stephens et al. Dec 2006 B2
7156814 Williamson, IV et al. Jan 2007 B1
7182754 Brigham et al. Feb 2007 B2
7189206 Quick et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7219867 Kalis et al. May 2007 B2
7226424 Ritchart et al. Jun 2007 B2
7252641 Thompson et al. Aug 2007 B2
7276032 Hibner Oct 2007 B2
7328794 Lubs et al. Feb 2008 B2
7347828 Francese et al. Mar 2008 B2
7347829 Mark et al. Mar 2008 B2
7374544 Freeman et al. May 2008 B2
7390306 Mark Jun 2008 B2
7397654 Mori Jul 2008 B2
7402140 Spero et al. Jul 2008 B2
7405536 Watts Jul 2008 B2
7407054 Seiler et al. Aug 2008 B2
7419472 Hibner et al. Sep 2008 B2
7432813 Postma Oct 2008 B2
7452367 Rassman et al. Nov 2008 B2
7458940 Miller Dec 2008 B2
7464040 Joao Dec 2008 B2
7473232 Teague Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7490048 Joao Feb 2009 B2
7491177 Tibner Feb 2009 B2
7494473 Eggers et al. Feb 2009 B2
7497833 Miller Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7517321 McCullough et al. Apr 2009 B2
7517322 Weikel, Jr. et al. Apr 2009 B2
7549978 Carlson et al. Jun 2009 B2
7575557 Morton et al. Aug 2009 B2
7648466 Stephens et al. Jan 2010 B2
7670299 Beckman et al. Mar 2010 B2
7717861 Weikel et al. May 2010 B2
7727164 Cicenas et al. Jun 2010 B2
7740594 Hibner Jun 2010 B2
7740596 Hibner Jun 2010 B2
7740597 Cicenas et al. Jun 2010 B2
7758515 Hibner Jul 2010 B2
7762961 Heske et al. Jul 2010 B2
7806834 Beckman et al. Oct 2010 B2
7828746 Teague Nov 2010 B2
7828747 Heske et al. Nov 2010 B2
7841991 Douglas et al. Nov 2010 B2
7854706 Hibner Dec 2010 B2
7862517 Tsonton et al. Jan 2011 B2
7871384 Thompson et al. Jan 2011 B2
7883476 Miller et al. Feb 2011 B2
7883494 Martin Feb 2011 B2
7906076 Fischer Mar 2011 B2
7914462 Hutchins et al. Mar 2011 B2
7959580 Mccullough et al. Jun 2011 B2
7974681 Wallace et al. Jul 2011 B2
8002713 Heske et al. Aug 2011 B2
3016844 Privitera et al. Sep 2011 A1
8012102 McCullough et al. Sep 2011 B2
8016772 Heske et al. Sep 2011 B2
8052614 Heske et al. Nov 2011 B2
8052615 Reuber et al. Nov 2011 B2
8057402 Hibner et al. Nov 2011 B2
8073008 Mehta et al. Dec 2011 B2
8075495 Andreyko et al. Dec 2011 B2
8083671 Boulais et al. Dec 2011 B2
8109885 Heske et al. Feb 2012 B2
8118755 Hibner et al. Feb 2012 B2
8152738 Li et al. Apr 2012 B2
8157744 Jorgensen et al. Apr 2012 B2
8162851 Heske et al. Apr 2012 B2
8172771 Miller et al. May 2012 B2
8172773 Heske et al. May 2012 B2
8187204 Miller et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8206409 Privitera et al. Jun 2012 B2
8251916 Speeg et al. Aug 2012 B2
8251917 Almazan Aug 2012 B2
8262585 Thompson et al. Sep 2012 B2
8262586 Anderson et al. Sep 2012 B2
8267868 Taylor et al. Sep 2012 B2
8277393 Miller et al. Oct 2012 B2
8283890 Videbaek Oct 2012 B2
8313444 Thompson et al. Nov 2012 B2
8343069 Uchiyama et al. Jan 2013 B2
8366636 Videbaek Feb 2013 B2
8430824 Videbaek et al. Apr 2013 B2
8430825 Mark Apr 2013 B2
8430827 Nicoson et al. Apr 2013 B2
8485987 Videbaek et al. Jul 2013 B2
8485989 Videbaek Jul 2013 B2
8597205 Seiger et al. Dec 2013 B2
8597206 Videback Dec 2013 B2
8702621 Mccullough et al. Apr 2014 B2
8702622 McCullough et al. Apr 2014 B2
8721563 Taylor et al. May 2014 B2
8728003 Taylor et al. May 2014 B2
8728004 Heske et al. May 2014 B2
8771200 Thompson et al. Jul 2014 B2
8864680 Videbæk et al. Oct 2014 B2
8926527 Jørgensen et al. Jan 2015 B2
8956306 Hibner Feb 2015 B2
8961430 Coonahan et al. Feb 2015 B2
8992440 Reuber et al. Mar 2015 B2
20010007925 Ritchart et al. Jul 2001 A1
20010011156 Viola et al. Aug 2001 A1
20010012919 Terwilliger Aug 2001 A1
20010014779 Burbank et al. Aug 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020000403 Tanaka et al. Jan 2002 A1
20020029007 Bryan et al. Mar 2002 A1
20020067151 Tanishita Jun 2002 A1
20020068878 Jasonni et al. Jun 2002 A1
20020082518 Weiss et al. Jun 2002 A1
20020107043 Adamson et al. Aug 2002 A1
20020115942 Stanford et al. Aug 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20020143269 Neuenfeldt Oct 2002 A1
20020156395 Stephens et al. Oct 2002 A1
20030023188 Kritzman et al. Jan 2003 A1
20030023239 Burbank et al. Jan 2003 A1
20030073929 Baltschun et al. Apr 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20030225420 Wardle Dec 2003 A1
20030229293 Hibner et al. Dec 2003 A1
20030233101 Lubock Dec 2003 A1
20040015079 Berger et al. Jan 2004 A1
20040019297 Angel Jan 2004 A1
20040030367 Yamaki et al. Feb 2004 A1
20040034280 Privitera et al. Feb 2004 A1
20040049128 Miller et al. Mar 2004 A1
20040054299 Burdorff et al. Mar 2004 A1
20040077938 Mark Apr 2004 A1
20040082915 Kadan Apr 2004 A1
20040092980 Cesarini et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040162505 Kaplan et al. Aug 2004 A1
20040167428 Quick et al. Aug 2004 A1
20040186393 Leigh et al. Sep 2004 A1
20040210161 Burdorff et al. Oct 2004 A1
20040215103 Mueller, Jr. Oct 2004 A1
20040220495 Cahir et al. Nov 2004 A1
20040230135 Merkle Nov 2004 A1
20040230188 Cioanta et al. Nov 2004 A1
20040236211 Burbank Nov 2004 A1
20040249278 Krause Dec 2004 A1
20040267157 Miller et al. Dec 2004 A1
20050004492 Burbank et al. Jan 2005 A1
20050004559 Quick et al. Jan 2005 A1
20050010131 Burbank et al. Jan 2005 A1
20050020909 Moctezuma de la Barrera et al. Jan 2005 A1
20050027210 Miller Feb 2005 A1
20050038355 Gellman Feb 2005 A1
20050049489 Foerster et al. Mar 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050054947 Goldenberg Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050088120 Avis Apr 2005 A1
20050101879 Shidham et al. May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050113716 Mueller et al. May 2005 A1
20050124914 Dicarlo et al. Jun 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050165329 Taylor et al. Jul 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050215921 Hibner et al. Sep 2005 A1
20050275378 Canino et al. Dec 2005 A1
20050277829 Tsonton et al. Dec 2005 A1
20050277871 Selis Dec 2005 A1
20050288605 Pellegrino et al. Dec 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074344 Hibner Apr 2006 A1
20060074345 Hibner Apr 2006 A1
20060074350 Cash Apr 2006 A1
20060113958 Lobert et al. Jun 2006 A1
20060116603 Shibazaki et al. Jun 2006 A1
20060122535 Daum Jun 2006 A1
20060129063 Thompson et al. Jun 2006 A1
20060149162 Daw et al. Jul 2006 A1
20060178666 Cosman et al. Aug 2006 A1
20060184063 Miller Aug 2006 A1
20060241515 Jones et al. Oct 2006 A1
20060258956 Haberstich et al. Nov 2006 A1
20060260994 Mark et al. Nov 2006 A1
20070016101 Feldman et al. Jan 2007 A1
20070032741 Hibner et al. Feb 2007 A1
20070032743 Hibner Feb 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070073326 Miller et al. Mar 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070106176 Mark et al. May 2007 A1
20070118048 Stephens et al. May 2007 A1
20070118049 Viola May 2007 A1
20070123797 Krause May 2007 A1
20070161925 Quick et al. Jul 2007 A1
20070167736 Dietz et al. Jul 2007 A1
20070167782 Callahan et al. Jul 2007 A1
20070167828 Saadat Jul 2007 A1
20070167943 Janssen et al. Jul 2007 A1
20070179401 Hibner Aug 2007 A1
20070208271 Voegele Sep 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213630 Beckman et al. Sep 2007 A1
20070213632 Okazaki et al. Sep 2007 A1
20070219572 Deck et al. Sep 2007 A1
20070236180 Rodgers Oct 2007 A1
20070239067 Hibner et al. Oct 2007 A1
20070255173 Hibner Nov 2007 A1
20070270710 Frass et al. Nov 2007 A1
20070276288 Khaw Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070292858 Chen et al. Dec 2007 A1
20070293788 Entrekin et al. Dec 2007 A1
20070293830 Martin Dec 2007 A1
20080004545 Garrison Jan 2008 A1
20080007217 Riley Jan 2008 A1
20080021487 Heisler Jan 2008 A1
20080021488 Berberich Jan 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080064925 Gill et al. Mar 2008 A1
20080064984 Pflueger Mar 2008 A1
20080079391 Schroeck et al. Apr 2008 A1
20080103411 Van Bladel et al. May 2008 A1
20080110261 Randall et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080135443 Frojd et al. Jun 2008 A1
20080146962 Ritchie et al. Jun 2008 A1
20080146965 Privitera et al. Jun 2008 A1
20080154151 Ritchart et al. Jun 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080161718 Schwindt Jul 2008 A1
20080161719 Miller et al. Jul 2008 A1
20080161720 Nicoson et al. Jul 2008 A1
20080195066 Speeg et al. Aug 2008 A1
20080200833 Hardin et al. Aug 2008 A1
20080200836 Speeg et al. Aug 2008 A1
20080208194 Bickenbach Aug 2008 A1
20080214955 Speeg et al. Sep 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080221444 Ritchie et al. Sep 2008 A1
20080221478 Ritchie et al. Sep 2008 A1
20080221479 Ritchie et al. Sep 2008 A1
20080221480 Hibner et al. Sep 2008 A1
20080228104 Uber et al. Sep 2008 A1
20080232604 Dufresne et al. Sep 2008 A1
20080234715 Pesce et al. Sep 2008 A1
20080281225 Spero et al. Nov 2008 A1
20080308607 Timm et al. Dec 2008 A1
20090015208 White et al. Jan 2009 A1
20090030405 Quick et al. Jan 2009 A1
20090048532 Stephens et al. Feb 2009 A1
20090048533 Miller Feb 2009 A1
20090062624 Neville Mar 2009 A1
20090082695 Whitehead Mar 2009 A1
20090087249 Flagle et al. Apr 2009 A1
20090088666 Miller et al. Apr 2009 A1
20090112118 Quick, Jr. et al. Apr 2009 A1
20090125062 Amin May 2009 A1
20090137927 Miller May 2009 A1
20090146609 Santos Jun 2009 A1
20090171242 Tibner Jul 2009 A1
20090171243 Hibner et al. Jul 2009 A1
20090204022 Schwindt Aug 2009 A1
20090281453 Tsonton et al. Nov 2009 A1
20100030020 Sanders et al. Feb 2010 A1
20100063416 Cicenas et al. Mar 2010 A1
20100152611 Parihar et al. Jun 2010 A1
20100160820 Weikel, Jr. et al. Jun 2010 A1
20100222700 Hibner Sep 2010 A1
20100292607 Moore et al. Nov 2010 A1
20100312140 Smith et al. Dec 2010 A1
20100317995 Hibner et al. Dec 2010 A1
20100317997 Hibner et al. Dec 2010 A1
20100317998 Hibner et al. Dec 2010 A1
20100324449 Rostaing et al. Dec 2010 A1
20110105946 Sorensen et al. May 2011 A1
20110152715 Delap et al. Jun 2011 A1
20110160611 Ritchart et al. Jun 2011 A1
20120071787 Reuber et al. Mar 2012 A1
20120095366 Heske et al. Apr 2012 A1
20120191009 Hoon et al. Jul 2012 A1
20120203135 Heske et al. Aug 2012 A1
20120215130 Field et al. Aug 2012 A1
20120238905 Heske et al. Sep 2012 A1
20120310109 Almazan Dec 2012 A1
20130023789 Anderson et al. Jan 2013 A1
20130023791 Thompson et al. Jan 2013 A1
20130289441 Videbaek et al. Oct 2013 A1
20140228706 Mccullough et al. Aug 2014 A1
20140371585 Thompson et al. Dec 2014 A1
20150018712 Seiger et al. Jan 2015 A1
20150025415 Videbaek et al. Jan 2015 A1
20150073301 Videbaek et al. Mar 2015 A1
20150094613 Jorgensen et al. Apr 2015 A1
20150133814 Almazan May 2015 A1
20150148702 Heske et al. May 2015 A1
20150190124 Mccullough et al. Jul 2015 A1
20150342579 Heske et al. Dec 2015 A1
20160256138 Videbaek et al. Sep 2016 A1
20160367229 Jorgensen et al. Dec 2016 A1
20160367230 Almazan Dec 2016 A1
20160374650 Heske et al. Dec 2016 A1
20170042517 Heske et al. Feb 2017 A1
20170181732 Videbaek et al. Jun 2017 A1
20170258458 Seiger et al. Sep 2017 A1
Foreign Referenced Citations (53)
Number Date Country
101011268 Aug 2007 CN
101032420 Sep 2007 CN
3924291 Jan 1991 DE
4041614 Oct 1992 DE
10034297 Apr 2001 DE
10026303 Feb 2002 DE
20209525 Nov 2002 DE
10235480 Feb 2004 DE
0433717 Jun 1991 EP
0890339 Jan 1999 EP
0995400 Apr 2000 EP
1074271 Feb 2001 EP
1520518 Apr 2005 EP
1579809 Sep 2005 EP
1604615 Dec 2005 EP
1665989 Jun 2006 EP
1829487 Sep 2007 EP
2095772 Sep 2009 EP
2106750 Oct 2009 EP
1569561 Oct 2010 EP
1345429 Dec 1963 FR
2739293 Apr 1997 FR
2018601 Oct 1979 GB
1-126957 Sep 1987 JP
H10508504 Aug 1998 JP
2005530554 Oct 2005 JP
2006509545 Mar 2006 JP
2006528907 Dec 2006 JP
2007502159 Feb 2007 JP
9508945 Apr 1995 WO
9628097 Sep 1996 WO
9734531 Sep 1997 WO
9825522 Jun 1998 WO
9831285 Jul 1998 WO
9835615 Aug 1998 WO
9846290 Oct 1998 WO
9933501 Jul 1999 WO
0004832 Feb 2000 WO
0030546 Jun 2000 WO
0059378 Oct 2000 WO
0172230 Oct 2001 WO
0222023 Mar 2002 WO
0232318 Apr 2002 WO
02069808 Sep 2002 WO
2005013830 Feb 2005 WO
2006005342 Jan 2006 WO
2006015302 Feb 2006 WO
2007047128 Apr 2007 WO
2007095330 Aug 2007 WO
2007112751 Oct 2007 WO
2008021687 Feb 2008 WO
2008040812 Apr 2008 WO
2008131362 Oct 2008 WO
Related Publications (1)
Number Date Country
20190321014 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
60707228 Aug 2005 US
Divisions (1)
Number Date Country
Parent 11997404 US
Child 13608609 US
Continuations (2)
Number Date Country
Parent 14625996 Feb 2015 US
Child 16445637 US
Parent 13608609 Sep 2012 US
Child 14625996 US