This invention relates to electrosurgery generally and more specifically to an electrosurgical instrument.
Electrosurgery is a well known technology utilizing an applied electric current to cut, ablate or coagulate human or animal tissue. See U.S. Pat. No. 7,789,879 issued to Daniel V. Palanker et al., incorporated herein in its entirety by reference. Typical electrosurgical devices apply an electrical potential difference or a voltage difference between a cutting electrode and a portion of the patient's grounded body in a monopolar arrangement or between a cutting electrode and a return electrode in bipolar arrangement, to deliver electrical energy to the operative field where tissue is to be treated. The voltage is applied as a continuous train of high frequency pulses, typically in the RF (radio frequency) range.
The operating conditions of electrosurgical devices vary, see the above-referenced patent, in particular a configuration of the cutting electrode is described there whereby a conductive liquid medium surrounding the electrode is heated by the applied electric current to produce a vapor cavity around the cutting portion of the electrode and to ionize a gas inside a vapor cavity to produce a plasma. The presence of the plasma maintains electrical conductivity between the electrodes. The voltage applied between the electrodes is modulated in pulses having a modulation format selected to minimize the size of the vapor cavity, the rate of formation of vapor cavity and heat diffusion into the material as the material is cut with an edge of the cutting portion of the cutting electrode.
The operating principle thereby is based on formation of a thin layer of a plasma along the cutting portion of the cutting electrode. Typically some sort of conductive medium, such as saline solution or normally present bodily fluids, surround the cutting portion of the electrode such that the liquid medium is heated to produce a vapor cavity around the cutting portion. During heating an amount of the medium is vaporized to produce a gas inside a vapor cavity. Since typically the medium is saline solution or bodily fluids, the gas is composed primarily of water vapor. The layer of gas is ionized in the strong electric field or on the cutting electrode to make up the thin layer of plasma. Because the plasma is electrically conductive, it maintains electrical conductivity.
The energizing electrical energy modulation format in that patent includes pulses having a pulse duration in the range of 10 microseconds to 10 milliseconds. Preferably the pulses are composed of minipulses having a minipulse duration in the range of 0.1 to 10 microseconds and an interval ranging from 0.1 to 10 microseconds between the minipulses. Preferably the minipulse duration is selected in the range substantially between 0.2 and 5 microseconds and the interval between them is shorter than a lifetime of the vapor cavity. The peak power of the minipulses can be varied from minipulse to minipulse. Alternately, the minipulses are made up of micropulses where each micropulse has a duration of 0.1 to 1 microsecond.
Preferably the minipulses have alternating polarity, that is exhibit alternating positive and negative polarities. This modulation format limits the amount of charge transferred to the tissue and avoids various adverse tissue reactions such as muscle contractions and electroporation. Additional devices for preventing charge transfer to the biological tissue can be employed in combination with this modulation format or separately when the method is applied in performing electrosurgery. This pulsing regime is not limiting.
Typically the temperature of the cutting portion of the electrode is maintained between 40 and 1,000° C.
That patent also describes particular shapes of the electrode and especially its cutting portion in terms of shape and dimensionality. Such electrosurgical devices provide several surgical techniques, including cutting, bleeding control (coagulation) and tissue ablation. Typically different types of electrodes and energizing formats are used for various purposes since the amount of energy applied and the type of tissue being worked on differ depending on the surgical technique being used.
Further, it is known in the field for a single electrosurgery hand piece to have detachable electrodes, such as for instance a cutting electrode and a coagulation electrode. At any one time, only a single electrode is attached to the hand piece, see U.S. Pat. No. 5,984,918 issued to Garito et al. where multiple sized electrosurgical electrodes are connected to a handle using a collet member.
Therefore a known technical problem is that during a surgical procedure, the surgeon must switch between various types of electrosurgical equipment, at least by changing the electrode type. This is typically done by swapping between various electrodes either by changing the electrode portion applied to the body as in Garito et al., or by using entirely different sets of equipment for cutting and coagulation or ablation.
It has been found by the present inventors that this is undesirable and a better system would provide several types of surgical techniques using a single electrosurgical apparatus.
An apparatus for electrosurgery in accordance with the invention has been found to reduce operating time, increase ease of use of the equipment, and combine several surgical techniques in one device, including especially cutting and coagulation. In surgery, typically cutting of tissue in the operative field is followed by coagulation of the remaining tissue in the resulting wound to prevent bleeding. Coagulation generally refers to heating the tissue surface so as to seal off small severed blood vessels that would otherwise leak blood into the wound. Coagulation is necessary to prevent blood loss and also because blood leaking into the wound obscures the surgeon's view of the operative field.
The present electrosurgical apparatus provides what is referred to as single instrument surgery and carries out both precision resection (cutting) as well as enhanced coagulation (bleeding control). A typical use is in transcolation, for joint replacement surgery. In some embodiments, this apparatus includes an integrated feature to suck out blood, fluids, smoke, etc. from the operative field to keep the operative field clear, or to supply fluid such as saline solution to the operative field.
In one embodiment the present apparatus includes a hand unit which is mostly conventional for grasping by the surgeon, and which is conventionally coupled at its proximal portion by an electric cable to a control unit which provides the energizing electric pulses or current. The hand unit includes controls including at least one switch or button. The hand unit terminates at its distal portion in a conventional electrosurgical blade (electrode) which is intended for a first electrosurgical procedure such as the cutting (dissection) of tissue, thereby forming the primary assembly. In one embodiment, this electrode is a conventionally shaped electrosurgical blade intended for cutting soft tissue and is typically of metal most of the surface area of which is electrically insulated such as by a thin layer of glass.
The type of electrical energy applied to this blade by the control unit is, e.g., as described in the above-referenced patent so as to provide plasma type conditions at the electrode tip for tissue cutting, but this is not limiting. In one embodiment, this blade has a 3.0 mm wide spatula shaped tip mounted on a variable length (extendable) shaft. An example is in the PEAK PlasmaBlade® 3.05 surgical instrument supplied by PEAK Surgical, Inc., of Palo Alto, Ca. which has a telescoping electrode shaft and a spatula shaped electrode tip which is 3 mm wide, and an integrated aspiration feature. This device includes the hand unit.
In one embodiment, the present apparatus is a monopolar type cutting device (like the PEAK PlasmaBlade instrument) whereby the return current path is via a grounding pad or other return electrode affixed to the patient's body remote from the electrosurgical instrument. In other embodiments, the present apparatus is a bipolar type where the return electrode is located on or near the main electrode and is an integral part of the electrosurgical apparatus, as also well known in the field.
The secondary assembly of the present apparatus, in one embodiment, is intended for a second electrosurgical procedure such as tissue coagulation. It terminates at its distal portion in its own electrode blade or tip which in one case is hemispherical (ball shaped) and which is the distal end of an electrode shaft which is at least partially insulated. The proximate portion of the electrode shaft terminates in a housing which fits closely around the electrode shaft and provides heat and electrical insulation and a finger grip region. However, the housing itself is not intended to be held by the surgeon when the apparatus is in use. Instead, this housing fits snugly over the electrode blade of the primary assembly so that the electrode of the primary assembly also makes electrical contact with the electrode shaft of the secondary assembly. The electrical energy (pulsing) or continuous wave regime applied to the electrode of the secondary assembly (via the hand unit) may differ from that supplied to the primary assembly. The selection of the electrical energy regime is conventionally performed by the surgeon by manipulating controls on the control unit or on the hand unit
For coagulation, the duty cycle regime of the applied electrical energy is, e.g., in the range of 12% to 19%. With associated peak to peak voltages in the range of 1300 to 5000 volts, the coagulation effect can be achieved using the electrode of the secondary assembly with conventional settings of the associated pulse generator of “cut”, “coagulation” or “blend.” Since the surface area of this coagulation electrode is large with respect to the applied voltage, the effect is resistive heating of the tissue rather than plasma generation that would ablate (cut) the tissue. For coagulation, generally the electrode is heated to about 100° C. so as to heat fluids in the tissue so the tissue in contact with the active portion of the electrode desiccates or stops bleeding:
When the secondary assembly is thus mounted to the primary assembly, the apparatus is suitable for coagulation since the primary assembly's electrode blade is now hidden and only serves as a mechanical mounting and electrical connection to the electrode of the coagulation (secondary) assembly. The secondary assembly fits over the distal portion of the primary assembly, e.g., with a snap (friction) fit so the secondary assembly can be readily attached and removed by the surgeon during surgery, without unscrewing or any tool. Thereby the surgeon can quickly switch between cutting and coagulation procedures, with essentially the same apparatus. When the surgeon mounts the coagulation (secondary) assembly to the primary assembly, he also may reset the control unit to supply electrical energy (pulsing or continuous) in the desired modulation regime suitable for tissue coagulation by the coagulation electrode.
In some embodiments, the two electrodes each carry a non-stick coating on their exposed (non insulated) portions. The coagulation electrode may be a ball, tube, screen, suction coagulator or forceps type electrode. Also the secondary (coagulation) assembly may be provided with a drip chamber near its distal portion or a perforated shaft so as to deliver fluid to the operative field, such as saline, or to provide aspiration. In some embodiments, a conventional channel or other type of passage such as a tube is provided for aspiration of smoke and/or fluid from the wound or fluid delivery. This passage (or passages) may be provided in only the secondary or primary assembly or in both in a fluid communication fashion. In some embodiments, the secondary assembly near its distal portion defines one or more aspiration ports, such as three such ports arranged around the circumference of the assembly and spaced at 120 degrees from one another, all in communication with the aspiration channel.
In one embodiment, the coagulation assembly's electrode shaft is bendable so that the surgeon can bend it and it remains in the bent position for ease of reaching portions of the operative field. The housing of the secondary assembly defines exterior finger grip ridges (ribs) in one embodiment so as to make it easier for the surgeon to attach and detach it from the primary assembly.
Therefore the secondary assembly, which in one embodiment is intended for coagulation, attaches to the primary assembly and by making electrical and mechanical contact thereto, conducts the electrical energy originating at the control unit, via the primary assembly electrode, to the tip of the coagulation assembly electrode. The shape of the electrode of the primary assembly is not limited to being a blade, but may take any other typical shape, such as a ball, tube, screen, suction coagulator or forceps. In one embodiment, the mechanical and electrical contact between the two assemblies is maintained at least partly by a spring in the housing of the secondary assembly.
Further, in other embodiments the functionality of the primary and secondary assemblies is reversed, so the primary electrode is for coagulation and the secondary electrode is for cutting. In other embodiments, the two electrodes have other intended uses in terms of electrosurgical procedures.
Advantages of the present device include reduced cost in use, since there is no need to supply saline solution to the operative field. This also reduces smoke production, making the surgery easier. Further there is no need for a separate aspiration device, since aspiration is integrated into the device.
The second portion of the apparatus 10 is the secondary (here a coagulation “cap”) assembly 16 which includes housing 42 including exterior finger grip ridges 46, and from which extends an insulated shaft 44 terminating in electrode tip 48. Note that dimensions and materials here are largely conventional, as explained hereinafter.
In
In one embodiment, shaft 44 of secondary assembly 16 is bendable. While here assembly 16 has a hemispherical or ball electrode 48, this electrode may have any other shapes, such as tube, screen or forceps. Moreover, the exposed conductive (non-insulated) portion of electrode 48 may carry a non-stick coating, such as carbon with a protein such as a collagen, or a material such as PTFE or other flouro-polymer. This electrode is metal and glass coated, but the glass defines a large number of voids or micro-cracks which in use define hot spots by increasing the local impedance to the energizing electrical current. So these hot spots are intended to cause arcing and heating. A typical impedance is 50 to 2K ohms. While this glass insulation wears away as a result of the arcing, this is not problematic due to the use of this electrode for only one surgical procedure. A typical thickness of this glass layer is 0.003 to 0.007 inches (0.076 to 0.178 mm).
In one embodiment, the shaft of the coagulation electrode immediately proximal its tip 48 is surrounded by a drip chamber 49 for supplying fluid to the operative field, supplied via a suitable passage defined through secondary assembly 16 and connecting to a similar passage in the primary assembly 14. This passage and drip chamber provide, for instance, saline solution to the operative field.
Other portions of the present electrosurgical system which are conventional are not shown here. Notably the control unit provides the electric current or pulses as explained above and is of the type well known in the field and is electrically coupled via cable 22 to the present apparatus. An example of such a control unit is the PULSAR® Generator power supply supplied by PEAK Surgical, Inc.
Also provided, if needed, is a conventional source of fluid and/or a source of vacuum, for aspiration, as well known in the field. Typically the electrically non-conductive portions of the apparatus are polymer or plastic in terms of the housings, tubing, etc. and of conventional materials. The insulative tubing is typically heat shrink or silicone material. The two halves 42a, 42b of housing 42 are glued or otherwise fastened together, although in other embodiments, this housing is a single piece of material. As explained above, the coagulation assembly shaft 66 may be of a bendable material, such as a somewhat flexible or annealed metal rod such as, for instance, stainless steel and has a typical diameter of 0.5 to 2 mm.
Typically the two electrodes are single use (disposable) so as to be used for only a single surgical operation. In particular the entire coagulation subassembly 16 is typically disposable. In terms of the primary assembly 14, the entire assembly is also disposable, or at least its distal portions including the electrode and its shaft are disposable and detachable from the hand piece which then may be reusable.
As described above, the exposed (non-insulated) electrode tips of both the primary assembly and the coagulation assembly in one embodiment carry a non-stick coating. These coatings in one embodiment are conventional polymers or flouro-polymers. In another embodiment they are diamond like carbon which conventionally is one of several forms of an amorphous carbon material formed by deposition.
In other embodiments, the electrode tip coatings are carbon together with a collagen or other protein. For instance this coating may be carbon graphite with a protein or albumin binder. The thickness of the carbon coating on the metal (or other conductive material) surface of the electrode, as needed to support an electrical discharge, is in the range of 10 μm to 1 mm. Conventional carbon sputtering provides only a thickness of 0.1 μm, which is inadequate. A pyrolitic carbon deposition method is known from Morrison, Jr. U.S. Pat. No. 4,074,718 incorporated herein by reference in its entirety, forming carbon on an electrode by burning carbohydrate-containing materials deposited on the electrode.
The present coating process is different and first involves providing a mixture of carbon or graphite powder (of any convenient particle size) and a binder. The mixture is 1% to 50% powdered carbon or graphite (by weight or volume), preferably about 30% by volume. The binder is a solution of a protein or similar material such as albumin, gelatin, collagen or other biocompatible material in water or other solvent. For instance, the binder may be a 35% solution by volume of albumin in saline solution.
The bare electrode is briefly dipped into the mixture. The coated electrode is then air dried for, e.g., one minute to one hour at an ambient temperature of 200° C. to 300° C., or until all the solvent has evaporated. Then the coated electrode is placed in an oven for a few seconds to an hour, at a temperature of 200° C. to 600° C. E.g., this baking step takes 5 minutes at 300° C. (Note that the drying and baking can be combined into one step.)
The electrode is then cooled in the air and ready for assembly with the associated components of the apparatus.
This disclosure is illustrative and not limiting. Further modifications will be apparent to those skilled in the art in light of this disclosure, and are intended to fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2888928 | Seiger | Jun 1959 | A |
3682130 | Jeffers | Aug 1972 | A |
3750650 | Ruttgers | Aug 1973 | A |
4014343 | Esty | Mar 1977 | A |
4060088 | Morrison, Jr. et al. | Nov 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4207897 | Lloyd et al. | Jun 1980 | A |
4244371 | Farin | Jan 1981 | A |
4248224 | Jones | Feb 1981 | A |
4275734 | Mitchiner | Jun 1981 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4278090 | van Gerven | Jul 1981 | A |
4321931 | Hon | Mar 1982 | A |
4342218 | Fox | Aug 1982 | A |
4355642 | Alferness | Oct 1982 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4381007 | Doss | Apr 1983 | A |
4519389 | Gudkin et al. | May 1985 | A |
4598698 | Siegmund | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4664110 | Schanzlin | May 1987 | A |
4671274 | Scrochenko | Jun 1987 | A |
4736749 | Lundback | Apr 1988 | A |
4779611 | Grooters et al. | Oct 1988 | A |
4802475 | Weshahy | Feb 1989 | A |
4815470 | Curtis et al. | Mar 1989 | A |
4872346 | Kelly-Fry et al. | Oct 1989 | A |
4916922 | Mullens | Apr 1990 | A |
4917095 | Fry et al. | Apr 1990 | A |
4919129 | Weber et al. | Apr 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4932952 | Wojciechowicz, Jr. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4946460 | Merry et al. | Aug 1990 | A |
4950232 | Ruzicka et al. | Aug 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5013312 | Parins et al. | May 1991 | A |
5029574 | Shimamura et al. | Jul 1991 | A |
5044165 | Linner et al. | Sep 1991 | A |
5078713 | Varney | Jan 1992 | A |
5080102 | Dory | Jan 1992 | A |
5080660 | Buelina | Jan 1992 | A |
5100388 | Behl et al. | Mar 1992 | A |
5108390 | Potocky et al. | Apr 1992 | A |
5147355 | Friedman et al. | Sep 1992 | A |
5178133 | Pena | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5195959 | Smith | Mar 1993 | A |
5207674 | Hamilton | May 1993 | A |
5217860 | Fahy et al. | Jun 1993 | A |
5222501 | Ideker et al. | Jun 1993 | A |
5224943 | Goddard | Jul 1993 | A |
5228923 | Hed | Jul 1993 | A |
5231995 | Desai | Aug 1993 | A |
5232516 | Hed | Aug 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5254116 | Baust et al. | Oct 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5269291 | Carter | Dec 1993 | A |
5275595 | Dobak, III | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281213 | Milder et al. | Jan 1994 | A |
5281215 | Milder | Jan 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5317878 | Bradshaw et al. | Jun 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5322520 | Milder | Jun 1994 | A |
5323781 | Ideker et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5324286 | Fowler | Jun 1994 | A |
5330521 | Cohen | Jul 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5353783 | Nakao et al. | Oct 1994 | A |
5354258 | Dory | Oct 1994 | A |
5361752 | Moll et al. | Nov 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5395312 | Desai | Mar 1995 | A |
5396887 | Imran | Mar 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5400770 | Nakao et al. | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5401272 | Perkins | Mar 1995 | A |
5403309 | Coleman et al. | Apr 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5417709 | Slater | May 1995 | A |
5423807 | Mlilder | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5427119 | Swartz et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5435308 | Gallup et al. | Jul 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5441503 | Considine et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5450843 | Moll et al. | Sep 1995 | A |
5452582 | Longsworth | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5469853 | Law et al. | Nov 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5472876 | Fahy | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5498248 | Milder | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5516505 | McDow | May 1996 | A |
5520682 | Baust et al. | May 1996 | A |
5522870 | Ben-Zion | Jun 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540562 | Giter | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5545195 | Lennox et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5556397 | Long et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560362 | Silwa, Jr. et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573532 | Chang et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575788 | Baker et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5599346 | Edwards et al. | Feb 1997 | A |
5605539 | Buelna et al. | Feb 1997 | A |
5607462 | Imran | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5630837 | Crowley | May 1997 | A |
5637090 | McGee et al. | Jun 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5656029 | Imran et al. | Aug 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5662647 | Crow et al. | Sep 1997 | A |
5671747 | Connor | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5676662 | Fleischhacker et al. | Oct 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5676693 | Lafontaine | Oct 1997 | A |
5678550 | Bassen et al. | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5681294 | Osborne et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5687737 | Branham et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5690611 | Swartz et al. | Nov 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697925 | Taylor | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5697928 | Walcott et al. | Dec 1997 | A |
5713942 | Stern | Feb 1998 | A |
5716389 | Walinsky et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5718701 | Shai et al. | Feb 1998 | A |
5718719 | Clare et al. | Feb 1998 | A |
5720775 | Lanard | Feb 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5730074 | Peter | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5730704 | Avitall | Mar 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5743903 | Stern et al. | Apr 1998 | A |
5755760 | Maguire et al. | May 1998 | A |
5766167 | Eggers et al. | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5785706 | Bednarek | Jul 1998 | A |
5788636 | Curley | Aug 1998 | A |
5792140 | Tu et al. | Aug 1998 | A |
5797905 | Fleischman et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800428 | Nelson et al. | Sep 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5840030 | Ferek-Petric et al. | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5843152 | Tu et al. | Dec 1998 | A |
5844349 | Oakley et al. | Dec 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846191 | Wells et al. | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5861021 | Thome et al. | Jan 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5871525 | Edwards et al. | Feb 1999 | A |
5873845 | Cline et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879295 | Li et al. | Mar 1999 | A |
5879296 | Ockuly et al. | Mar 1999 | A |
5879348 | Owens et al. | Mar 1999 | A |
5881732 | Sung et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5885278 | Fleischman | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5895355 | Schaer | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897553 | Mulier | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899898 | Arless et al. | May 1999 | A |
5899899 | Arless et al. | May 1999 | A |
5902289 | Swartz et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906580 | Kline-Schoder et al. | May 1999 | A |
5906587 | Zimmon | May 1999 | A |
5906606 | Chee et al. | May 1999 | A |
5908029 | Knudson et al. | Jun 1999 | A |
5913854 | Maguire et al. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5916214 | Cosio et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5925045 | Reimels et al. | Jul 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5928191 | Houser et al. | Jul 1999 | A |
5931810 | Grabek | Aug 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5935123 | Edwards et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5957919 | Laufer | Sep 1999 | A |
5971980 | Sherman | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5980516 | Mulier et al. | Nov 1999 | A |
5984918 | Garito et al. | Nov 1999 | A |
5989248 | Tu et al. | Nov 1999 | A |
5993412 | Deily et al. | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
6004316 | Laufer | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6010500 | Sherman et al. | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6015391 | Rishton et al. | Jan 2000 | A |
6016811 | Knopp et al. | Jan 2000 | A |
6018676 | Davis et al. | Jan 2000 | A |
6019757 | Scheldrup | Feb 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6030381 | Jones et al. | Feb 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6048333 | Lennox et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6056745 | Panescu et al. | May 2000 | A |
6056746 | Goble | May 2000 | A |
6056747 | Saadat et al. | May 2000 | A |
6063081 | Mulier | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6083237 | Huitema et al. | Jul 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6088894 | Oakley | Jul 2000 | A |
6096037 | Mulier | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6141576 | Littmann et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6165174 | Jacobs et al. | Dec 2000 | A |
6190384 | Ouchi | Feb 2001 | B1 |
6193716 | Shannon, Jr. | Feb 2001 | B1 |
6210406 | Webster | Apr 2001 | B1 |
6210410 | Farin et al. | Apr 2001 | B1 |
6210411 | Hofmann et al. | Apr 2001 | B1 |
6212426 | Swanson | Apr 2001 | B1 |
6217528 | Koblish et al. | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6231591 | Desai | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238347 | Nix et al. | May 2001 | B1 |
6238387 | Miller, III | May 2001 | B1 |
6238393 | Mulier | May 2001 | B1 |
6245061 | Panescu et al. | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6251110 | Wampler | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6266551 | Osadchy et al. | Jul 2001 | B1 |
6270471 | Hechel et al. | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6302880 | Schaer | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6312383 | Lizzi et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328735 | Curley et al. | Dec 2001 | B1 |
6328736 | Mulier | Dec 2001 | B1 |
6332881 | Carner et al. | Dec 2001 | B1 |
6352533 | Ellman et al. | Mar 2002 | B1 |
6358248 | Mulier | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6371955 | Fuimaono et al. | Apr 2002 | B1 |
6371956 | Wilson et al. | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6409722 | Hoey | Jun 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6430426 | Avitall | Aug 2002 | B2 |
6440130 | Mulier | Aug 2002 | B1 |
6443952 | Mulier | Sep 2002 | B1 |
6447507 | Bednarek et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6461356 | Patterson | Oct 2002 | B1 |
6464700 | Koblish et al. | Oct 2002 | B1 |
6471697 | Lesh | Oct 2002 | B1 |
6471698 | Edwards et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475216 | Mulier | Nov 2002 | B2 |
6477396 | Mest et al. | Nov 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6488678 | Sherman | Dec 2002 | B2 |
6488680 | Francischelli | Dec 2002 | B1 |
6497704 | Ein-Gal | Dec 2002 | B2 |
6502575 | Jacobs et al. | Jan 2003 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6514250 | Jahns | Feb 2003 | B1 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6527767 | Wang et al. | Mar 2003 | B2 |
6537248 | Mulier | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6558382 | Jahns | May 2003 | B2 |
6558385 | McClurken et al. | May 2003 | B1 |
6565561 | Goble et al. | May 2003 | B1 |
5697536 | Eggers et al. | Jun 2003 | C1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6579288 | Swanson et al. | Jun 2003 | B1 |
6584360 | Francischelli | Jun 2003 | B2 |
6585732 | Mulier | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6603988 | Dowlatshahi | Aug 2003 | B2 |
6605084 | Acker et al. | Aug 2003 | B2 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610057 | Ellman et al. | Aug 2003 | B1 |
6610060 | Mulier | Aug 2003 | B2 |
6613048 | Mulier | Sep 2003 | B2 |
6635034 | Cosmescu | Oct 2003 | B1 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6645202 | Pless et al. | Nov 2003 | B1 |
6648883 | Francischelli | Nov 2003 | B2 |
6656175 | Francischelli | Dec 2003 | B2 |
6663627 | Francischelli | Dec 2003 | B2 |
6666862 | Jain et al. | Dec 2003 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6682501 | Nelson | Jan 2004 | B1 |
6689131 | McClurken | Feb 2004 | B2 |
6692450 | Coleman | Feb 2004 | B1 |
6699240 | Francischelli | Mar 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6706038 | Francischelli | Mar 2004 | B2 |
6706039 | Mulier | Mar 2004 | B2 |
6716211 | Mulier | Apr 2004 | B2 |
6736810 | Hoey | May 2004 | B2 |
6755827 | Mulier | Jun 2004 | B2 |
6764487 | Mulier | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6773433 | Stewart et al. | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier | Aug 2004 | B2 |
6786906 | Cobb | Sep 2004 | B1 |
6807968 | Francischelli | Oct 2004 | B2 |
6827713 | Bek et al. | Dec 2004 | B2 |
6827715 | Francischelli | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6849073 | Hoey | Feb 2005 | B2 |
6858028 | Mulier | Feb 2005 | B2 |
6887238 | Jahns | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6911019 | Mulier | Jun 2005 | B2 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6916318 | Francischelli | Jul 2005 | B2 |
6918404 | Dias da Silva | Jul 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6942661 | Swanson | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6949098 | Mulier | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6960205 | Jahns | Nov 2005 | B2 |
6962589 | Mulier | Nov 2005 | B2 |
7066586 | da Silva | Jun 2006 | B2 |
7115139 | McClurken et al. | Oct 2006 | B2 |
7156845 | Mulier et al. | Jan 2007 | B2 |
7166106 | Bartel et al. | Jan 2007 | B2 |
7198625 | Hui et al. | Apr 2007 | B1 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7261711 | Mulier et al. | Aug 2007 | B2 |
7309325 | Mulier et al. | Dec 2007 | B2 |
7311708 | McClurken | Dec 2007 | B2 |
7322974 | Swoyer et al. | Jan 2008 | B2 |
7361175 | Suslov | Apr 2008 | B2 |
7364579 | Mulier et al. | Apr 2008 | B2 |
7537595 | McClurken | May 2009 | B2 |
7604635 | McClurken et al. | Oct 2009 | B2 |
7625347 | Burbank et al. | Dec 2009 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7651494 | McClurken et al. | Jan 2010 | B2 |
7736361 | Palanker | Jun 2010 | B2 |
7789879 | Palanker et al. | Sep 2010 | B2 |
7811282 | McClurken | Oct 2010 | B2 |
7815634 | McClurken et al. | Oct 2010 | B2 |
7909820 | Lipson et al. | Mar 2011 | B2 |
7942872 | Ein-Gal | May 2011 | B2 |
7976544 | McClurken | Jul 2011 | B2 |
7998140 | McClurken | Aug 2011 | B2 |
8038670 | McClurken | Oct 2011 | B2 |
8048070 | O'Brien | Nov 2011 | B2 |
8080009 | Lee et al. | Dec 2011 | B2 |
8083736 | McClurken et al. | Dec 2011 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8177783 | Davison et al. | May 2012 | B2 |
20020049483 | Knowlton | Apr 2002 | A1 |
20020062131 | Gallo, Sr. | May 2002 | A1 |
20030014050 | Sharkey et al. | Jan 2003 | A1 |
20030032954 | Carranza et al. | Feb 2003 | A1 |
20030045872 | Jacobs | Mar 2003 | A1 |
20030073993 | Ciarrocca | Apr 2003 | A1 |
20030144656 | Ocel | Jul 2003 | A1 |
20030181904 | Levine et al. | Sep 2003 | A1 |
20030191462 | Jacobs | Oct 2003 | A1 |
20030204185 | Sherman et al. | Oct 2003 | A1 |
20030216724 | Jahns | Nov 2003 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040015219 | Francischelli | Jan 2004 | A1 |
20040024395 | Ellman et al. | Feb 2004 | A1 |
20040044340 | Francischelli | Mar 2004 | A1 |
20040049179 | Francischelli | Mar 2004 | A1 |
20040078069 | Francischelli | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087940 | Jahns | May 2004 | A1 |
20040092926 | Hoey | May 2004 | A1 |
20040111136 | Sharkey et al. | Jun 2004 | A1 |
20040111137 | Shankey et al. | Jun 2004 | A1 |
20040116923 | Desinger | Jun 2004 | A1 |
20040138621 | Jahns | Jul 2004 | A1 |
20040138656 | Francischelli | Jul 2004 | A1 |
20040143260 | Francischelli | Jul 2004 | A1 |
20040186465 | Francischelli | Sep 2004 | A1 |
20040215183 | Hoey | Oct 2004 | A1 |
20040220560 | Briscoe | Nov 2004 | A1 |
20040236322 | Mulier | Nov 2004 | A1 |
20040267326 | Ocel | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050033280 | Francischelli | Feb 2005 | A1 |
20050090815 | Francischelli | Apr 2005 | A1 |
20050090816 | McClurken et al. | Apr 2005 | A1 |
20050096646 | Wellman et al. | May 2005 | A1 |
20050143729 | Francischelli | Jun 2005 | A1 |
20050165392 | Francischelli | Jul 2005 | A1 |
20050209564 | Bonner | Sep 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20060009756 | Francischelli | Jan 2006 | A1 |
20060009759 | Christian | Jan 2006 | A1 |
20060064085 | Schechter et al. | Mar 2006 | A1 |
20070049920 | McClurken et al. | Mar 2007 | A1 |
20070093808 | Mulier et al. | Apr 2007 | A1 |
20070118114 | Miller et al. | May 2007 | A1 |
20070149965 | Gallo, Sr. et al. | Jun 2007 | A1 |
20070208332 | Mulier et al. | Sep 2007 | A1 |
20080004656 | Livneh | Jan 2008 | A1 |
20080015563 | Hoey et al. | Jan 2008 | A1 |
20080071270 | Desinger et al. | Mar 2008 | A1 |
20080207028 | Schutz | Aug 2008 | A1 |
20090264879 | McClurken et al. | Oct 2009 | A1 |
20090306655 | Stangeness | Dec 2009 | A1 |
20100100095 | McClurken et al. | Apr 2010 | A1 |
20110028965 | McClurken | Feb 2011 | A1 |
20110178515 | Bloom et al. | Jul 2011 | A1 |
20110196367 | Gallo | Aug 2011 | A1 |
20110295249 | Bloom et al. | Dec 2011 | A1 |
20110319889 | Conley et al. | Dec 2011 | A1 |
20120004657 | Conley et al. | Jan 2012 | A1 |
20120101496 | McClurken et al. | Apr 2012 | A1 |
20120116397 | Rencher et al. | May 2012 | A1 |
20120150165 | Conley et al. | Jun 2012 | A1 |
20120253343 | McClurken et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
0 830 846 | Mar 1998 | EP |
0 830 846 | Mar 1998 | EP |
1 674 039 | Jun 2006 | EP |
1 674 039 | Jun 2006 | EP |
WO-03005918 | Jan 2003 | WO |
WO-2006102124 | Sep 2006 | WO |
WO-2006102124 | Sep 2006 | WO |
WO-2010098809 | Sep 2010 | WO |
WO-2010098809 | Sep 2010 | WO |
Entry |
---|
Wikipedia (Nov. 21, 2010). “Diamond-like carbon,” located at <http://en.wikipedia.org/wiki/Diamond-like—carbon> last visited on Apr. 6, 2011, six pages. |
Number | Date | Country | |
---|---|---|---|
20130110108 A1 | May 2013 | US |