This application claims priority to Chinese Patent Application No. 201520684166.X, filed Sep. 7, 2015, which is incorporated by reference in its entirety.
Embodiments of the invention generally relate to the technical field of touch sensors, and particularly to a capacitive sensor in which at least some of the transmitter electrode elements have extensions.
A capacitive sensor can sense a position of an input approaching a sensing area of a sensing device by detecting changes of a capacitive signal, so it is widely used in touch input devices, such as in various touch displays.
An important key component of the capacitive sensor is an array of sensor electrodes, which correspondingly is the sensing area; when an input object (e.g. a finger) is approaching the array of sensor electrodes, the capacitive signal at the corresponding position changes, thereby sensing the position or even action of the input object on the sensing area.
As for a mutual-capacitance capacitive sensor, for example, its array of sensor electrodes comprises transmitter electrodes and receiver electrodes arranged in rows and columns, wherein traces are provided on the transmitter electrodes for electrically connecting to a processing device of the capacitive sensor, so that a certain signal can be biased on the transmitter electrodes through the traces. For example, in practical application, transmitter electrodes of the array of sensor electrodes are scanned row by row (i.e. biasing the signal row by row) and changes of the regular coupling capacitance are detected.
Sensitivity and accuracy/linearity of sensing of the capacitive sensor is a constant pursuit in the industry at present, wherein the pattern and arrangement of electrodes of the array of sensor electrodes have significant influence to the sensing accuracy. But the irregular (or undesirable) coupling capacitance generated in the array of sensor electrodes is liable to negatively affect such performance as accuracy/linearity of the capacitor sensor.
A capacitive sensor is provided that includes an array of sensor electrodes deposed in single layer on a substrate. The array includes a number of columns of sensor electrode sets arranged in a row. Each column of the sensor electrode sets includes a plurality of transmitter electrode elements and at least one receiver electrode. The transmitter electrode elements are deposed in a staggered arrangement in a direction of the column, wherein each transmitter electrode element has a trace led out from a first end thereof along the direction of column. The at least one receiver electrode is deposed along the direction of column and is interdigitated with the transmitter electrode elements for capacitively coupling with the transmitter electrode elements. At least part of the transmitter electrode elements has an extension extending from a second end of the transmitter electrode element along a direction opposite the direction of the trace.
The above and other objects and advantages of the present invention will be readily appreciated as they become clearer by reference to the following detailed description in combination with the drawings, wherein the same or similar elements are denoted by the same reference numerals.
A benefit of the disclosed technology is to reduce irregular capacitive coupling in the array of sensor electrodes of the capacitive sensor so as to improve performance of the capacitive sensor.
In order to achieve the above-mentioned or other benefit, a capacitive sensor according to the present invention comprises a substrate and an array of sensor electrodes disposed on the substrate in single layer, the array of sensor electrodes including a number of columns of sensor electrode sets orderly arranged in a direction of row; wherein each column of the sensor electrode sets including:
a plurality of transmitter electrode elements which are disposed in an orderly staggered arrangement in the direction of column, wherein each transmitter electrode element has a trace led out from a first end thereof along the direction of column; and
at least one receiver electrode which is disposed meanderingly along the direction of column and is interdigitated with the transmitter electrode elements for capacitively coupling with the transmitter electrode elements;
wherein at least part of the transmitter electrode elements have an extension extended from a second end of the transmitter electrode element along a direction opposite the direction of the trace.
In one example, a length of the extension is equal to half of a length of the transmitter electrode element in the direction of column.
A capacitive sensor according to an embodiment of the present invention, wherein, each of the plurality of transmitter electrode elements has the extension;
the capacitive sensor comprises n columns of sensor electrode sets, each column of the sensor electrode sets including m rows of the transmitter electrode element; wherein the extension of row c of the transmitter electrode element of column i of the sensor electrode sets is located between a part of receiver electrode corresponding to row (c+1)/(c−1) of the transmitter electrode element of column i of the sensor electrode sets and row (c+1)/(c−1) of the transmitter electrode element of column (i+1) or (i−1) of the sensor electrode sets; wherein, 2≤i<n, n≥3, 2≤c<m, m≥3, and m, n, i and c are integers.
A capacitive sensor according to another embodiment of the present invention, wherein the capacitive sensor comprises n columns of the sensor electrode sets, each column of sensor electrode sets including m rows of transmitter electrode element;
wherein the traces of rows 1 to t of the transmitter electrode element of n columns of the sensor electrode sets are upwards led out from along the direction of column, and the traces of rows (t+1) to m of the transmitter electrode element of n columns of the sensor electrode sets are downwards led out from along the direction of column; wherein 2≤t<(m−2), m≥4, n≥3, and m, n and t are an integer;
wherein at least rows (t−1) to (t+2) of the transmitter electrode element of n columns of the sensor electrodes have the extension.
In one example, the extensions, extended from rows (t+1) and (t−1)/t and (t−2) of the transmitter electrode elements of column (i+1) or (i−1) of the sensor electrode sets respectively, are disposed corresponding to row t/(t+1) of the transmitter electrode element of column i of the sensor electrode sets; wherein 2≤i<n, and i is an integer.
In any one of the above-described capacitive sensors, the array of sensor electrodes further includes a border; wherein a plurality of the traces are disposed in the border, and the extension of row c of the transmitter electrode elements of the first column of the sensor electrode sets is located between a part of receiver electrode corresponding to row (c+1) or (c−1) of the transmitter electrode element of the first column of the sensor electrode sets and the border; wherein 2≤c<m, and c is an integer.
In one example, the extension of row f of the transmitter electrode element of column i of the sensor electrode sets is relatively close to row (f+1)/(f−1) of the transmitter electrode element of column (i+1) or (i−1) of the sensor electrode sets; wherein, (t−1)≤f≤(t+1), and f is an integer.
In one example, the extension is an extension line, whose width is equal to the width of the trace.
In one example, each transmitter electrode element is disposed across a central line in the direction of column of the sensor electrode sets.
In one embodiment, the substrate is one element of a display panel of a display.
The irregular capacitive coupling in the array of sensor electrodes of the capacitive sensor of the present invention is shielded and reduced by the extensions, so that the accuracy/linearity of the capacitive sensor is improved.
Some of a plurality of possible embodiments of the present invention are described below to provide a basic understanding of the present invention, but they do not intend to define the key or decisive factors of the present invention or limit the claimed protection scope.
It shall be noted that the capacitance formed between each transmitter electrode element 121 and its corresponding interdigitatedly coupled receiver electrode portion is a regular capacitance. However, the applicant found that when normally scanning the array 100 of the sensor electrodes, trace 1211 led out from a certain row of scanned transmitter electrode elements 121 also has the same bias signals, which will cause irregular capacitive coupling with receiver electrode portions of other rows; besides, in the certain row of scanned transmitter electrode elements 121, a certain column of transmitter electrode elements 121 will also generate irregular capacitive coupling with receiver electrodes of the adjacent column. Thus in practical application, such phenomenon as “ghosts” will appear in the capacitive sensor as shown in
The capacitive sensor according to an embodiment of the present invention is as shown in
To facilitate illustration, the transmitter electrode element is denoted by T, and the receiver electrode is denoted by R, for example, the transmitter electrode element of row c in the sensor electrode set 220 of column i is denoted by T (xi, yc), and its corresponding capacitively coupled receiver electrode portion is denoted by R (xi, yc), wherein i is an integer greater than or equal to 1 but smaller than or equal to n, c is an integer greater than or equal to 1 but smaller than or equal to m, n is the number of columns of the sensor electrode sets 220 of the array 200 of the sensor electrodes, and m is the number of rows of the transmitter electrode elements of the sensor electrode sets 220 of the array 200 of the sensor electrodes.
Still referring to
Continuing to refer to
The transmitter electrode element T (x2, y4) is used herein as an example. Two extensions 2213 extending respectively from T (x3, y3) and T (x3, y5) are provided between T (x2, y4) and R (x3, y4). Thus, when row 4 of the transmitter electrode elements are scanned and biased signals, since T (x3, y3) and T (x3, y5) are biased as ground signals, the two extensions 2213 are grounded so as to shield the irregular coupling capacitance between T (x2, y4) and R (x3, y4). Therefore, the irregular capacitance between the upper and lower parts is greatly reduced. All transmitter electrode elements T of row 3 and row 4 have the similar configuration.
In an embodiment, a length of the extension 2213, i.e., a length of its extension from the transmitter electrode element 221, is substantially equal to a half of a length L (as shown in
In one embodiment, each transmitter electrode element 221 is substantially designed in a comb shape, and the receiver electrode portion corresponding to each transmitter electrode element 221 is also substantially designed in a comb shape. Thus, each transmitter electrode element 221 and the corresponding receiver electrode portion form an interdigitated comb-shape element structure, as shown in
In an embodiment, as shown in
In an embodiment, in a global layout of the array 200 of the sensor electrodes, all transmitter electrode elements 221 are provided with extensions 2213, as shown in
The irregular capacitive coupling in the array 200 of sensor electrodes of the capacitive sensor of the embodiment of the present invention is greatly reduced (because it is shielded by the extensions), so the accuracy/linearity of the capacitive sensor is improved, for example, the accuracy is approximately improved by about 0.5 mm as compared to the capacitive sensor shown in
The above examples mainly illustrate the capacitive sensor of the present invention. Although only some of the embodiments of the present invention are described, those ordinarily skilled in the art shall understand that this invention can be implemented in various other forms without departing from its principle and scope. Thus, the illustrated examples and embodiments are illustrative but not restrictive, and various modifications and replacements are intended to be covered by this invention without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2015 2 0684166 U | Sep 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4087625 | Dym et al. | May 1978 | A |
4233522 | Grummer et al. | Nov 1980 | A |
4237421 | Waldron | Dec 1980 | A |
4264903 | Bigelow | Apr 1981 | A |
4293987 | Gottbreht et al. | Oct 1981 | A |
4484026 | Thornburg | Nov 1984 | A |
4492958 | Minami | Jan 1985 | A |
4550221 | Mabusth | Oct 1985 | A |
4659874 | Landmeier | Apr 1987 | A |
4667259 | Uchida et al. | May 1987 | A |
4677259 | Abe | Jun 1987 | A |
4705919 | Dhawan | Nov 1987 | A |
4771138 | Dhawan | Sep 1988 | A |
4878013 | Andermo | Oct 1989 | A |
4954823 | Binstead | Sep 1990 | A |
4999462 | Purcell | Mar 1991 | A |
5053715 | Andermo | Oct 1991 | A |
5062916 | Aufderheide et al. | Nov 1991 | A |
5239307 | Andermo | Aug 1993 | A |
5341233 | Tomoike et al. | Aug 1994 | A |
5459463 | Gruaz et al. | Oct 1995 | A |
5463388 | Boie et al. | Oct 1995 | A |
5650597 | Redmayne | Jul 1997 | A |
5657012 | Tait | Aug 1997 | A |
5777596 | Herbert | Jul 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5869790 | Shigetaka et al. | Feb 1999 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6222522 | Mathews et al. | Apr 2001 | B1 |
6256022 | Manaresi et al. | Jul 2001 | B1 |
6281888 | Hoffman et al. | Aug 2001 | B1 |
6288707 | Philipp | Sep 2001 | B1 |
6297811 | Kent et al. | Oct 2001 | B1 |
6307751 | Bodony et al. | Oct 2001 | B1 |
6320394 | Tartagni | Nov 2001 | B1 |
6362633 | Tartagni | Mar 2002 | B1 |
6380930 | Van Ruymbeke | Apr 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6459044 | Watanabe et al. | Oct 2002 | B2 |
6486862 | Jacobsen et al. | Nov 2002 | B1 |
6512381 | Kramer | Jan 2003 | B2 |
6535200 | Philipp | Mar 2003 | B2 |
6583632 | Von Basse et al. | Jun 2003 | B2 |
6653736 | Kishimoto et al. | Nov 2003 | B2 |
6731120 | Tartagni | May 2004 | B2 |
6771327 | Sekiguchi | Aug 2004 | B2 |
6825833 | Mulligan et al. | Nov 2004 | B2 |
6879930 | Sinclair et al. | Apr 2005 | B2 |
6910634 | Inose et al. | Jun 2005 | B1 |
6937031 | Yoshioka et al. | Aug 2005 | B2 |
6998855 | Tartagni | Feb 2006 | B2 |
7129935 | Mackey | Oct 2006 | B2 |
7158125 | Sinclair et al. | Jan 2007 | B2 |
7218314 | Itoh | May 2007 | B2 |
7306144 | Moore | Dec 2007 | B2 |
7327352 | Keefer et al. | Feb 2008 | B2 |
7339579 | Richter et al. | Mar 2008 | B2 |
7348967 | Zadesky et al. | Mar 2008 | B2 |
7382139 | Mackey | Jun 2008 | B2 |
7388571 | Lowles et al. | Jun 2008 | B2 |
7423219 | Kawaguchi et al. | Sep 2008 | B2 |
7423635 | Taylor et al. | Sep 2008 | B2 |
7439962 | Reynolds et al. | Oct 2008 | B2 |
7455529 | Fujii et al. | Nov 2008 | B2 |
7522230 | Lee | Apr 2009 | B2 |
7548073 | Mackey et al. | Jun 2009 | B2 |
7554531 | Baker et al. | Jun 2009 | B2 |
7589713 | Sato | Sep 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7724243 | Geaghan | May 2010 | B2 |
7768273 | Kalnitsky et al. | Aug 2010 | B1 |
7786981 | Proctor | Aug 2010 | B2 |
7808255 | Hristov et al. | Oct 2010 | B2 |
7812825 | Sinclair et al. | Oct 2010 | B2 |
7821274 | Philipp et al. | Oct 2010 | B2 |
7821502 | Hristov | Oct 2010 | B2 |
7864160 | Geaghan et al. | Jan 2011 | B2 |
7876309 | XiaoPing | Jan 2011 | B2 |
7973771 | Geaghan | Jul 2011 | B2 |
7977953 | Lee | Jul 2011 | B2 |
7986152 | Philipp et al. | Jul 2011 | B2 |
8040326 | Hotelling et al. | Oct 2011 | B2 |
8059015 | Hua et al. | Nov 2011 | B2 |
8125463 | Hotelling et al. | Feb 2012 | B2 |
8243027 | Hotelling et al. | Aug 2012 | B2 |
8259078 | Hotelling et al. | Sep 2012 | B2 |
8278571 | Orsley | Oct 2012 | B2 |
8319747 | Hotelling et al. | Nov 2012 | B2 |
20020077313 | Clayman | Jun 2002 | A1 |
20030052867 | Shigetaka et al. | Mar 2003 | A1 |
20030103043 | Mulligan et al. | Jun 2003 | A1 |
20030234771 | Mulligan et al. | Dec 2003 | A1 |
20040062012 | Murohara | Apr 2004 | A1 |
20040077313 | Oba et al. | Apr 2004 | A1 |
20040125087 | Taylor et al. | Jul 2004 | A1 |
20040222974 | Hong et al. | Nov 2004 | A1 |
20040239650 | Mackey | Dec 2004 | A1 |
20040252109 | Trent et al. | Dec 2004 | A1 |
20050030048 | Bolender et al. | Feb 2005 | A1 |
20060038754 | Kim | Feb 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060114240 | Lin | Jun 2006 | A1 |
20060114241 | Lin | Jun 2006 | A1 |
20060232600 | Kimura et al. | Oct 2006 | A1 |
20070008299 | Hristov | Jan 2007 | A1 |
20070222762 | Van Delden et al. | Sep 2007 | A1 |
20070229466 | Peng et al. | Oct 2007 | A1 |
20070229468 | Peng et al. | Oct 2007 | A1 |
20070229469 | Seguine | Oct 2007 | A1 |
20070229470 | Snyder et al. | Oct 2007 | A1 |
20070242054 | Chang et al. | Oct 2007 | A1 |
20070257894 | Philipp | Nov 2007 | A1 |
20070262962 | XiaoPing et al. | Nov 2007 | A1 |
20070262963 | Xiao-Ping et al. | Nov 2007 | A1 |
20070268265 | XiaoPing | Nov 2007 | A1 |
20070273659 | XiaoPing et al. | Nov 2007 | A1 |
20070273660 | XiaoPing | Nov 2007 | A1 |
20070279395 | Philipp et al. | Dec 2007 | A1 |
20070291009 | Wright et al. | Dec 2007 | A1 |
20080006453 | Hotelling | Jan 2008 | A1 |
20080007534 | Peng et al. | Jan 2008 | A1 |
20080062140 | Hotelling et al. | Mar 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080111795 | Bollinger | May 2008 | A1 |
20080117182 | Um et al. | May 2008 | A1 |
20080150906 | Grivna | Jun 2008 | A1 |
20080158172 | Hotelling et al. | Jul 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080164076 | Orsley | Jul 2008 | A1 |
20080218488 | Yang et al. | Sep 2008 | A1 |
20080245582 | Bytheway | Oct 2008 | A1 |
20080259044 | Utsunomiya et al. | Oct 2008 | A1 |
20080264699 | Chang et al. | Oct 2008 | A1 |
20080265914 | Matsushima | Oct 2008 | A1 |
20080297176 | Douglas | Dec 2008 | A1 |
20080308323 | Huang et al. | Dec 2008 | A1 |
20080309635 | Matsuo | Dec 2008 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090002338 | Kinoshita et al. | Jan 2009 | A1 |
20090040191 | Tong et al. | Feb 2009 | A1 |
20090046077 | Tanaka et al. | Feb 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090096757 | Hotelling et al. | Apr 2009 | A1 |
20090107737 | Reynolds et al. | Apr 2009 | A1 |
20090128518 | Kinoshita et al. | May 2009 | A1 |
20090135151 | Sun | May 2009 | A1 |
20090153509 | Jiang et al. | Jun 2009 | A1 |
20090160682 | Bolender et al. | Jun 2009 | A1 |
20090185100 | Matsuhira et al. | Jul 2009 | A1 |
20090201267 | Akimoto et al. | Aug 2009 | A1 |
20090207154 | Chino | Aug 2009 | A1 |
20090213082 | Ku | Aug 2009 | A1 |
20090213534 | Sakai | Aug 2009 | A1 |
20090236151 | Yeh et al. | Sep 2009 | A1 |
20090262096 | Teramoto | Oct 2009 | A1 |
20090267916 | Hotelling | Oct 2009 | A1 |
20090273571 | Bowens | Nov 2009 | A1 |
20090273573 | Hotelling | Nov 2009 | A1 |
20090277695 | Liu et al. | Nov 2009 | A1 |
20090283340 | Liu et al. | Nov 2009 | A1 |
20090303203 | Yilmaz et al. | Dec 2009 | A1 |
20090309850 | Yang | Dec 2009 | A1 |
20090314621 | Hotelling | Dec 2009 | A1 |
20090324621 | Senter et al. | Dec 2009 | A1 |
20100001966 | Lii et al. | Jan 2010 | A1 |
20100006347 | Yang | Jan 2010 | A1 |
20100013745 | Kim et al. | Jan 2010 | A1 |
20100013800 | Elias et al. | Jan 2010 | A1 |
20100044122 | Sleeman et al. | Feb 2010 | A1 |
20100090979 | Bae | Apr 2010 | A1 |
20100134422 | Borras | Jun 2010 | A1 |
20100140359 | Hamm et al. | Jun 2010 | A1 |
20100147600 | Orsley | Jun 2010 | A1 |
20100149108 | Hotelling et al. | Jun 2010 | A1 |
20100156839 | Ellis | Jun 2010 | A1 |
20100163394 | Tang et al. | Jul 2010 | A1 |
20100182273 | Noguchi et al. | Jul 2010 | A1 |
20100188359 | Lee | Jul 2010 | A1 |
20100214247 | Tang et al. | Aug 2010 | A1 |
20100220075 | Kuo et al. | Sep 2010 | A1 |
20100253646 | Hiratsuka | Oct 2010 | A1 |
20100258360 | Yilmaz | Oct 2010 | A1 |
20100265210 | Nakanishi et al. | Oct 2010 | A1 |
20100271330 | Philipp | Oct 2010 | A1 |
20100277433 | Lee et al. | Nov 2010 | A1 |
20100289770 | Lee et al. | Nov 2010 | A1 |
20100291973 | Nakahara et al. | Nov 2010 | A1 |
20100302201 | Ritter et al. | Dec 2010 | A1 |
20100321043 | Philipp et al. | Dec 2010 | A1 |
20100321326 | Grunthaner et al. | Dec 2010 | A1 |
20110018841 | Hristov | Jan 2011 | A1 |
20110022351 | Philipp et al. | Jan 2011 | A1 |
20110025639 | Trend et al. | Feb 2011 | A1 |
20110048812 | Yilmaz | Mar 2011 | A1 |
20110048813 | Yilmaz | Mar 2011 | A1 |
20110057887 | Lin et al. | Mar 2011 | A1 |
20110062969 | Hargreaves et al. | Mar 2011 | A1 |
20110062971 | Badaye | Mar 2011 | A1 |
20110063251 | Geaghan et al. | Mar 2011 | A1 |
20110080357 | Park et al. | Apr 2011 | A1 |
20110090159 | Kurashima | Apr 2011 | A1 |
20110096016 | Yilmaz | Apr 2011 | A1 |
20110109579 | Wang et al. | May 2011 | A1 |
20110109590 | Park | May 2011 | A1 |
20110141051 | Ryu | Jun 2011 | A1 |
20110169770 | Mishina et al. | Jul 2011 | A1 |
20110187666 | Min | Aug 2011 | A1 |
20110267300 | Serban et al. | Nov 2011 | A1 |
20110273391 | Bae | Nov 2011 | A1 |
20110279169 | Salaverry | Nov 2011 | A1 |
20120044171 | Lee et al. | Feb 2012 | A1 |
20120056820 | Corbridge | Mar 2012 | A1 |
20120092270 | Lyon | Apr 2012 | A1 |
20120313901 | Monson | Dec 2012 | A1 |
20120327012 | Hoch | Dec 2012 | A1 |
20130015868 | Peng | Jan 2013 | A1 |
20130181943 | Bulea | Jul 2013 | A1 |
20130215035 | Guard | Aug 2013 | A1 |
20140225859 | Badaye | Aug 2014 | A1 |
20140313169 | Kravets | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2436978 | Jun 2001 | CN |
1490713 | Apr 2004 | CN |
0810540 | Dec 1997 | EP |
0919945 | Jun 1999 | EP |
0977159 | Feb 2000 | EP |
2002-215330 | Aug 2002 | JP |
2002-268768 | Sep 2002 | JP |
2002268786 | Sep 2002 | JP |
2011002947 | Jan 2011 | JP |
2011002948 | Jan 2011 | JP |
2011002949 | Jan 2011 | JP |
2011002950 | Jan 2011 | JP |
2011004076 | Jan 2011 | JP |
2011100379 | May 2011 | JP |
10110118065 | Jan 2012 | KR |
WO-8606551 | Nov 1986 | WO |
WO-0057344 | Sep 2000 | WO |
WO-2010117946 | Oct 2010 | WO |
WO-20100136932 | Dec 2010 | WO |
Entry |
---|
Tsz-Kin Ho et al. “32.3: Simple Single-Layer Multi-Touch Projected Capacitive Touch Panel”, SID 2009 Digest, pp. 447-450. |
Sunkook Kim et al. “A Highly Sensitive Capacitive Touch Sensor Integrated on a Thin-Film-Encapsulated Active-Matrix OLED for Ultrathin Displays”, IEEE Transactions on Electron Devices, vol. 58, No. 10, Oct. 2011. |
Paul Leopardi, “A Partition of the Unit Sphere into Regions of Equal Area and Small Diameter”, 2005. |
ASIC Packaging Guidebook, Toshiba Corporation. (2000). 35 pages. |
Fujitsu Microelectronics Limited. “IC Package.” (2002). 10 pages. |
Hal Philipp. “Charge Transfer Sensing”, vol. 19, No. 2. 1999. pp. 96-105. |
Mike Williams, “Dream Screens from Graphene”, Technology Developed at Rice could Revolutionize Touch-Screen Displays. Aug. 2011. |
Tracy V. Wilson et al. “How the iPhone Works”, HowStuffWorks “Multi-touch Systems”. 2011. |
“IDT Claims World's First True Single-Layer Multi-Touch Projected Capacitive Touch Screen Technology”, EE Times Europe. Dec. 8, 2010. |
Shawn Day. “Low Cost Touch Sensor on the Underside of a Casing”, IP.com. Oct. 14, 2004. |
“Mesh Patterns for Capacitive Touch or Proximity Sensors”, IP.com. May 14, 2010. 3pages. |
Johannes Schoning et al. “Multi-Touch Surfaces: A Technical Guide”, Technical Report TUM-I0833. 2008. |
“Novel Single Layer Touchscreen Based on Indium”, 2011. |
Lubart, et al. “One Layer Optically Transparent Keyboard for Input Display”, IP.com. Mar. 1, 1979. 3 Pages. |
Gary L. Barrett et al. “Projected Capacitive Touch Technology”, “Touch Technology Information Display”, www.informationaldisplay.org <http://www.informationaldisplay.org>, Mar. 2010 vol. 26 No. 3, pp. 16-21. |
Quantum Research Application Note An-KDO1. “Qmatrix Panel Design Guidelines”, Oct. 10, 2002. 4 Pages. |
Colin Holland. “SID: Single Layer Technology Boosts Capacitive Touchscreens”, www.eetimes.com/General. 2011. |
Calvin Wang et al. “Single Side All-Point-Addressable Clear Glass Substrate Sensor Design”, IP.com. Apr. 2, 2009. 3 Pages. |
Olivier Bau, “TeslaTouch: Electrovibration for Touch Surfaces”, 2010. |
Ken Gilleo. “The Circuit Centennial”, Apr. 28, 2003, Total of 7 pages. |
Ken Gilleo, “The Definitive History of the Printed Circuit”, 1999 PC Fab. |
Quantum Research Group. “Qmatrix Technology White Paper”, 2006. 4 Pages. |
International Search Report, PCT/US2013/021314 dated Jun. 25, 2013. |
Number | Date | Country | |
---|---|---|---|
20170068354 A1 | Mar 2017 | US |