Single layer capacitive sensor pattern

Information

  • Patent Grant
  • 10488994
  • Patent Number
    10,488,994
  • Date Filed
    Thursday, September 1, 2016
    8 years ago
  • Date Issued
    Tuesday, November 26, 2019
    5 years ago
Abstract
A capacitive sensor is provided that includes an array of sensor electrodes deposed in single layer on a substrate. The array includes a number of columns of sensor electrode sets arranged in a row. Each column of the sensor electrode sets includes a plurality of transmitter electrode elements and at least one receiver electrode. The transmitter electrode elements are deposed in a staggered arrangement in a direction of the column, wherein each transmitter electrode element has a trace led out from a first end thereof along the direction of column. The at least one receiver electrode is deposed along the direction of column and is interdigitated with the transmitter electrode elements for capacitively coupling with the transmitter electrode elements. At least part of the transmitter electrode elements has an extension extending from a second end of the transmitter electrode element along a direction opposite the direction of the trace.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to Chinese Patent Application No. 201520684166.X, filed Sep. 7, 2015, which is incorporated by reference in its entirety.


TECHNICAL FIELD

Embodiments of the invention generally relate to the technical field of touch sensors, and particularly to a capacitive sensor in which at least some of the transmitter electrode elements have extensions.


BACKGROUND

A capacitive sensor can sense a position of an input approaching a sensing area of a sensing device by detecting changes of a capacitive signal, so it is widely used in touch input devices, such as in various touch displays.


An important key component of the capacitive sensor is an array of sensor electrodes, which correspondingly is the sensing area; when an input object (e.g. a finger) is approaching the array of sensor electrodes, the capacitive signal at the corresponding position changes, thereby sensing the position or even action of the input object on the sensing area.


As for a mutual-capacitance capacitive sensor, for example, its array of sensor electrodes comprises transmitter electrodes and receiver electrodes arranged in rows and columns, wherein traces are provided on the transmitter electrodes for electrically connecting to a processing device of the capacitive sensor, so that a certain signal can be biased on the transmitter electrodes through the traces. For example, in practical application, transmitter electrodes of the array of sensor electrodes are scanned row by row (i.e. biasing the signal row by row) and changes of the regular coupling capacitance are detected.


Sensitivity and accuracy/linearity of sensing of the capacitive sensor is a constant pursuit in the industry at present, wherein the pattern and arrangement of electrodes of the array of sensor electrodes have significant influence to the sensing accuracy. But the irregular (or undesirable) coupling capacitance generated in the array of sensor electrodes is liable to negatively affect such performance as accuracy/linearity of the capacitor sensor.


SUMMARY

A capacitive sensor is provided that includes an array of sensor electrodes deposed in single layer on a substrate. The array includes a number of columns of sensor electrode sets arranged in a row. Each column of the sensor electrode sets includes a plurality of transmitter electrode elements and at least one receiver electrode. The transmitter electrode elements are deposed in a staggered arrangement in a direction of the column, wherein each transmitter electrode element has a trace led out from a first end thereof along the direction of column. The at least one receiver electrode is deposed along the direction of column and is interdigitated with the transmitter electrode elements for capacitively coupling with the transmitter electrode elements. At least part of the transmitter electrode elements has an extension extending from a second end of the transmitter electrode element along a direction opposite the direction of the trace.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the present invention will be readily appreciated as they become clearer by reference to the following detailed description in combination with the drawings, wherein the same or similar elements are denoted by the same reference numerals.



FIG. 1 is a schematic drawing of the structure of an array of sensor electrodes of an existing capacitive sensor.



FIG. 2 is a schematic drawing of the structure of an array of sensor electrodes of a capacitive sensor according to an embodiment of the present invention.



FIG. 3 is a schematic drawing of the structure of a transmitter electrode element of FIG. 2, wherein FIG. 3(a) is a transmitter electrode element according to one embodiment, and FIG. 3(b) is a transmitter electrode element according to a further embodiment.





DETAILED DESCRIPTION

A benefit of the disclosed technology is to reduce irregular capacitive coupling in the array of sensor electrodes of the capacitive sensor so as to improve performance of the capacitive sensor.


In order to achieve the above-mentioned or other benefit, a capacitive sensor according to the present invention comprises a substrate and an array of sensor electrodes disposed on the substrate in single layer, the array of sensor electrodes including a number of columns of sensor electrode sets orderly arranged in a direction of row; wherein each column of the sensor electrode sets including:


a plurality of transmitter electrode elements which are disposed in an orderly staggered arrangement in the direction of column, wherein each transmitter electrode element has a trace led out from a first end thereof along the direction of column; and


at least one receiver electrode which is disposed meanderingly along the direction of column and is interdigitated with the transmitter electrode elements for capacitively coupling with the transmitter electrode elements;


wherein at least part of the transmitter electrode elements have an extension extended from a second end of the transmitter electrode element along a direction opposite the direction of the trace.


In one example, a length of the extension is equal to half of a length of the transmitter electrode element in the direction of column.


A capacitive sensor according to an embodiment of the present invention, wherein, each of the plurality of transmitter electrode elements has the extension;


the capacitive sensor comprises n columns of sensor electrode sets, each column of the sensor electrode sets including m rows of the transmitter electrode element; wherein the extension of row c of the transmitter electrode element of column i of the sensor electrode sets is located between a part of receiver electrode corresponding to row (c+1)/(c−1) of the transmitter electrode element of column i of the sensor electrode sets and row (c+1)/(c−1) of the transmitter electrode element of column (i+1) or (i−1) of the sensor electrode sets; wherein, 2≤i<n, n≥3, 2≤c<m, m≥3, and m, n, i and c are integers.


A capacitive sensor according to another embodiment of the present invention, wherein the capacitive sensor comprises n columns of the sensor electrode sets, each column of sensor electrode sets including m rows of transmitter electrode element;


wherein the traces of rows 1 to t of the transmitter electrode element of n columns of the sensor electrode sets are upwards led out from along the direction of column, and the traces of rows (t+1) to m of the transmitter electrode element of n columns of the sensor electrode sets are downwards led out from along the direction of column; wherein 2≤t<(m−2), m≥4, n≥3, and m, n and t are an integer;


wherein at least rows (t−1) to (t+2) of the transmitter electrode element of n columns of the sensor electrodes have the extension.


In one example, the extensions, extended from rows (t+1) and (t−1)/t and (t−2) of the transmitter electrode elements of column (i+1) or (i−1) of the sensor electrode sets respectively, are disposed corresponding to row t/(t+1) of the transmitter electrode element of column i of the sensor electrode sets; wherein 2≤i<n, and i is an integer.


In any one of the above-described capacitive sensors, the array of sensor electrodes further includes a border; wherein a plurality of the traces are disposed in the border, and the extension of row c of the transmitter electrode elements of the first column of the sensor electrode sets is located between a part of receiver electrode corresponding to row (c+1) or (c−1) of the transmitter electrode element of the first column of the sensor electrode sets and the border; wherein 2≤c<m, and c is an integer.


In one example, the extension of row f of the transmitter electrode element of column i of the sensor electrode sets is relatively close to row (f+1)/(f−1) of the transmitter electrode element of column (i+1) or (i−1) of the sensor electrode sets; wherein, (t−1)≤f≤(t+1), and f is an integer.


In one example, the extension is an extension line, whose width is equal to the width of the trace.


In one example, each transmitter electrode element is disposed across a central line in the direction of column of the sensor electrode sets.


In one embodiment, the substrate is one element of a display panel of a display.


The irregular capacitive coupling in the array of sensor electrodes of the capacitive sensor of the present invention is shielded and reduced by the extensions, so that the accuracy/linearity of the capacitive sensor is improved.


Some of a plurality of possible embodiments of the present invention are described below to provide a basic understanding of the present invention, but they do not intend to define the key or decisive factors of the present invention or limit the claimed protection scope.



FIG. 1 is a schematic drawing of the structure of an array of sensor electrodes of an existing capacitive sensor. FIG. 2 is a schematic drawing of the structure of an array of sensor electrodes of a capacitive sensor according to an embodiment of the present invention. The array of sensor electrodes of a capacitive sensor according to the present invention is described below with reference to the improvement to the existing array of sensor electrodes as shown in FIG. 1, but it shall be appreciated that the array of sensor electrodes of the present invention is not limited to be formed by improving the array of sensor electrodes as shown in FIG. 1. To make the description convenient and clear, the direction of row in the array of sensor electrodes is defined as direction x, and the direction of column is defined as direction y.



FIG. 1 shows an array 100 of sensor electrodes of a local capacitive sensor, which comprises a border 110 and several columns of sensor electrode sets 120 orderly arranged in direction x, the sensor electrode set 120 mainly consisting of several transmitter electrode elements 121 and one receiver electrode 125. An example of 7 rows×3 columns is described, x1, x2 and x3 are coordinates of the column, while y1, y2, y3, y4, y5, y6 and y7 are coordinates of the row; taking column x1 shown in FIG. 1 as an example, its sensor electrode set 120 comprises 7 transmitter electrode elements 121, each being arranged across a central line 129 of column x1 of the sensor electrode set 120 and being orderly staggered arrangement in direction y; column x1 of the sensor electrode set 120 further comprises a receiver electrode 125, which is meanderingly arranged in direction y and is interdigitated with each transmitter electrode element 121. In this embodiment, each transmitter electrode element 121 is substantially designed in a comb shape, and the receiver electrode portion corresponding to each transmitter electrode element 121 is also substantially designed in a comb shape, so that each transmitter electrode element 121 and the corresponding receiver electrode portion form an interdigitated comb-shape element structure, in which the transmitter electrode element 121 is capacitively coupled to the corresponding receiver electrode, thus the capacitive signal changes can be detected when an input object is approaching.


It shall be noted that the capacitance formed between each transmitter electrode element 121 and its corresponding interdigitatedly coupled receiver electrode portion is a regular capacitance. However, the applicant found that when normally scanning the array 100 of the sensor electrodes, trace 1211 led out from a certain row of scanned transmitter electrode elements 121 also has the same bias signals, which will cause irregular capacitive coupling with receiver electrode portions of other rows; besides, in the certain row of scanned transmitter electrode elements 121, a certain column of transmitter electrode elements 121 will also generate irregular capacitive coupling with receiver electrodes of the adjacent column. Thus in practical application, such phenomenon as “ghosts” will appear in the capacitive sensor as shown in FIG. 1, especially in areas corresponding to the transmitter electrode elements of the central rows (e.g. rows y3-y4).


The capacitive sensor according to an embodiment of the present invention is as shown in FIG. 2, which comprises a substrate (not shown in FIG. 2) and an array 200 of sensor electrodes formed on the substrate, the array 200 of sensor electrodes is a single-layer structure, which can be formed by means of various patterning methods. The substrate can be a component of a display panel in a display, such as a color filter (CF), etc., and the array 200 of sensor electrodes can be, but is not limited to, a transparent electrode structure formed by an ITO material.



FIG. 2 shows a local structure (e.g. 7 rows×3 columns) of the array 200 of sensor electrodes, which comprises a border 210 and three columns of sensor electrode sets 220 orderly arranged in direction x. In this embodiment, the sensor electrode set 220 mainly consists of a number of transmitter electrode elements 221 and one receiver electrode 225. Each of the transmitter electrode elements 221 is disposed across a central line 229 (along direction y) corresponding to the sensor electrode set 220 and is ordered staggered in direction y. The receiver electrode 225 is meanderingly arranged in direction y and is interdigitated with each transmitter electrode element 121. In this way, each transmitter electrode element 221 is capacitively coupled to the receiver electrode portion arranged interdigitatedly therewith.


To facilitate illustration, the transmitter electrode element is denoted by T, and the receiver electrode is denoted by R, for example, the transmitter electrode element of row c in the sensor electrode set 220 of column i is denoted by T (xi, yc), and its corresponding capacitively coupled receiver electrode portion is denoted by R (xi, yc), wherein i is an integer greater than or equal to 1 but smaller than or equal to n, c is an integer greater than or equal to 1 but smaller than or equal to m, n is the number of columns of the sensor electrode sets 220 of the array 200 of the sensor electrodes, and m is the number of rows of the transmitter electrode elements of the sensor electrode sets 220 of the array 200 of the sensor electrodes.



FIG. 3 is a schematic drawing of the structure of a transmitter electrode element of FIG. 2, wherein FIG. 3(a) is a transmitter electrode element according to one embodiment, and FIG. 3(b) is a transmitter electrode element according to a further embodiment. Referring to FIGS. 2 and 3, in one embodiment, each transmitter electrode element 221 has an upper end and a lower end. One end of the transmitter electrode element 221 has a trace 2211 led out therefrom. The trace 2211 electrically connects the transmitter electrode element 221 to the processing device of the capacitive sensor, so that during the scanning operation, scanning signals can be selectively biased to the corresponding transmitter electrode element 221 in the array through the trace thereof. The other end of the transmitter electrode element 221 has an extension 2213 extending therefrom. The extension 2213 can specifically be an extension line whose width may be substantially equal to the width of the trace 2211. The extending direction of the extension 2213 is opposite to the leading out direction of the trace 2211, that is, the extension extends in a direction opposite to the direction of the trace 2211. Thus, the extension 2213 is between transmitter electrode elements and receiver electrodes of different columns in adjacent rows, or it is between the receiver electrode and border 210 of adjacent rows. It shall be noted that in order to facilitate the layout, a plurality of traces 2211 are provided at the border 210, so that the traces 2211 led out from below are all led to another position from the border 210


Still referring to FIG. 2, taking the transmitter electrode element T (x1, y3) as an example, the trace 2211 thereof is led out upward along a positive direction y, and the extension 2213 thereof extends downward along a negative direction y. The extension 2213 is disposed between R (x1, y4) and the border 210. Likewise, as for the transmitter electrode element T (x1, y5), the trace 2211 thereof is led out downward along a negative direction y, and the extension 2213 thereof extends upward along a positive direction y. The extension 2213 is disposed between R (x1, y4) and the border 210. Therefore, R (x1, y4) correspondingly has two extensions 2213 extending respectively from the upper and lower adjacent transmitter electrode elements. In this case, when row 4 is scanned and rows 3 and 5 are connected to the GND signal, the two extensions 2213 connecting ground can at least partially shield the irregular coupling capacitance between R (x1, y4) and the traces of the border 210.


Continuing to refer to FIG. 2, in this embodiment, the m rows of transmitter electrode elements are exemplarily arranged in substantially an F-shape. Traces of the upper transmitter electrode elements (e.g. all transmitter electrode elements in rows 1-3 as shown in FIG. 2) are led out upward, so they are arranged in an inverted F-shape. Traces of the lower transmitter electrode elements (e.g. all transmitter electrode elements in rows 4-7 as shown in FIG. 2) are led out downward, so they are arranged in an F-shape. As for the transmitter electrode elements and receiver electrode portions corresponding to the two adjacent rows located the boundary between the upper and lower parts, the applicant found that irregular coupling capacitance is more likely to occur therein. Thus, “ghosts” are readily to appear when using. In this embodiment, between the upper and lower parts, extensions 2213 extending respectively from row 4 and row 2 are provided between row 3 of the transmitter electrode elements T and the adjacent column of receiver electrodes R, and extensions 2213 extending respectively from row 3 and row 5 are provided between row 4 of the transmitter electrode elements T and the adjacent columns of receiver electrodes R.


The transmitter electrode element T (x2, y4) is used herein as an example. Two extensions 2213 extending respectively from T (x3, y3) and T (x3, y5) are provided between T (x2, y4) and R (x3, y4). Thus, when row 4 of the transmitter electrode elements are scanned and biased signals, since T (x3, y3) and T (x3, y5) are biased as ground signals, the two extensions 2213 are grounded so as to shield the irregular coupling capacitance between T (x2, y4) and R (x3, y4). Therefore, the irregular capacitance between the upper and lower parts is greatly reduced. All transmitter electrode elements T of row 3 and row 4 have the similar configuration.


In an embodiment, a length of the extension 2213, i.e., a length of its extension from the transmitter electrode element 221, is substantially equal to a half of a length L (as shown in FIG. 3) of the transmitter electrode element 221 in direction y. In this example, the extension 2213 has a better effect of shielding the irregular capacitance. However, the specific length thereof is not restrictive, for example, the length of the extension 2213 can be L/4 to 3L/4. It shall also be noted that there is no electrical connection between different extensions.


In one embodiment, each transmitter electrode element 221 is substantially designed in a comb shape, and the receiver electrode portion corresponding to each transmitter electrode element 221 is also substantially designed in a comb shape. Thus, each transmitter electrode element 221 and the corresponding receiver electrode portion form an interdigitated comb-shape element structure, as shown in FIG. 3, and each transmitter electrode element 221 further comprises a plurality of electrode segments 2215 arranged in parallel, and an electrode segment of the receiver electrode 225 can be disposed between two adjacent electrode segments 2215.


In an embodiment, as shown in FIG. 3(a), the extension 2213 of the transmitter electrode 221 first extends more in direction x and then bends vertically to extend in direction y to form an extension line. Thus similar to the extension 2213 between T(x2, y4) and R (x3, y4), the two extensions 2213 are disposed relatively closer to T (x2, y4), thereby enhancing the above-mentioned shielding effect.


In an embodiment, in a global layout of the array 200 of the sensor electrodes, all transmitter electrode elements 221 are provided with extensions 2213, as shown in FIG. 2, all transmitter electrode elements of rows 1-3 are provided with extensions 2213 extending downward, and all transmitter electrode elements of rows 4-7 are provided with extensions 2213 extending upward. Thus, the global capacitance environment of the array 200 of the sensor electrodes is relatively more uniform. It shall be appreciated that in other embodiments, extensions may be disposed only on rows 2-5 of the transmitter electrode elements 221, thereby at least ensuring that the irregular capacitance at row 3 and row 4 between the upper and lower parts is greatly reduced.


The irregular capacitive coupling in the array 200 of sensor electrodes of the capacitive sensor of the embodiment of the present invention is greatly reduced (because it is shielded by the extensions), so the accuracy/linearity of the capacitive sensor is improved, for example, the accuracy is approximately improved by about 0.5 mm as compared to the capacitive sensor shown in FIG. 1. Hence, when applying such a capacitive sensor to the touch display, user experience will be improved over conventional designs.


The above examples mainly illustrate the capacitive sensor of the present invention. Although only some of the embodiments of the present invention are described, those ordinarily skilled in the art shall understand that this invention can be implemented in various other forms without departing from its principle and scope. Thus, the illustrated examples and embodiments are illustrative but not restrictive, and various modifications and replacements are intended to be covered by this invention without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A capacitive sensor, comprising: a substrate; andan array of sensor electrodes disposed on the substrate in single layer, the array of sensor electrodes including a number of columns of sensor electrode sets orderly arranged in a direction of row, wherein each column of the sensor electrode sets comprises: a plurality of transmitter electrode elements disposed in an orderly staggered arrangement in the direction of a column, wherein a first transmitter electrode element of the plurality of transmitter electrode elements comprises a first trace having a first end and a second end, the first trace extending in the direction of the column, and a plurality of second traces extending from the first trace in the direction of a row, the first transmitter electrode element further having a first extension trace comprising a first portion led out from the first end of the first trace along the direction of the row opposite the second traces, a second portion coupled to the first portion extending along the direction of the column, a third portion coupled to the second portion extending along the direction of the row opposite the second traces, and a fourth portion coupled to the third portion extending along the direction of the column; andat least one receiver electrode which is disposed meanderingly along the direction of the column and is interdigitated with the transmitter electrode elements for capacitively coupling with the transmitter electrode elements, wherein a first transmitter electrode element has a second extension trace extended from the second end of the first trace comprising a first portion led out from the second end of the first trace along the direction of the row opposite the second traces and a second portion coupled to the first portion extending along the direction of the column opposite the direction of the second portion of the first extension trace, where the first extension trace extends further along the direction of the row opposite the second traces than the second extension trace.
  • 2. The capacitive sensor according to claim 1, wherein a length of the first extension is equal to half of a length of the first transmitter electrode element in the direction of the column.
  • 3. The capacitive sensor according to claim 1, wherein each of the plurality of transmitter electrode elements has the first extension; and wherein: the capacitive sensor comprises n columns of sensor electrode sets, each column of sensor electrode sets including m rows of the first transmitter electrode;wherein the extension of row c of the transmitter electrode element of column i of the sensor electrode sets is located between a part of a receiver electrode corresponding to row (c+1)/(c−1) of the transmitter electrode element of column i of the sensor electrode sets and row (c+1)/(c−1) of the transmitter electrode element of column (i+1) or (i−1) of the sensor electrode sets; wherein, 2≤i<n, n≥3 2≤c<m, m≥3, and m, n, i and c are integers.
  • 4. The capacitive sensor according to claim 1, wherein the capacitive sensor comprises n columns of the sensor electrode sets, each column of sensor electrode sets including m rows of transmitter electrode elements; wherein the traces of rows 1 to t of the transmitter electrode element of n columns of the sensor electrode sets are upwards led out from along the direction of the column, and the traces of rows (t+1) to m of the transmitter electrode element of n columns of the sensor electrode sets are downwards led out from along the direction of the column; wherein t<(m−2), m≥4, n≥3, and m, n and t are integers; andwherein at least rows (t−1) to (t+2) of the transmitter electrode elements of n columns of the sensor electrodes have the first extension.
  • 5. The capacitive sensor according to claim 4, wherein the first extensions, extended from rows (t+1) and (t−1)/ t and (t−2) of the transmitter electrode elements of column (i+1) or (i−1) of the sensor electrode sets respectively, are disposed corresponding to row t/(t+1) of the transmitter electrode elements of column i of the sensor electrode sets; wherein 2≤i<n, wherein i is an integer.
  • 6. The capacitive sensor according to claim 3, wherein the array of sensor electrodes further comprises a border; wherein a plurality of the traces are disposed in the border, and the first extension of row c of the transmitter electrode elements of the first column of the sensor electrode sets is located between a part of a receiver electrode corresponding to row (c+1) or (c−1) of the transmitter electrode element of the first column of the sensor electrode sets and the border; wherein 2≤c<m, and c is an integer.
  • 7. The capacitive sensor according to claim 4, wherein the array of sensor electrodes further comprises a border; wherein a plurality of the traces are disposed in the border, and the first extension of row c of the transmitter electrode elements of the first column of the sensor electrode sets is located between a part of a receiver electrode corresponding to row (c+1) or (c−1) of the transmitter electrode element of the first column of the sensor electrode sets and the border; wherein 2≤c<m, and c is an integer.
  • 8. The capacitive sensor according to claim 4, wherein the first extension of row f of the transmitter electrode element of column i of the sensor electrode sets is relatively close to row (f+1)/(f−1) of the transmitter electrode elements of column (i+1) or (i−1) of the sensor electrode sets; wherein, (t−1)≤f≤(t+1), and f is an integer.
  • 9. The capacitive sensor according to claim 5, wherein the first extension of row f of the transmitter electrode element of column i of the sensor electrode sets is relatively close to row (f+1)/(f−1) of the transmitter electrode element of column (i+1) or (i−1) of the sensor electrode sets; wherein, (t−1)≤f≤(t+1), and f is an integer.
  • 10. The capacitive sensor according to claim 1, wherein the first extension is an extending line having a width equal to a width of the first trace.
  • 11. The capacitive sensor according to claim 1, wherein each transmitter electrode is disposed across a center line in the direction of a column of the sensor electrode sets.
  • 12. The capacitive sensor according to claim 1, wherein the substrate is one element of a displaying panel of a display.
Priority Claims (1)
Number Date Country Kind
2015 2 0684166 U Sep 2015 CN national
US Referenced Citations (220)
Number Name Date Kind
4087625 Dym et al. May 1978 A
4233522 Grummer et al. Nov 1980 A
4237421 Waldron Dec 1980 A
4264903 Bigelow Apr 1981 A
4293987 Gottbreht et al. Oct 1981 A
4484026 Thornburg Nov 1984 A
4492958 Minami Jan 1985 A
4550221 Mabusth Oct 1985 A
4659874 Landmeier Apr 1987 A
4667259 Uchida et al. May 1987 A
4677259 Abe Jun 1987 A
4705919 Dhawan Nov 1987 A
4771138 Dhawan Sep 1988 A
4878013 Andermo Oct 1989 A
4954823 Binstead Sep 1990 A
4999462 Purcell Mar 1991 A
5053715 Andermo Oct 1991 A
5062916 Aufderheide et al. Nov 1991 A
5239307 Andermo Aug 1993 A
5341233 Tomoike et al. Aug 1994 A
5459463 Gruaz et al. Oct 1995 A
5463388 Boie et al. Oct 1995 A
5650597 Redmayne Jul 1997 A
5657012 Tait Aug 1997 A
5777596 Herbert Jul 1998 A
5841078 Miller et al. Nov 1998 A
5869790 Shigetaka et al. Feb 1999 A
6188391 Seely et al. Feb 2001 B1
6222522 Mathews et al. Apr 2001 B1
6256022 Manaresi et al. Jul 2001 B1
6281888 Hoffman et al. Aug 2001 B1
6288707 Philipp Sep 2001 B1
6297811 Kent et al. Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6320394 Tartagni Nov 2001 B1
6362633 Tartagni Mar 2002 B1
6380930 Van Ruymbeke Apr 2002 B1
6452514 Philipp Sep 2002 B1
6459044 Watanabe et al. Oct 2002 B2
6486862 Jacobsen et al. Nov 2002 B1
6512381 Kramer Jan 2003 B2
6535200 Philipp Mar 2003 B2
6583632 Von Basse et al. Jun 2003 B2
6653736 Kishimoto et al. Nov 2003 B2
6731120 Tartagni May 2004 B2
6771327 Sekiguchi Aug 2004 B2
6825833 Mulligan et al. Nov 2004 B2
6879930 Sinclair et al. Apr 2005 B2
6910634 Inose et al. Jun 2005 B1
6937031 Yoshioka et al. Aug 2005 B2
6998855 Tartagni Feb 2006 B2
7129935 Mackey Oct 2006 B2
7158125 Sinclair et al. Jan 2007 B2
7218314 Itoh May 2007 B2
7306144 Moore Dec 2007 B2
7327352 Keefer et al. Feb 2008 B2
7339579 Richter et al. Mar 2008 B2
7348967 Zadesky et al. Mar 2008 B2
7382139 Mackey Jun 2008 B2
7388571 Lowles et al. Jun 2008 B2
7423219 Kawaguchi et al. Sep 2008 B2
7423635 Taylor et al. Sep 2008 B2
7439962 Reynolds et al. Oct 2008 B2
7455529 Fujii et al. Nov 2008 B2
7522230 Lee Apr 2009 B2
7548073 Mackey et al. Jun 2009 B2
7554531 Baker et al. Jun 2009 B2
7589713 Sato Sep 2009 B2
7663607 Hotelling et al. Feb 2010 B2
7724243 Geaghan May 2010 B2
7768273 Kalnitsky et al. Aug 2010 B1
7786981 Proctor Aug 2010 B2
7808255 Hristov et al. Oct 2010 B2
7812825 Sinclair et al. Oct 2010 B2
7821274 Philipp et al. Oct 2010 B2
7821502 Hristov Oct 2010 B2
7864160 Geaghan et al. Jan 2011 B2
7876309 XiaoPing Jan 2011 B2
7973771 Geaghan Jul 2011 B2
7977953 Lee Jul 2011 B2
7986152 Philipp et al. Jul 2011 B2
8040326 Hotelling et al. Oct 2011 B2
8059015 Hua et al. Nov 2011 B2
8125463 Hotelling et al. Feb 2012 B2
8243027 Hotelling et al. Aug 2012 B2
8259078 Hotelling et al. Sep 2012 B2
8278571 Orsley Oct 2012 B2
8319747 Hotelling et al. Nov 2012 B2
20020077313 Clayman Jun 2002 A1
20030052867 Shigetaka et al. Mar 2003 A1
20030103043 Mulligan et al. Jun 2003 A1
20030234771 Mulligan et al. Dec 2003 A1
20040062012 Murohara Apr 2004 A1
20040077313 Oba et al. Apr 2004 A1
20040125087 Taylor et al. Jul 2004 A1
20040222974 Hong et al. Nov 2004 A1
20040239650 Mackey Dec 2004 A1
20040252109 Trent et al. Dec 2004 A1
20050030048 Bolender et al. Feb 2005 A1
20060038754 Kim Feb 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060114240 Lin Jun 2006 A1
20060114241 Lin Jun 2006 A1
20060232600 Kimura et al. Oct 2006 A1
20070008299 Hristov Jan 2007 A1
20070222762 Van Delden et al. Sep 2007 A1
20070229466 Peng et al. Oct 2007 A1
20070229468 Peng et al. Oct 2007 A1
20070229469 Seguine Oct 2007 A1
20070229470 Snyder et al. Oct 2007 A1
20070242054 Chang et al. Oct 2007 A1
20070257894 Philipp Nov 2007 A1
20070262962 XiaoPing et al. Nov 2007 A1
20070262963 Xiao-Ping et al. Nov 2007 A1
20070268265 XiaoPing Nov 2007 A1
20070273659 XiaoPing et al. Nov 2007 A1
20070273660 XiaoPing Nov 2007 A1
20070279395 Philipp et al. Dec 2007 A1
20070291009 Wright et al. Dec 2007 A1
20080006453 Hotelling Jan 2008 A1
20080007534 Peng et al. Jan 2008 A1
20080062140 Hotelling et al. Mar 2008 A1
20080074398 Wright Mar 2008 A1
20080111795 Bollinger May 2008 A1
20080117182 Um et al. May 2008 A1
20080150906 Grivna Jun 2008 A1
20080158172 Hotelling et al. Jul 2008 A1
20080158181 Hamblin et al. Jul 2008 A1
20080164076 Orsley Jul 2008 A1
20080218488 Yang et al. Sep 2008 A1
20080245582 Bytheway Oct 2008 A1
20080259044 Utsunomiya et al. Oct 2008 A1
20080264699 Chang et al. Oct 2008 A1
20080265914 Matsushima Oct 2008 A1
20080297176 Douglas Dec 2008 A1
20080308323 Huang et al. Dec 2008 A1
20080309635 Matsuo Dec 2008 A1
20090002337 Chang Jan 2009 A1
20090002338 Kinoshita et al. Jan 2009 A1
20090040191 Tong et al. Feb 2009 A1
20090046077 Tanaka et al. Feb 2009 A1
20090091551 Hotelling et al. Apr 2009 A1
20090096757 Hotelling et al. Apr 2009 A1
20090107737 Reynolds et al. Apr 2009 A1
20090128518 Kinoshita et al. May 2009 A1
20090135151 Sun May 2009 A1
20090153509 Jiang et al. Jun 2009 A1
20090160682 Bolender et al. Jun 2009 A1
20090185100 Matsuhira et al. Jul 2009 A1
20090201267 Akimoto et al. Aug 2009 A1
20090207154 Chino Aug 2009 A1
20090213082 Ku Aug 2009 A1
20090213534 Sakai Aug 2009 A1
20090236151 Yeh et al. Sep 2009 A1
20090262096 Teramoto Oct 2009 A1
20090267916 Hotelling Oct 2009 A1
20090273571 Bowens Nov 2009 A1
20090273573 Hotelling Nov 2009 A1
20090277695 Liu et al. Nov 2009 A1
20090283340 Liu et al. Nov 2009 A1
20090303203 Yilmaz et al. Dec 2009 A1
20090309850 Yang Dec 2009 A1
20090314621 Hotelling Dec 2009 A1
20090324621 Senter et al. Dec 2009 A1
20100001966 Lii et al. Jan 2010 A1
20100006347 Yang Jan 2010 A1
20100013745 Kim et al. Jan 2010 A1
20100013800 Elias et al. Jan 2010 A1
20100044122 Sleeman et al. Feb 2010 A1
20100090979 Bae Apr 2010 A1
20100134422 Borras Jun 2010 A1
20100140359 Hamm et al. Jun 2010 A1
20100147600 Orsley Jun 2010 A1
20100149108 Hotelling et al. Jun 2010 A1
20100156839 Ellis Jun 2010 A1
20100163394 Tang et al. Jul 2010 A1
20100182273 Noguchi et al. Jul 2010 A1
20100188359 Lee Jul 2010 A1
20100214247 Tang et al. Aug 2010 A1
20100220075 Kuo et al. Sep 2010 A1
20100253646 Hiratsuka Oct 2010 A1
20100258360 Yilmaz Oct 2010 A1
20100265210 Nakanishi et al. Oct 2010 A1
20100271330 Philipp Oct 2010 A1
20100277433 Lee et al. Nov 2010 A1
20100289770 Lee et al. Nov 2010 A1
20100291973 Nakahara et al. Nov 2010 A1
20100302201 Ritter et al. Dec 2010 A1
20100321043 Philipp et al. Dec 2010 A1
20100321326 Grunthaner et al. Dec 2010 A1
20110018841 Hristov Jan 2011 A1
20110022351 Philipp et al. Jan 2011 A1
20110025639 Trend et al. Feb 2011 A1
20110048812 Yilmaz Mar 2011 A1
20110048813 Yilmaz Mar 2011 A1
20110057887 Lin et al. Mar 2011 A1
20110062969 Hargreaves et al. Mar 2011 A1
20110062971 Badaye Mar 2011 A1
20110063251 Geaghan et al. Mar 2011 A1
20110080357 Park et al. Apr 2011 A1
20110090159 Kurashima Apr 2011 A1
20110096016 Yilmaz Apr 2011 A1
20110109579 Wang et al. May 2011 A1
20110109590 Park May 2011 A1
20110141051 Ryu Jun 2011 A1
20110169770 Mishina et al. Jul 2011 A1
20110187666 Min Aug 2011 A1
20110267300 Serban et al. Nov 2011 A1
20110273391 Bae Nov 2011 A1
20110279169 Salaverry Nov 2011 A1
20120044171 Lee et al. Feb 2012 A1
20120056820 Corbridge Mar 2012 A1
20120092270 Lyon Apr 2012 A1
20120313901 Monson Dec 2012 A1
20120327012 Hoch Dec 2012 A1
20130015868 Peng Jan 2013 A1
20130181943 Bulea Jul 2013 A1
20130215035 Guard Aug 2013 A1
20140225859 Badaye Aug 2014 A1
20140313169 Kravets Oct 2014 A1
Foreign Referenced Citations (19)
Number Date Country
2436978 Jun 2001 CN
1490713 Apr 2004 CN
0810540 Dec 1997 EP
0919945 Jun 1999 EP
0977159 Feb 2000 EP
2002-215330 Aug 2002 JP
2002-268768 Sep 2002 JP
2002268786 Sep 2002 JP
2011002947 Jan 2011 JP
2011002948 Jan 2011 JP
2011002949 Jan 2011 JP
2011002950 Jan 2011 JP
2011004076 Jan 2011 JP
2011100379 May 2011 JP
10110118065 Jan 2012 KR
WO-8606551 Nov 1986 WO
WO-0057344 Sep 2000 WO
WO-2010117946 Oct 2010 WO
WO-20100136932 Dec 2010 WO
Non-Patent Literature Citations (23)
Entry
Tsz-Kin Ho et al. “32.3: Simple Single-Layer Multi-Touch Projected Capacitive Touch Panel”, SID 2009 Digest, pp. 447-450.
Sunkook Kim et al. “A Highly Sensitive Capacitive Touch Sensor Integrated on a Thin-Film-Encapsulated Active-Matrix OLED for Ultrathin Displays”, IEEE Transactions on Electron Devices, vol. 58, No. 10, Oct. 2011.
Paul Leopardi, “A Partition of the Unit Sphere into Regions of Equal Area and Small Diameter”, 2005.
ASIC Packaging Guidebook, Toshiba Corporation. (2000). 35 pages.
Fujitsu Microelectronics Limited. “IC Package.” (2002). 10 pages.
Hal Philipp. “Charge Transfer Sensing”, vol. 19, No. 2. 1999. pp. 96-105.
Mike Williams, “Dream Screens from Graphene”, Technology Developed at Rice could Revolutionize Touch-Screen Displays. Aug. 2011.
Tracy V. Wilson et al. “How the iPhone Works”, HowStuffWorks “Multi-touch Systems”. 2011.
“IDT Claims World's First True Single-Layer Multi-Touch Projected Capacitive Touch Screen Technology”, EE Times Europe. Dec. 8, 2010.
Shawn Day. “Low Cost Touch Sensor on the Underside of a Casing”, IP.com. Oct. 14, 2004.
“Mesh Patterns for Capacitive Touch or Proximity Sensors”, IP.com. May 14, 2010. 3pages.
Johannes Schoning et al. “Multi-Touch Surfaces: A Technical Guide”, Technical Report TUM-I0833. 2008.
“Novel Single Layer Touchscreen Based on Indium”, 2011.
Lubart, et al. “One Layer Optically Transparent Keyboard for Input Display”, IP.com. Mar. 1, 1979. 3 Pages.
Gary L. Barrett et al. “Projected Capacitive Touch Technology”, “Touch Technology Information Display”, www.informationaldisplay.org <http://www.informationaldisplay.org>, Mar. 2010 vol. 26 No. 3, pp. 16-21.
Quantum Research Application Note An-KDO1. “Qmatrix Panel Design Guidelines”, Oct. 10, 2002. 4 Pages.
Colin Holland. “SID: Single Layer Technology Boosts Capacitive Touchscreens”, www.eetimes.com/General. 2011.
Calvin Wang et al. “Single Side All-Point-Addressable Clear Glass Substrate Sensor Design”, IP.com. Apr. 2, 2009. 3 Pages.
Olivier Bau, “TeslaTouch: Electrovibration for Touch Surfaces”, 2010.
Ken Gilleo. “The Circuit Centennial”, Apr. 28, 2003, Total of 7 pages.
Ken Gilleo, “The Definitive History of the Printed Circuit”, 1999 PC Fab.
Quantum Research Group. “Qmatrix Technology White Paper”, 2006. 4 Pages.
International Search Report, PCT/US2013/021314 dated Jun. 25, 2013.
Related Publications (1)
Number Date Country
20170068354 A1 Mar 2017 US