A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.
This disclosure relates to producing and using ultra-small metal structures formed by using a combination of various coating, etching and electroplating processing techniques and accomplishing these processing techniques using a single conductive layer, and to the formation of ultra small structures on a substrate that can resonate at two or more different frequencies on the single layer. The frequencies can vary between micro-wave and ultra-violet electromagnetic radiation, and preferably will produce visible light in two or more different frequencies or colors that can then be used for a variety of purposes including data exchange and the production of useful light.
In its broadest form, the process disclosed herein produces ultra-small structures with a range of sizes described as micro- or nano-sized. The processing begins with a non-conductive substrates (e.g., glass, oxidized silicon, plastics and many others) or a semi-conductive substrate (e.g., doped silicon, compound semiconductor materials (GaAs, InP, GaN, . . . )), or a conductive substrate. The optimal next step can be the coating or formation of a thin layer of nickel followed by the coating or formation of a thin layer of silver on the nickel layer. Then a single layer of a conductive material, such as silver, gold, nickel, aluminum, or other conductive material is then applied, deposited, coated or otherwise provided on the thin silver layer, and the conductive layer is then etched or patterned into the desired ultra-small shaped devices, or the substrate, on which the thin nickel and silver layers had been coated, is provided with a mask layer which is patterned and then a conductive material is deposited, plated or otherwise applied. Thereafter, the mask layer can be removed, although in some instances that may not be necessary.
Electroplating is well known and is fully described in the above referenced '407 application. For present purposes, electroplating is the preferred process to employ in the construction of ultra-small resonant structures.
An etching could also be used, for example by use of chemical etching or Reactive Ion Etching (RIE) techniques, as are described in the above mentioned '511 application, to develop a final pattern in the conductive layer.
Where a photoresist material is first applied to the substrate, and patterned, then a coating or plating process as is explained in the above mentioned '407 application could be used. In that case, the patterned base structure will be positioned in an electroplating bath and a desired metal will be deposited into the holes formed in the mask or protective layer exposed by one or more of the prior etching processing steps. Thereafter, the mask or photoresist layer can be removed leaving formed metal structures on the substrate exhibiting an ultra small size, or alternatively the PR layer will be removed leaving the formed metal structures lying directly on the substrate.
Ultra-small structures encompass a range of structure sizes sometimes described as micro- or nano-sized. Objects with dimensions measured in ones, tens or hundreds of microns are described as micro-sized. Objects with dimensions measured in ones, tens or hundreds of nanometers or less are commonly designated nano-sized. Ultra-small hereinafter refers to structures and features ranging in size from hundreds of microns in size to ones of nanometers in size.
As used throughout this document:
The phrase “ultra-small resonant structure” shall mean any structure of any material, type or microscopic size that by its characteristics causes electrons to resonate at a frequency in excess of the microwave frequency.
The term “ultra-small” within the phrase “ultra-small resonant structure” shall mean microscopic structural dimensions and shall include so-called “micro” structures, “nano” structures, or any other very small structures that will produce resonance at frequencies in excess of microwave frequencies.
The invention is better understood by reading the following detailed description with reference to the accompanying drawings in which:
As shown in
When forming the posts 15, while the posts 15 can be isolated from each other, there is no need to remove the metal between posts or fingers 15 all the way down to the substrate level, nor does the plating have to place the metal posts directly on the substrate, but rather they can be formed on the thin silver layer or the silver/nickel layer referenced above which has been formed on top of the substrate, for example. That is, the posts or fingers 15 may be etched or plated in a manner so a layer of conductor remains beneath, between and connecting the posts. Alternatively, the posts or fingers can be conductively isolated from each other by removing the entire metal layer between the posts, or by not even using a conductive layer under the posts or fingers. In one embodiment, the metal can be silver, although all other conductors and conductive materials, and even dielectrics, are envisioned as well.
A charged particle beam, such as an electron beam 12 produced by an electron microscope, cathode, or any other electron source 10, that is controlled by applying a signal on a data input line 11. The source 10 can be any desired source of charged particles such as an electron gun, a cathode, an electron source from a scanning electron microscope, etc. The passing of such an electron beam 12 closely by a series of appropriately-sized resonant structures 15, causes the electrons in the structures to resonate and produce visible light or other EMR 16, including, for example, infrared light, visible light or ultraviolet light or any other electromagnetic radiation at a wide range of frequencies, and often at a frequency higher than that of microwaves. In
The spaces between the post members 15a, 15b, . . . 15n (
That resonance is occurring can be seen in
Exemplary resonant structures are illustrated in several copending applications, including U.S. application Ser. No. 11/325,432, noted above and is, in its entirety, incorporated herein by reference. As shown in
Resonant structures, here posts 15, are fabricated from resonating material (e.g., from a conductor such as metal (e.g., silver, gold, aluminum and platinum or from an alloy) or from any other material that resonates in the presence of a charged particle beam). Other exemplary resonating materials include carbon nanotubes and high temperature superconductors.
When creating the resonating elements 14, and the resonating structures 15, according to the present invention, the various resonant structures can be constructed in multiple layers of resonating materials but are preferably constructed in a single layer of resonating material as described hereinafter.
In one single layer embodiment, all the resonant structures 15 of a resonant element 14 are formed by being etched, electroplated or otherwise formed and shaped in the same processing step.
At least in the case of silver, etching does not need to remove the material between segments or posts all the way down to the substrate level, nor does the plating have to place the posts directly on the substrate. Silver posts can be on a silver layer on top of the substrate. In fact, we discovered that, due to various coupling effects, better results are obtained when the silver posts are set on a silver layer, which itself is on the substrate.
As noted previously, the shape of the posts 15 may also be shapes other than rectangles, such as simple shapes (e.g., circles, ovals, arcs and squares), complex shapes (e.g., such as semi-circles, angled fingers, serpentine structures and embedded structures (i.e., structures with a smaller geometry within a larger geometry, thereby creating more complex resonances)) and those including waveguides or complex cavities. The finger structures, regardless of any particular shape, will be collectively referred to herein as “segments.”
Turning now to specific exemplary embodiments, for example a chip 30 as shown in
The present invention is not limited to having only one array comprised of two rows of ultra-small structures. For example, the invention contemplates having a single row 42 comprised of a plurality of the ultra-small resonant structure, but with the row 42 having two different sections, A and B formed of different ultra-small resonant structures, with the A section resonating at one frequency while the B section resonates at a different frequency. In this instance, the two sections, A and B, will emit energy at different frequencies even though they are contained in one row of structures. Also, the present invention could, for example, also encompass a device, such as a chip, where its surface is completely filled with or occupied by various arrays of ultra-small structures each of which could be identical to one another, where each was different, or where there were patterns of similar and dissimilar arrays each of which could be emitting or receiving energy or light at a variety of frequencies according to the pattern designed into the arrays of ultra small structures. The processing techniques discussed and disclosed herein, and in the above referenced applications incorporated herein by reference, permit production of any order, design, type, shape, arrangement, size and placement of arrays, elements, posts, segments and/or ultra-small structures, or any grouping thereof, as a designer may wish, in order to achieve an input, output onto or from the surface of the chip to provide light, data transfer or other information or data into or out of the chip or both, or between different parts of a chip or adjacent chips.
Another exemplary array of resonant elements is shown in
As dimensions (e.g., height and/or length) change, the intensity of the radiation may change as well. Moreover, depending on the dimensions, harmonics (e.g., second and third harmonics) may occur. For post height, length, and width, intensity appears oscillatory in that finding the optimal peak of each mode created the highest output. When operating in the velocity dependent mode (where the finger period depicts the dominant output radiation) the alignment of the geometric modes of the fingers are used to increase the output intensity. However it is seen that there are also radiation components due to geometric mode excitation during this time, but they do not appear to dominate the output. Optimal overall output comes when there is constructive modal alignment in as many axes as possible.
We have also detected that, unlike the general theory on Smith-Purcell radiation, which states that frequency is only dependant on period and electron beam characteristics (such as beam intensity), the frequency of our detected beam changes with the finger length. Thus, as shown in
where λ is the frequency of the resonance, L is the period of the grating, n is a constant, β is related to the speed of the electron beam, and θ is the angle of diffraction of the electron.
Each of the dimensions mentioned above can be any value in the nanostructure range, i.e., 1 nm to 1 μm. Within such parameters, a series of posts can be constructed that output substantial EMR in the infrared, visible and ultraviolet portions of the spectrum and which can be optimized based on alterations of the geometry, electron velocity and density, and metal/layer type. It should also be possible to generate EMR of longer wavelengths as well. Unlike a Smith-Purcell device, the resultant radiation from such a structure is intense enough to be visible to the human eye with only 30 nanoamperes of current.
For the sake of this description, the drawings show the particle beam traveling in both the N and the S directions. Those of skill in the art will immediately understand that the charged particle beam will only travel in one of those directions at any one time.
As shown in
Each row 200R-216B will produce a uniform light output, yet the combination of the plurality of rows, and the plurality of fingers or posts in each row, permits each row to be controlled so that the whole array can be tuned or constructed, by a choice of the parameters mentioned herein and in the above noted co-pending applications, to produce the light or other EMR output desired.
It should also be understood that the present invention is not limited to having three rows of each of three colors, but rather to the concept of having at least a sufficient number of ultra small structures that will produce two different frequencies on the same surface at the same time. Thus, the chip or what ever other substrate is to be used, could have, and the invention contemplates, all possible combinations of ultra small structures whether in individual rows, adjacent rows or non-adjacent rows, as well as all combinations of colors and shadings thereof as are possible to produce, as well as all possible combinations of the production of frequencies in other or mixed spectrums. Further, the surface can have a limited number of ultra small structures that will accomplish that objective including, as well, as many rows and as many ultra small structure as the surface can hold, including individual rows each of which are comprised of a plurality of different ultra small structures.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
The present invention is related to the following co-pending U.S. patent applications: (1) U.S. patent application Ser. No. 11/238,991 [atty. docket 2549-0003], filed Sep. 30, 2005, entitled “Ultra-Small Resonating Charged Particle Beam Modulator”; (2) U.S. patent application Ser. No. 10/917,511 [atty. docket 2549-0002], filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching”; (3) U.S. application Ser. No. 11/203,407 [atty. docket 2549-0040], filed on Aug. 15, 2005, entitled “Method Of Patterning Ultra-Small Structures”; (4) U.S. application Ser. No. 11/243,476 [Atty. Docket 2549-0058], filed on Oct. 5, 2005, entitled “Structures And Methods For Coupling Energy From An Electromagnetic Wave”; (5) U.S. application Ser. No. 11/243,477 [Atty. Docket 2549-0059], filed on Oct. 5, 2005, entitled “Electron beam induced resonance,”, (6) U.S. application Ser. No. 11/325,432 [Atty. Docket 2549-0021], entitled “Resonant Structure-Based Display,” filed on Jan. 5, 2006; (7) U.S. application Ser. No. 11/325,571 [Atty. Docket 2549-0063], entitled “Switching Micro-Resonant Structures By Modulating A Beam Of Charged Particles,” filed on Jan. 5, 2006; (8) U.S. application Ser. No. 11/325,534 [Atty. Docket 2549-0081], entitled “Switching Micro-Resonant Structures Using At Least One Director,” filed on Jan. 5, 2006; (9) U.S. application Ser. No. 11/350,812 [Atty. Docket 2549-0055], entitled “Conductive Polymers for the Electroplating”, filed on Feb. 10, 2006; (10) U.S. application Ser. No. 11/302,471 [Atty. Docket 2549-0056], entitled “Coupled Nano-Resonating Energy Emitting Structures,” filed on Dec. 14, 2005; (11) U.S. application Ser. No. 11/325,448 [Atty. Docket 2549-0060], entitled “Selectable Frequency Light Emitter”, filed on Jan. 5, 2006; and (12) U.S. application Ser. No. ______ [Atty. Docket 2549-0086], entitled “Method For Coupling Out Of A Magnetic Device”, filed on even date herewith, which are all commonly owned with the present application, the entire contents of each of which are incorporated herein by reference.