Single-layer touch-sensitive display

Information

  • Patent Grant
  • 11983371
  • Patent Number
    11,983,371
  • Date Filed
    Wednesday, March 2, 2022
    2 years ago
  • Date Issued
    Tuesday, May 14, 2024
    18 days ago
Abstract
A touch sensor panel having co-planar single-layer touch sensors fabricated on a single side of a substrate is disclosed. The drive and sense lines can be fabricated as column-like patterns in a first orientation and patches in a second orientation, where each column-like pattern in the first orientation is connected to a separate metal trace in the border area of the touch sensor panel, and all patches in each of multiple rows in the second orientation are connected together using a separate metal trace in the border area of the touch sensor panel. The metal traces in the border areas can be formed on the same side of the substrate as the patches and columns, but separated from the patches and column-like patterns by a dielectric layer.
Description
FIELD OF THE INVENTION

This relates generally to input devices for computing systems, and more particularly, to a mutual-capacitance multi-touch sensor panel capable of being fabricated on a single side of a substrate.


BACKGROUND OF THE INVENTION

Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, touch sensor panels, joysticks, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch sensor panel, which can be a clear panel with a touch-sensitive surface. The touch sensor panel can be positioned in front of a display screen so that the touch-sensitive surface covers the viewable area of the display screen. Touch screens can allow a user to make selections and move a cursor by simply touching the display screen via a finger or stylus. In general, the touch screen can recognize the touch and position of the touch on the display screen, and the computing system can interpret the touch and thereafter perform an action based on the touch event.


Touch sensor panels can be implemented as an array of pixels formed by multiple drive lines (e.g. rows) crossing over multiple sense lines (e.g. columns), where the drive and sense lines are separated by a dielectric material. An example of such a touch sensor panel is described in Applicant's co-pending U.S. application Ser. No. 11/650,049 entitled “Double-Sided Touch Sensitive Panel and Flex Circuit Bonding,” filed on Jan. 3, 2007, the contents of which are incorporated by reference herein. However, touch sensor panels having drive and sense lines formed on the bottom and top sides of a single substrate can be expensive to manufacture. One reason for this additional expense is that thin-film processing steps must be performed on both sides of the glass substrate, which requires protective measures for the processed side while the other side is being processed. Another reason is the cost of the flex circuit fabrication and bonding needed to connect to both sides of the substrate.


SUMMARY OF THE INVENTION

This relates to a substantially transparent touch sensor panel having co-planar single-layer touch sensors fabricated on a single side of a substrate for detecting single or multi-touch events (the touching of one or multiple fingers or other objects upon a touch-sensitive surface at distinct locations at about the same time). To avoid having to fabricate substantially transparent drive and sense lines on opposite sides of the same substrate, embodiments of the invention can form the drive and sense lines on a co-planar single layer on the same side of the substrate. The drive and sense lines can be fabricated as column-like patterns in a first orientation and patches in a second orientation, where each column-like pattern in the first orientation is connected to a separate metal trace in the border area of the touch sensor panel, and all patches in each of multiple rows in the second orientation are connected together using a separate metal trace (or other conductive material) in the border area of the touch sensor panel. The metal traces in the border areas can be formed on the same side of the substrate as the patches and columns, but separated from the patches and column-like patterns by a dielectric layer. The metal traces can allow both the patches and column-like patterns to be routed to the same short edge of the substrate so that a small flex circuit can be bonded to a small area on only one side of the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1a illustrates a partial view of an exemplary substantially transparent touch sensor panel having co-planar single-layer touch sensors fabricated on a single side of a substrate according to one embodiment of this invention.



FIG. 1b illustrates a partial view of an exemplary substantially transparent touch sensor panel including metal traces running in the border areas of the touch sensor panel according to one embodiment of this invention.



FIG. 1c illustrates an exemplary connection of columns and row patches to the metal traces in the border area of the touch sensor panel according to one embodiment of this invention.



FIG. 2a illustrates an exemplary cross-section of touch sensor panel showing SITO traces and metal traces connected though a via in a dielectric material according to one embodiment of this invention.



FIG. 2b is a close-up view of the exemplary cross-section shown in FIG. 2a according to one embodiment of this invention.



FIG. 3 illustrates a top view of an exemplary column and adjacent row patches according to one embodiment of this invention.



FIG. 4a is a plot of an x-coordinate of a finger touch versus mutual capacitance seen at a pixel for a two adjacent pixels a-5 and b-5 in a single row having wide spacings.



FIG. 4b is a plot of an x-coordinate of a finger touch versus mutual capacitance seen at a pixel for a two adjacent pixels a-5 and b-5 in a single row having wide spacings where spatial interpolation has been provided according to one embodiment of this invention.



FIG. 4c illustrates a top view of an exemplary column and adjacent row patch pattern useful for larger pixel spacings according to one embodiment of this invention.



FIG. 5 illustrates an exemplary stackup of SITO on a touch sensor panel substrate bonded to a cover glass according to one embodiment of this invention.



FIG. 6 illustrates an exemplary computing system operable with a touch sensor panel according to one embodiment of this invention.



FIG. 7a illustrates an exemplary mobile telephone that can include a touch sensor panel and computing system according to one embodiment of this invention.



FIG. 7b illustrates an exemplary digital audio/video player that can include a touch sensor panel and computing system according to one embodiment of this invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following description of preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific embodiments in which the invention can be practiced. It is to be understood that other embodiments can be used and structural changes can be made without departing from the scope of the embodiments of this invention.


This relates to a substantially transparent touch sensor panel having co-planar single-layer touch sensors fabricated on a single side of a substrate for detecting single or multi-touch events (the touching of one or multiple fingers or other objects upon a touch-sensitive surface at distinct locations at about the same time). To avoid having to fabricate substantially transparent drive and sense lines on opposite sides of the same substrate, embodiments of the invention can form the drive and sense lines on a co-planar single layer on the same side of the substrate. The drive and sense lines can be fabricated as column-like patterns in a first orientation and patches in a second orientation, where each column-like pattern in the first orientation is connected to a separate metal trace in the border area of the touch sensor panel, and all patches in each of multiple rows in the second orientation are connected together using a separate metal trace (or other conductive material) in the border area of the touch sensor panel. The metal traces in the border areas can be formed on the same side of the substrate as the patches and columns, but separated from the patches and column-like patterns by a dielectric layer. The metal traces can allow both the patches and column-like patterns to be routed to the same short edge of the substrate so that a small flex circuit can be bonded to a small area on only one side of the substrate.


Although some embodiments of this invention may be described herein in terms of mutual capacitance multi-touch sensor panels, it should be understood that embodiments of this invention are not so limited, but are additionally applicable to self-capacitance sensor panels and single-touch sensor panels. Furthermore, although the touch sensors in the sensor panel may be described herein in terms of an orthogonal array of touch sensors having rows and columns, embodiments of this invention are not limited to orthogonal arrays, but can be generally applicable to touch sensors arranged in any number of dimensions and orientations, including diagonal, concentric circle, three-dimensional and random orientations.



FIG. 1a illustrates a partial view of exemplary substantially transparent touch sensor panel 100 having co-planar single-layer touch sensors fabricated on a single side of a substrate according to embodiments of the invention. In the example of FIG. 1a, touch sensor panel 100 having eight columns (labeled a through h) and six rows (labeled 1 through 6) is shown, although it should be understood that any number of columns and rows can be employed. Columns a through h can generally be columnar in shape, although in the example of FIG. 1a, one side of each column includes staggered edges and notches designed to create separate sections in each column. Each of rows 1 through 6 can be formed from a plurality of distinct patches or pads, each patch including a trace of the same material as the patch and routed to the border area of touch sensor panel 100 for enabling all patches in a particular row to be connected together through metal traces (not shown in FIG. 1a) running in the border areas. These metal traces can be routed to a small area on one side of touch sensor panel 100 and connected to a flex circuit 102. As shown in the example of FIG. 1a, the patches forming the rows can be arranged in a generally pyramid-shaped configuration. In FIG. 1a, for example, the patches for rows 1-3 between columns a and b are arranged in an inverted pyramid configuration, while the patches for rows 4-6 between columns a and b are arranged in an upright pyramid configuration.


The columns and patches of FIG. 1a can be formed in a co-planar single layer of conductive material. In touch screen embodiments, the conductive material can be a substantially transparent material such as Single-layer Indium Tin Oxide (SITO), although other materials can also be used. The SITO layer can be formed either on the back of a coverglass or on the top of a separate substrate. Although SITO may be referred to herein for purposes of simplifying the disclosure, it should be understood that other conductive materials can also be used according to embodiments of the invention.



FIG. 1b illustrates a partial view of exemplary substantially transparent touch sensor panel 100 including metal traces 104 and 106 running in the border areas of the touch sensor panel according to embodiments of the invention. Note that the border areas in FIG. 1b are enlarged for clarity. Each column a-h can include SITO trace 108 that allows the column to be connected to a metal trace through a via (not shown in FIG. 1b). One side of each column includes staggered edges 114 and notches 116 designed to create separate sections in each column. Each row patch 1-6 can include SITO trace 110 that allows the patch to be connected to a metal trace through a via (not shown in FIG. 1b). SITO traces 110 can allow each patch in a particular row to be self-connected to each other. Because all metal traces 104 and 106 are formed on the same layer, they can all be routed to the same flex circuit 102.


If touch sensor panel 100 is operated as a mutual capacitance touch sensor panel, either the columns a-h or the rows 1-6 can be driven with one or more stimulation signals, and fringing electric field lines can form between adjacent column areas and row patches. In FIG. 1b, it should be understood that although only electric field lines 112 between column a and row patch 1 (a-1) are shown for purposes of illustration, electric field lines can be formed between other adjacent column and row patches (e.g. a-2, b-4, g-5, etc.) depending on what columns or rows are being stimulated. Thus, it should be understood that each column-row patch pair (e.g. a-1, a-2, b-4, g-5, etc.) can represent a two-electrode pixel or sensor at which charge can be coupled onto the sense electrode from the drive electrode. When a finger touches down over one of these pixels, some of the fringing electric field lines that extend beyond the cover of the touch sensor panel are blocked by the finger, reducing the amount of charge coupled onto the sense electrode. This reduction in the amount of coupled charge can be detected as part of determining a resultant “image” of touch. It should be noted that in mutual capacitance touch sensor panel designs as shown in FIG. 1b, no separate reference ground is needed, so no second layer on the back side of the substrate, or on a separate substrate, is needed.


Touch sensor panel 100 can also be operated as a self-capacitance touch sensor panel. In such an embodiment, a reference ground plane can be formed on the back side of the substrate, on the same side as the patches and columns but separated from the patches and columns by a dielectric, or on a separate substrate. In a self-capacitance touch sensor panel, each pixel or sensor has a self-capacitance to the reference ground that can be changed due to the presence of a finger. In self-capacitance embodiments, the self-capacitance of columns a-h can be sensed independently, and the self-capacitance of rows 1-6 can also be sensed independently.



FIG. 1c illustrates an exemplary connection of columns and row patches to the metal traces in the border area of the touch sensor panel according to embodiments of the invention. FIG. 1c represents “Detail A” as shown in FIG. 1b, and shows column “a” and row patches 4-6 connected to metal traces 118 through SITO traces 108 and 110. Because SITO traces 108 and 110 are separated from metal traces 118 by a dielectric material, vias 120 formed in the dielectric material allow the SITO traces to connect to the metal traces.



FIG. 2a illustrates an exemplary cross-section of touch sensor panel 200 showing SITO trace 208 and metal traces 218 connected though via 220 in dielectric material 222 according to embodiments of the invention. FIG. 2a represents view B-B as shown in FIG. 1c.



FIG. 2b is a close-up view of the exemplary cross-section shown in FIG. 2a according to embodiments of the invention. FIG. 2b shows one exemplary embodiment wherein SITO trace 208 has a resistivity of about 155 ohms per square max. In one embodiment, dielectric 222 can be about 1500 angstroms of inorganic SiO2, which can be processed at a higher temperature and therefore allows the SITO layer to be sputtered with higher quality. In another embodiment, dielectric 222 can be about 3.0 microns of organic polymer. The 1500 angstroms of inorganic SiO2 can be used for touch sensor panels small enough such that the crossover capacitance (between SITO trace 208 and metal traces 218) is not an issue.


For larger touch sensor panels (having a diagonal dimension of about 3.5″ or greater), crossover capacitance can be an issue, creating an error signal that can only partially be compensated. Thus, for larger touch sensor panels, a thicker dielectric layer 222 with a lower dielectric constant such as about 3.0 microns of organic polymer can be used to lower the crossover capacitance. However, use of a thicker dielectric layer can force the SITO layer to be sputtered at a lower temperature, resulting in lower optical quality and higher resistivity.


Referring again to the example of FIG. 1c, column edges 114 and row patches 4-6 can be staggered in the x-dimension because space must be made for SITO traces 110 connecting row patches 4 and 5. (It should be understood that row patch 4 in the example of FIG. 1c is really two patches stuck together.) To gain optimal touch sensitivity, it can be desirable to balance the area of the electrodes in pixels a-6, a-5 and a-4. However, if column “a” was kept linear, row patch 6 can be slimmer than row patch 5 or 6, and an imbalance would be created between the electrodes of pixel a-6.



FIG. 3 illustrates a top view of an exemplary column and adjacent row patches according to embodiments of the invention. It can be generally desirable to make the mutual capacitance characteristics of pixels a-4, a-5 and a-6 relatively constant to produce a relatively uniform z-direction touch sensitivity that stays within the range of touch sensing circuitry. Accordingly, the column areas a4, a5 and a6 should be about the same as row patch areas 4, 5 and 6. To accomplish this, column section a4 and a5, and row patch 4 and 5 can be shrunk in the y-direction as compared to column section a6 and row patch 6 so that the area of column segment a4 matches the area of column segments a5 and a6. In other words, pixel a4-4 will be wider but shorter than pixel a6-6, which will be narrower but taller.


It should be evident from the previously mentioned figures that raw spatial sensitivity can be somewhat distorted. In other words, because the pixels or sensors can be slightly skewed or misaligned in the x-direction, the x-coordinate of a maximized touch event on pixel a-6 (e.g. a finger placed down directly over pixel a-6) can be slightly different from the x-coordinate of a maximized touch event on pixel a-4, for example. Accordingly, in embodiments of the invention this misalignment can be de-warped in a software algorithm to re-map the pixels and remove the distortion.


Although a typical touch panel grid dimension can have pixels arranged on 5.0 mm centers, a more spread-out grid having about 6.0 mm centers, for example, can be desirable to reduce the overall number of electrical connections in the touch sensor panel. However, spreading out the sensor pattern can cause erroneous touch readings.



FIG. 4a is a plot of an x-coordinate of a finger touch versus mutual capacitance seen at a pixel for a two adjacent pixels a-5 and b-5 in a single row having wide spacings. In FIG. 4a, plot 400 represents the mutual capacitance seen at pixel a-5 as the finger touch moves continuously from left to right, and plot 402 represents the mutual capacitance seen at pixel b-5 as the finger touch moves continuously from left to right. As expected, a drop in the mutual capacitance 404 is seen at pixel a-5 when the finger touch passes directly over pixel a-5, and a similar drop in the mutual capacitance 406 is seen at pixel b-5 when the finger touch passes directly over pixel b-5. If line 408 represents a threshold for detecting a touch event, FIG. 4a illustrates that even though the finger is never lifted from the surface of the touch sensor panel, it can erroneously appear at 410 that the finger has momentarily lifted off the surface. This location 410 can represent a point about halfway between the two spread-out pixels.



FIG. 4b is a plot of an x-coordinate of a finger touch versus mutual capacitance seen at a pixel for a two adjacent pixels a-5 and b-5 in a single row having wide spacings where spatial interpolation has been provided according to embodiments of the invention. As expected, a drop in the mutual capacitance 404 is seen at pixel a-5 when the finger touch passes directly over pixel a-5, and a similar drop in the mutual capacitance 406 is seen at pixel b-5 when the finger touch passes directly over pixel b-5. Note, however, that the rise and fall in the mutual capacitance value occurs more gradually than in FIG. 4a. If line 408 represents a threshold for detecting a touch event, FIG. 4b illustrates that as the finger moves from left to right over pixel a-5 and b-5, a touch event is always detected at either pixel a-5 or b-5. In other words, this “blurring” of touch events is helpful to prevent the appearance of false no-touch readings.


In one embodiment of the invention, the thickness of the coverglass for the touch sensor panel can be increased to create part or all of the spatial blurring or filtering shown in FIG. 4b.



FIG. 4c illustrates a top view of an exemplary column and adjacent row patch pattern useful for larger pixel spacings according to embodiments of the invention. FIG. 4c illustrates an exemplary embodiment in which sawtooth electrode edges 412 are employed within a pixel elongated in the x-direction. The sawtooth electrode edges can allow fringing electric field lines 414 to be present over a larger area in the x-direction so that a touch event can be detected by the same pixel over a larger distance in the x-direction. It should be understood that the sawtooth configuration of FIG. 4c is only exemplary, and that other configurations such serpentine edges and the like can also be used. These configurations can further soften the touch patterns and create additional spatial filtering and interpolation between adjacent pixels as shown in FIG. 4b.



FIG. 5 illustrates an exemplary stackup of SITO on a touch sensor panel substrate bonded to a cover glass according to embodiments of the invention. The stackup can include touch sensor panel substrate 500, which can be formed from glass, upon which anti-reflective (AR) film 510 can be formed on one side and metal 502 can be deposited and patterned on the other side to form the bus lines in the border areas. Metal 502 can have a resistivity of 0.8 ohms per square maximum. Insulating layer 504 can then be deposited over substrate 500 and metal 502. Insulating layer can be, for example, SiO2 with a thickness of 1500 angstroms, or 3 microns of organic polymer. Photolithography can be used to form vias 506 in insulator 504, and conductive material 508 can then deposited and patterned on top of the insulator and metal 502. The single layer of conductive material 508, which can be formed from transparent conductive material such as ITO having a resistivity of 155 ohms per square maximum, can be more transparent than multi-layer designs, and can be easier to manufacture. Flex circuit 512 can be bonded to conductive material 508 and metal 502 using adhesive 514 such as anisotropic conductive film (ACF). The entire subassembly can then be bonded to cover glass 516 and blackmask 520 using adhesive 518 such as pressure sensitive adhesive (PSA).


In an alternative embodiment, the metal, insulator, conductive material as described above can be formed directly on the back side of the cover glass.



FIG. 6 illustrates exemplary computing system 600 operable with the touch sensor panel described above according to embodiments of this invention. Touchscreen 642, which can include touch sensor panel 624 and display device 640 (e.g. an LCD module), can be connected to other components in computing system 600 through connectors integrally formed on the sensor panel, or using flex circuits. Computing system 600 can include one or more panel processors 602 and peripherals 604, and panel subsystem 606. The one or more processors 602 can include, for example, ARM968 processors or other processors with similar functionality and capabilities. However, in other embodiments, the panel processor functionality can be implemented instead by dedicated logic such as a state machine. Peripherals 604 can include, but are not limited to, random access memory (RAM) or other types of memory or storage, watchdog timers and the like.


Panel subsystem 606 can include, but is not limited to, one or more analog channels 608, channel scan logic 610 and driver logic 614. Channel scan logic 610 can access RAM 612, autonomously read data from the analog channels and provide control for the analog channels. This control can include multiplexing or otherwise connecting the sense lines of touch sensor panel 624 to analog channels 608. In addition, channel scan logic 610 can control the driver logic and stimulation signals being selectively applied to the drive lines of touch sensor panel 624. In some embodiments, panel subsystem 606, panel processor 602 and peripherals 604 can be integrated into a single application specific integrated circuit (ASIC).


Driver logic 614 can provide multiple panel subsystem outputs 616 and can present a proprietary interface that drives high voltage driver 618. High voltage driver 618 can provide level shifting from a low voltage level (e.g. complementary metal oxide semiconductor (CMOS) levels) to a higher voltage level, providing a better signal-to-noise (S/N) ratio for noise reduction purposes. Panel subsystem outputs 616 can be sent to decoder 620 and level shifter/driver 638, which can selectively connect one or more high voltage driver outputs to one or more panel row or drive line inputs 622 through a proprietary interface and enable the use of fewer high voltage driver circuits in the high voltage driver 618. Each panel row input 622 can drive one or more drive lines in touch sensor panel 624. In some embodiments, high voltage driver 618 and decoder 620 can be integrated into a single ASIC. However, in other embodiments high voltage driver 618 and decoder 620 can be integrated into driver logic 614, and in still other embodiments high voltage driver 618 and decoder 620 can be eliminated entirely.


Computing system 600 can also include host processor 628 for receiving outputs from panel processor 602 and performing actions based on the outputs that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device connected to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 628 can also perform additional functions that may not be related to panel processing, and can be coupled to program storage 632 and display device 640 such as an LCD for providing a user interface (UI) to a user of the device.


The touch sensor panel described above can be advantageously used in the system of FIG. 6 to provide a space-efficient touch sensor panel and UI that is lower cost, more manufacturable, and fits into existing mechanical control outlines (the same physical envelope).



FIG. 7a illustrates exemplary mobile telephone 736 that can include touch sensor panel 724 and display device 730 stackups (optionally bonded together using PSA 734) and computing system described above according to embodiments of the invention. FIG. 7b illustrates exemplary digital audio/video player 740 that can include touch sensor panel 724 and display device 730 stackups (optionally bonded together using PSA 734) and computing system described above according to embodiments of the invention. The mobile telephone and digital audio/video player of FIGS. 7a and 7b can advantageously benefit from the touch sensor panel described above because the touch sensor panel can enable these devices to be smaller and less expensive, which are important consumer factors that can have a significant effect on consumer desirability and commercial success.


Although embodiments of this invention have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of embodiments of this invention as defined by the appended claims.

Claims
  • 1. A touch sensor panel, comprising: a plurality of columns of a conductive material formed on a single layer and supported on one side of a substrate; anda plurality of patches of the conductive material supported on the same side of the substrate as the plurality of columns, the plurality of patches formed on the same layer as the plurality of columns adjacent to the plurality of columns and arranged in a plurality of rows, all patches in a particular row connected together using connecting traces formed on the same layer as the plurality of columns and patches and connected to one of a plurality of conductive traces in a border area of the substrate;wherein at least one connecting trace is formed at least partially within a viewable area of the touch sensor panel and forms a direct connection between a single patch and one of the plurality of conductive traces in the border area; andwherein each of the plurality of patches and each of the plurality of columns form at least a portion of a capacitive sensor.
  • 2. The touch sensor panel of claim 1, wherein each patch together with a section of a column adjacent to that patch form a mutual capacitance sensor.
  • 3. The touch sensor panel of claim 1, wherein each of the plurality of patches arranged in a row together form a self-capacitance sensor, and each of the plurality of columns forms another self-capacitance sensor.
  • 4. The touch sensor panel of claim 1, wherein the plurality of conductive traces in the border area of the substrate are configured for providing a connection to each patch in the particular row and for providing a connection to each column.
  • 5. The touch sensor panel of claim 4, wherein the plurality of conductive traces are formed on the substrate, and the plurality of columns and patches are formed over the plurality of conductive traces but separated by a dielectric material.
  • 6. The touch sensor panel of claim 5, further comprising vias formed in the dielectric material for providing the connections between the columns and conductive traces and the patches and the conductive traces.
  • 7. The touch sensor panel of claim 1, wherein the plurality of conductive traces are routed to a single side of the substrate for connecting to a flex circuit.
  • 8. The touch sensor panel of claim 1, wherein each patch and each section of the adjacent column have about the same surface area.
  • 9. The touch sensor panel of claim 1, each sensor elongated in an x-direction to create spatial blurring.
  • 10. The touch sensor panel of claim 1, the touch sensor panel integrated into a computing system.
  • 11. A method of implementing a touch sensor panel, comprising: arranging a plurality of columns of a conductive material on a single layer on one side of a substrate;arranging a plurality of patches of the conductive material on the same side of the substrate as the plurality of columns and on the same layer as the plurality of columns adjacent to the plurality of columns in a plurality of rows;electrically coupling all patches in a particular row together using connecting traces arranged on the same layer as the plurality of columns and patches and one of a plurality of conductive traces arranged in a border area of the substrate, wherein at least one connecting trace is formed at least partially within a viewable area of the touch sensor panel and forms a direct connection between a single patch and one of the plurality of conductive traces in the border area; andutilizing each of the plurality of patches and each of the plurality of columns as at least a portion of a capacitive sensor.
  • 12. The method of claim 11, further comprising utilizing each patch together with a section of a column adjacent to that patch as a mutual capacitance sensor.
  • 13. The method of claim 11, further comprising utilizing each of the plurality of patches arranged in a row as a self-capacitance sensor, and utilizing each of the plurality of columns as another self-capacitance sensor.
  • 14. The method of claim 11, further comprising providing a connection to each patch in the particular row and providing a connection to each column using the plurality of conductive traces.
  • 15. The method of claim 14, further comprising layering the plurality of columns and patches over the plurality of conductive traces while separated by a dielectric material.
  • 16. The method of claim 15, further comprising implementing vias in the dielectric material for providing the connections between the columns and conductive traces and the patches and the conductive traces.
  • 17. The method of claim 14, further comprising routing the plurality of conductive traces to a single side of the substrate for connecting to a flex circuit.
  • 18. The method of claim 11, further comprising arranging each patch and each section of the adjacent column to have about the same surface area.
  • 19. The method of claim 11, further comprising elongating each sensor in an x-direction to create spatial blurring.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 16/447,811, filed Jun. 20, 2019 and published on Oct. 3, 2019 as U.S. Publication No. 2019/0302932, which is a Continuation of U.S. patent application Ser. No. 15/090,555, filed Apr. 4, 2016 and issued on Jun. 25, 2019 as U.S. Pat. No. 10,331,278, which is a Continuation of U.S. patent application Ser. No. 14/157,737, filed Jan. 17, 2014 and issued on Apr. 19, 2016 as U.S. Pat. No. 9,317,165, which is a Continuation of U.S. patent application Ser. No. 12/038,760 filed Feb. 27, 2008 and issued on Jan. 21, 2014 as U.S. Pat. No. 8,633,915, which claims the benefit under 35 USC 119(e) of U.S. Patent Application No. 60/977,621, filed Oct. 4, 2007, the contents of which are incorporated herein by reference in their entirety for all purposes.

US Referenced Citations (275)
Number Name Date Kind
4087625 Dym et al. May 1978 A
4090092 Serrano May 1978 A
4304976 Gottbreht et al. Dec 1981 A
4475235 Graham Oct 1984 A
4550221 Mabusth Oct 1985 A
4659874 Landmeier Apr 1987 A
5194862 Edwards Mar 1993 A
5317919 Awtrey Jun 1994 A
5459463 Gruaz et al. Oct 1995 A
5483261 Yasutake Jan 1996 A
5488204 Mead et al. Jan 1996 A
5543590 Gillespie et al. Aug 1996 A
5825352 Bisset et al. Oct 1998 A
5835079 Shieh Nov 1998 A
5841078 Miller et al. Nov 1998 A
5844506 Binstead Dec 1998 A
5880411 Gillespie et al. Mar 1999 A
5914465 Allen et al. Jun 1999 A
5973623 Gupta et al. Oct 1999 A
6057903 Colgan et al. May 2000 A
6137427 Binstead Oct 2000 A
6163313 Aroyan et al. Dec 2000 A
6188391 Seely et al. Feb 2001 B1
6288707 Philipp Sep 2001 B1
6310610 Beaton et al. Oct 2001 B1
6323846 Westerman et al. Nov 2001 B1
6452514 Philipp Sep 2002 B1
6456952 Nathan Sep 2002 B1
6690387 Zimmerman et al. Feb 2004 B2
6690569 Mayer et al. Feb 2004 B1
6730863 Gerpheide et al. May 2004 B1
6970160 Mulligan et al. Nov 2005 B2
7015894 Morohoshi Mar 2006 B2
7030860 Hsu et al. Apr 2006 B1
7129935 Mackey Oct 2006 B2
7138686 Banerjee et al. Nov 2006 B1
7184064 Zimmerman et al. Feb 2007 B2
7337085 Soss Feb 2008 B2
7538760 Hotelling et al. May 2009 B2
7548073 Mackey et al. Jun 2009 B2
7580030 Marten Aug 2009 B2
7639234 Orsley Dec 2009 B2
7663607 Hotelling et al. Feb 2010 B2
7701539 Shih et al. Apr 2010 B2
7719523 Hillis May 2010 B2
7907126 Yoon et al. Mar 2011 B2
7932898 Philipp Apr 2011 B2
8026904 Westerman Sep 2011 B2
8040326 Hotelling et al. Oct 2011 B2
8045783 Lee et al. Oct 2011 B2
8120371 Day et al. Feb 2012 B2
8125312 Orr Feb 2012 B2
8223133 Hristov Jul 2012 B2
8258986 Makovetskyy Sep 2012 B2
8259078 Hotelling et al. Sep 2012 B2
8283935 Liu et al. Oct 2012 B2
8319747 Hotelling et al. Nov 2012 B2
8339286 Cordeiro Dec 2012 B2
8441464 Lin et al. May 2013 B1
8479122 Hotelling et al. Jul 2013 B2
8484838 Badaye et al. Jul 2013 B2
8487898 Hotelling Jul 2013 B2
8542208 Krah et al. Sep 2013 B2
8576193 Hotelling Nov 2013 B2
8593410 Hong et al. Nov 2013 B2
8593425 Hong et al. Nov 2013 B2
8614688 Chang Dec 2013 B2
8633915 Hotelling Jan 2014 B2
8680877 Lee et al. Mar 2014 B2
8760412 Hotelling et al. Jun 2014 B2
8810543 Kurikawa Aug 2014 B1
8922521 Hotelling et al. Dec 2014 B2
8957874 Elias Feb 2015 B2
8982096 Hong et al. Mar 2015 B2
9075463 Pyo et al. Jul 2015 B2
9086774 Hotelling et al. Jul 2015 B2
9280251 Shih Mar 2016 B2
9317165 Hotelling Apr 2016 B2
9448677 Beilker Sep 2016 B2
10001888 Hong et al. Jun 2018 B2
10331278 Hotelling Jun 2019 B2
10534481 Badaye et al. Jan 2020 B2
11269467 Hotelling Mar 2022 B2
20030076325 Thrasher Apr 2003 A1
20030164820 Kent Sep 2003 A1
20030210235 Roberts Nov 2003 A1
20040017362 Mulligan et al. Jan 2004 A1
20040090429 Geaghan et al. May 2004 A1
20040119701 Mulligan et al. Jun 2004 A1
20040125087 Taylor et al. Jul 2004 A1
20040188151 Gerpheide et al. Sep 2004 A1
20040239650 Mackey Dec 2004 A1
20050012724 Kent Jan 2005 A1
20050069718 Voss-kehl et al. Mar 2005 A1
20050073507 Richter et al. Apr 2005 A1
20050083307 Aufderheide et al. Apr 2005 A1
20050126831 Richter et al. Jun 2005 A1
20050146509 Geaghan et al. Jul 2005 A1
20050270039 Mackey Dec 2005 A1
20050270273 Marten Dec 2005 A1
20050280639 Taylor et al. Dec 2005 A1
20060001640 Lee Jan 2006 A1
20060017710 Lee et al. Jan 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060038791 Mackey Feb 2006 A1
20060097991 Hotelling May 2006 A1
20060132463 Lee et al. Jun 2006 A1
20060146484 Kim et al. Jul 2006 A1
20060197753 Hotelling Sep 2006 A1
20060202969 Hauck Sep 2006 A1
20060238522 Westerman et al. Oct 2006 A1
20060267953 Peterson et al. Nov 2006 A1
20060278444 Binstead Dec 2006 A1
20060279548 Geaghan Dec 2006 A1
20060293864 Soss Dec 2006 A1
20070008299 Hristov Jan 2007 A1
20070023523 Onishi Feb 2007 A1
20070074914 Geaghan et al. Apr 2007 A1
20070075982 Morrison et al. Apr 2007 A1
20070229468 Peng et al. Oct 2007 A1
20070229470 Snyder et al. Oct 2007 A1
20070247443 Philipp Oct 2007 A1
20070262963 Xiao-ping et al. Nov 2007 A1
20070268273 Westerman et al. Nov 2007 A1
20070268275 Westerman et al. Nov 2007 A1
20070279395 Philipp et al. Dec 2007 A1
20070283832 Hotelling Dec 2007 A1
20070285365 Lee Dec 2007 A1
20080006454 Hotelling Jan 2008 A1
20080018581 Park et al. Jan 2008 A1
20080024456 Peng et al. Jan 2008 A1
20080036742 Garmon Feb 2008 A1
20080042986 Westerman et al. Feb 2008 A1
20080042987 Westerman et al. Feb 2008 A1
20080047764 Lee et al. Feb 2008 A1
20080062139 Hotelling et al. Mar 2008 A1
20080062140 Hotelling et al. Mar 2008 A1
20080062148 Hotelling et al. Mar 2008 A1
20080062151 Kent Mar 2008 A1
20080074398 Wright Mar 2008 A1
20080136787 Yeh et al. Jun 2008 A1
20080136792 Peng et al. Jun 2008 A1
20080158146 Westerman Jul 2008 A1
20080158167 Hotelling et al. Jul 2008 A1
20080158172 Hotelling et al. Jul 2008 A1
20080158174 Land et al. Jul 2008 A1
20080158181 Hamblin et al. Jul 2008 A1
20080158182 Westerman Jul 2008 A1
20080158185 Westerman Jul 2008 A1
20080162996 Krah et al. Jul 2008 A1
20080188267 Sagong Aug 2008 A1
20080224962 Kasai et al. Sep 2008 A1
20080238871 Tam Oct 2008 A1
20080252608 Geaghan Oct 2008 A1
20080264699 Chang et al. Oct 2008 A1
20080277259 Chang Nov 2008 A1
20080283175 Hagood et al. Nov 2008 A1
20080303022 Tai et al. Dec 2008 A1
20080303964 Lee et al. Dec 2008 A1
20080309626 Westerman et al. Dec 2008 A1
20080309627 Hotelling et al. Dec 2008 A1
20080309632 Westerman et al. Dec 2008 A1
20080309633 Hotelling et al. Dec 2008 A1
20080309635 Matsuo Dec 2008 A1
20090002337 Chang Jan 2009 A1
20090019344 Yoon et al. Jan 2009 A1
20090020343 Rothkopf et al. Jan 2009 A1
20090054107 Feland et al. Feb 2009 A1
20090073138 Lee et al. Mar 2009 A1
20090085894 Gandhi et al. Apr 2009 A1
20090091551 Hotelling et al. Apr 2009 A1
20090114456 Wisniewski May 2009 A1
20090128516 Rimon et al. May 2009 A1
20090135157 Harley May 2009 A1
20090160787 Westerman et al. Jun 2009 A1
20090174676 Westerman Jul 2009 A1
20090174688 Westerman Jul 2009 A1
20090182189 Lira Jul 2009 A1
20090184937 Grivna Jul 2009 A1
20090194344 Harley et al. Aug 2009 A1
20090205879 Halsey et al. Aug 2009 A1
20090236151 Yeh et al. Sep 2009 A1
20090242283 Chiu Oct 2009 A1
20090251427 Hung et al. Oct 2009 A1
20090267902 Nambu et al. Oct 2009 A1
20090267916 Hotelling Oct 2009 A1
20090273577 Chen et al. Nov 2009 A1
20090303189 Grunthaner et al. Dec 2009 A1
20090309850 Yang Dec 2009 A1
20090314621 Hotelling Dec 2009 A1
20090315854 Matsuo Dec 2009 A1
20090322702 Chien et al. Dec 2009 A1
20100001973 Hotelling et al. Jan 2010 A1
20100006350 Elias Jan 2010 A1
20100007616 Jang Jan 2010 A1
20100059294 Elias et al. Mar 2010 A1
20100079384 Grivna Apr 2010 A1
20100079401 Staton Apr 2010 A1
20100110035 Selker May 2010 A1
20100117985 Wadia May 2010 A1
20100143848 Jain et al. Jun 2010 A1
20100149108 Hotelling et al. Jun 2010 A1
20100194696 Chang et al. Aug 2010 A1
20100253638 Yousefpor et al. Oct 2010 A1
20100328228 Elias Dec 2010 A1
20100328248 Mozdzyn Dec 2010 A1
20110007020 Hong et al. Jan 2011 A1
20110025635 Lee Feb 2011 A1
20110096016 Yilmaz Apr 2011 A1
20110134050 Harley Jun 2011 A1
20110175846 Wang et al. Jul 2011 A1
20110199105 Otagaki et al. Aug 2011 A1
20110227874 Fahraeus et al. Sep 2011 A1
20110241907 Cordeiro Oct 2011 A1
20110248949 Chang et al. Oct 2011 A1
20110261005 Joharapurkar et al. Oct 2011 A1
20110261007 Joharapurkar et al. Oct 2011 A1
20110282606 Ahed et al. Nov 2011 A1
20110298727 Yousefpor et al. Dec 2011 A1
20110310064 Keski-jaskari et al. Dec 2011 A1
20120026099 Harley Feb 2012 A1
20120044199 Karpin et al. Feb 2012 A1
20120092288 Wadia Apr 2012 A1
20120113047 Hanauer et al. May 2012 A1
20120146726 Huang et al. Jun 2012 A1
20120154324 Wright et al. Jun 2012 A1
20120169652 Chang Jul 2012 A1
20120169653 Chang Jul 2012 A1
20120169655 Chang Jul 2012 A1
20120169656 Chang Jul 2012 A1
20120182251 Krah Jul 2012 A1
20120249446 Chen et al. Oct 2012 A1
20130057511 Shepelev et al. Mar 2013 A1
20130069911 You Mar 2013 A1
20130076648 Krah et al. Mar 2013 A1
20130100038 Yilmaz et al. Apr 2013 A1
20130120303 Hong et al. May 2013 A1
20130215049 Lee Aug 2013 A1
20130224370 Cok et al. Aug 2013 A1
20130257798 Tamura et al. Oct 2013 A1
20130271427 Benbasat et al. Oct 2013 A1
20130278525 Lim et al. Oct 2013 A1
20130307821 Kogo Nov 2013 A1
20130342479 Pyo et al. Dec 2013 A1
20140009438 Liu et al. Jan 2014 A1
20140022186 Hong et al. Jan 2014 A1
20140043546 Yamazaki et al. Feb 2014 A1
20140078096 Tan et al. Mar 2014 A1
20140098051 Hong et al. Apr 2014 A1
20140111707 Song et al. Apr 2014 A1
20140132560 Huang et al. May 2014 A1
20140132860 Hotelling et al. May 2014 A1
20140160376 Wang et al. Jun 2014 A1
20140192027 Ksondzyk et al. Jul 2014 A1
20140204043 Lin et al. Jul 2014 A1
20140210784 Gourevitch et al. Jul 2014 A1
20140267070 Shahparnia et al. Sep 2014 A1
20140267128 Bulea et al. Sep 2014 A1
20140347574 Tung et al. Nov 2014 A1
20140354301 Trend Dec 2014 A1
20140362034 Mo et al. Dec 2014 A1
20140368436 Abzarian et al. Dec 2014 A1
20140375603 Hotelling et al. Dec 2014 A1
20150077375 Hotelling et al. Mar 2015 A1
20150123939 Kim et al. May 2015 A1
20150227240 Hong et al. Aug 2015 A1
20150242028 Roberts et al. Aug 2015 A1
20150378465 Shih et al. Dec 2015 A1
20160011702 Shih Jan 2016 A1
20160195954 Wang et al. Jul 2016 A1
20160216808 Hotelling et al. Jul 2016 A1
20160283023 Shin et al. Sep 2016 A1
20170060318 Gu et al. Mar 2017 A1
20170090622 Badaye et al. Mar 2017 A1
20190302932 Hotelling et al. Oct 2019 A1
Foreign Referenced Citations (96)
Number Date Country
1246638 Mar 2000 CN
1527274 Sep 2004 CN
1672119 Sep 2005 CN
1689677 Nov 2005 CN
1711520 Dec 2005 CN
1782837 Jun 2006 CN
1818842 Aug 2006 CN
1864124 Nov 2006 CN
1945516 Apr 2007 CN
101046720 Oct 2007 CN
101071354 Nov 2007 CN
101419516 Apr 2009 CN
103294321 Sep 2013 CN
103365500 Oct 2013 CN
112008001245 Mar 2010 DE
102011089693 Jun 2013 DE
0853230 Jul 1998 EP
1192585 Apr 2002 EP
1573706 Sep 2005 EP
1573706 Sep 2005 EP
1192585 Dec 2005 EP
1644918 Apr 2006 EP
1717677 Nov 2006 EP
1455264 Mar 2007 EP
1717677 Jan 2008 EP
1918803 May 2008 EP
1986084 Oct 2008 EP
2077489 Jul 2009 EP
2256606 Dec 2010 EP
1546317 May 1979 GB
2144146 Feb 1985 GB
2428306 Jan 2007 GB
2437827 Nov 2007 GB
2450207 Dec 2008 GB
2000-163031 Jun 2000 JP
3134925 Feb 2001 JP
2002-342033 Nov 2002 JP
2004-503835 Feb 2004 JP
2005-030901 Feb 2005 JP
2005-084128 Mar 2005 JP
2005-301373 Oct 2005 JP
2006-500642 Jan 2006 JP
2007-18226 Jan 2007 JP
2007-018515 Jan 2007 JP
2007-152487 Jun 2007 JP
2007-200177 Aug 2007 JP
3134925 Aug 2007 JP
2007-533044 Nov 2007 JP
2008-510251 Apr 2008 JP
2010-528186 Aug 2010 JP
200715015 Apr 2007 TW
200826032 Jun 2008 TW
200835294 Aug 2008 TW
M341273 Sep 2008 TW
M344522 Nov 2008 TW
M344544 Nov 2008 TW
199935633 Jul 1999 WO
1999935633 Sep 1999 WO
200197204 Dec 2001 WO
2002080637 Oct 2002 WO
2005114369 Dec 2005 WO
2005114369 Jan 2006 WO
2006020305 Feb 2006 WO
2006023147 Mar 2006 WO
2006023147 May 2006 WO
2006104745 Oct 2006 WO
2006130584 Dec 2006 WO
2007008518 Jan 2007 WO
2007012899 Feb 2007 WO
2007034591 Mar 2007 WO
2006020305 May 2007 WO
2006104745 May 2007 WO
2006130584 May 2007 WO
2007054018 May 2007 WO
2007066488 Jun 2007 WO
2007089766 Aug 2007 WO
2007115032 Oct 2007 WO
2007146785 Dec 2007 WO
2008007118 Jan 2008 WO
2008047990 Apr 2008 WO
2007146785 May 2008 WO
2008076237 Jun 2008 WO
2008007118 Aug 2008 WO
2008076237 Aug 2008 WO
2007089766 Sep 2008 WO
2008108514 Sep 2008 WO
2008135713 Nov 2008 WO
2009046363 Apr 2009 WO
2009103946 Aug 2009 WO
2009132146 Oct 2009 WO
2009132150 Oct 2009 WO
2010088659 Aug 2010 WO
2010117882 Oct 2010 WO
2014105942 Jul 2014 WO
2015178920 Nov 2015 WO
2017058413 Apr 2017 WO
Non-Patent Literature Citations (69)
Entry
Advisory Action received for U.S. Appl. No. 12/110,024, dated Mar. 14, 2013, 3 pages.
Advisory Action received for U.S. Appl. No. 12/333,250, dated Mar. 27, 2012, 3 pages.
Advisory Action received for U.S. Appl. No. 12/500,911, dated May 17, 2013, 3 pages.
Advisory Action received for U.S. Appl. No. 14/645,120, dated Nov. 25, 2016, 3 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 12/333,250, dated Oct. 16, 2012, 5 pages.
Final Office Action received for U.S. Appl. No. 12/038,760, dated Jul. 23, 2013, 20 pages.
Final Office Action received for U.S. Appl. No. 12/038,760, dated Jun. 8, 2011, 21 pages.
Final Office Action received for U.S. Appl. No. 12/110,024, dated Dec. 24, 2012, 21 pages.
Final Office Action received for U.S. Appl. No. 12/110,024, dated Jan. 19, 2012, 12 pages.
Final Office Action received for U.S. Appl. No. 12/110,075, dated Aug. 31, 2012, 15 pages.
Final Office Action received for U.S. Appl. No. 12/333,250, dated Dec. 15, 2011, 13 pages.
Final Office Action received for U.S. Appl. No. 12/500,911, dated Feb. 5, 2013, 16 pages.
Final Office Action received for U.S. Appl. No. 14/157,737, dated Aug. 31, 2015, 28 pages.
Final Office Action received for U.S. Appl. No. 14/645,120, dated Aug. 10, 2017, 13 pages.
Final Office Action received for U.S. Appl. No. 14/645,120, dated May 27, 2016, 13 pages.
Final Office Action received for U.S. Appl. No. 15/090,555, dated Aug. 29, 2018, 18 pages.
Final Office Action received for U.S. Appl. No. 15/228,942, dated Apr. 17, 2019, 9 pages.
Final Office Action received for U.S. Appl. No. 16/447,811, dated Jun. 22, 2021, 11 pages.
First Action Interview received for U.S. Appl. No. 15/228,942, dated Nov. 26, 2018, 5 pages.
International Search Report received for PCT Patent Application No. PCT/US2008/078836, dated Mar. 19, 2009, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2009/041460, dated Jul. 17, 2009, 3 pages.
International Search Report received for PCT Patent Application No. PCT/US2009/041465, dated Aug. 5, 2009, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US2010/029698, dated Jan. 14, 2011, 5 pages.
International Search Report received for PCT Patent Application No. PCT/US2016/048694, dated Oct. 31, 2016, 4 pages.
Non-Final Office Action received for U.S. Appl. No. 12/038,760, dated Feb. 4, 2011, 19 pages.
Non-Final Office Action received for U.S. Appl. No. 12/038,760, dated Jan. 2, 2013, 20 pages.
Non-Final Office Action received for U.S. Appl. No. 12/110,024, dated Jul. 3, 2012, 20 pages.
Non-Final Office Action received for U.S. Appl. No. 12/110,024, dated Jul. 11, 2011, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 12/110,075, dated Jan. 25, 2012, 22 pages.
Non-Final Office Action received for U.S. Appl. No. 12/110,075, dated Jul. 8, 2011, 15 pages.
Non-Final Office Action received for U.S. Appl. No. 12/110,075, dated Mar. 28, 2013, 14 pages.
Non-Final Office Action received for U.S. Appl. No. 12/333,250, dated Aug. 17, 2011, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 12/500,911, dated Jun. 7, 2012, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 13/737,779, dated Mar. 29, 2013, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 14/055,717, dated Apr. 10, 2014, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 14/157,737, dated Feb. 10, 2015, 24 pages.
Non-Final Office Action received for U.S. Appl. No. 14/645,120, dated Dec. 16, 2016, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 14/645,120, dated Oct. 27, 2015, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 15/090,555, dated Nov. 3, 2017, 28 pages.
Non-Final Office Action received for U.S. Appl. No. 16/447,811, dated Jan. 6, 2021, 29 pages.
Notice of Allowance received for U.S. Appl. No. 12/038,760, dated Nov. 8, 2013, 15 pages.
Notice of Allowance received for U.S. Appl. No. 12/110,024, dated Mar. 26, 2013, 4 pages.
Notice of Allowance received for U.S. Appl. No. 12/110,024, dated May 23, 2013, 5 pages.
Notice of Allowance received for U.S. Appl. No. 12/110,075, dated Aug. 19, 2013, 8 pages.
Notice of Allowance received for U.S. Appl. No. 12/333,250, dated Aug. 28, 2012, 10 pages.
Notice of Allowance received for U.S. Appl. No. 12/500,911, dated Aug. 19, 2013, 7 pages.
Notice of Allowance received for U.S. Appl. No. 13/737,779, mailed on Sep. 3, 2013, 11 pages.
Notice of Allowance received for U.S. Appl. No. 14/055,717, dated Nov. 7, 2014, 7 pages.
Notice of Allowance received for U.S. Appl. No. 14/157,737, dated Dec. 14, 2015, 5 pages.
Notice of Allowance received for U.S. Appl. No. 14/329,719, dated Nov. 2, 2015, 9 pages.
Notice of Allowance received for U.S. Appl. No. 14/645,120, dated Mar. 1, 2018, 6 pages.
Notice of Allowance received for U.S. Appl. No. 15/090,555, dated Feb. 12, 2019, 7 pages.
Notice of Allowance received for U.S. Appl. No. 15/228,942, dated Aug. 30, 2019, 12 pages.
Notice of Allowance received for U.S. Appl. No. 16/447,811, dated Nov. 19, 2021, 10 pages.
Office Action received for Chinese Patent Application No. 201310330348.2, dated Nov. 3, 2015, 7 pages (4 pages of English Translation and 3 pages of Official copy).
Preinterview First Office Action received for U.S. Appl. No. 15/228,942, dated Sep. 13, 2018, 4 pages.
Restriction Requirement received for U.S. Appl. No. 15/228,942, dated Mar. 21, 2018, 6 pages.
Restriction Requirement received for U.S. Appl. No. 16/447,811, dated Aug. 11, 2020, 5 pages.
Search Report received for Chinese Patent Application No. 200820133814.2, dated Jan. 10, 2011, 25 pages.
Search Report received for Chinese Patent Application No. 200920008199.7, dated Jan. 7, 2011, 14 pages.
Search Report received for Chinese Patent Application No. ZL2009201524013, completed on Jun. 3, 2011, 20 pages.
Search Report received for European Patent Application No. 08017396.6, dated Mar. 19, 2009, 7 pages.
Search Report received for Great Britain Patent Application No. GB0817242.1, dated Jan. 19, 2009, 2 pages.
Search Report received for Great Britain Patent Application No. GB0817242.1, dated Jan. 19, 2010, 2 pages.
Cassidy Robin, “The Tissot T-Touch Watch—A Groundbreaking Timepiece”, Ezine Articles, Available online at: <http://ezinearticles.com/?The-Tissot-T-Touch-Watch---A-Groundbreaking-Timepiece&id=. . . >, Feb. 23, 2007, 2 pages.
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, CHI'85 Proceedings, Apr. 1985, pp. 21-25.
Rubine Dean, “Combining Gestures and Direct Manipulation”, CHI'92, May 3-7, 1992, pp. 659-660.
Rubine Dean H., “The Automatic Recognition of Gestures”, CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages.
Westerman Wayne, “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface”, A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 1999, 363 pages.
Related Publications (1)
Number Date Country
20220187956 A1 Jun 2022 US
Provisional Applications (1)
Number Date Country
60977621 Oct 2007 US
Continuations (4)
Number Date Country
Parent 16447811 Jun 2019 US
Child 17653231 US
Parent 15090555 Apr 2016 US
Child 16447811 US
Parent 14157737 Jan 2014 US
Child 15090555 US
Parent 12038760 Feb 2008 US
Child 14157737 US