Single lens splitter camera

Information

  • Patent Grant
  • 7933507
  • Patent Number
    7,933,507
  • Date Filed
    Friday, March 2, 2007
    17 years ago
  • Date Issued
    Tuesday, April 26, 2011
    13 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 396 077000
    • 396 018000
    • 396 051000
    • 396 446000
    • 359 353000
    • 359 839000
    • 348 342000
    • 348 344000
    • 348 078000
    • 348 162000
    • 348 164000
  • International Classifications
    • G03B29/00
    • H04N7/18
    • H04N5/33
    • Term Extension
      191
Abstract
A camera system may be used to capture iris images of targeted people who may be unaware of being targeted and hence their movement may not be constrained in any way. Iris images may be used for identification and/or tracking of people. In one illustrative embodiment, a camera system may include a focus camera and an iris camera, where the focus camera is sensitive to ambient light or some spectrum thereof, and the iris camera is sensitive to infrared or some other wavelength light. The focus camera and the iris camera may share an optical lens, and the focus camera may be used to auto-focus the lens on a focus target. A beam splitter or other optical element may be used to direct light of some wavelengths to the focus camera for auto-focusing the lens, and other wavelengths to the iris camera for image capture of the iris images.
Description
TECHNICAL FIELD

The invention pertains generally to cameras and relates more particularly to cameras and camera systems that are configured to find and track facial features.


BACKGROUND

In some applications, it may be desirable to identify individuals from a distance, perhaps with the individual unaware that they are being watched or identified. In some cases, the individual may be standing still, or they may be moving. One way of identifying people is by imaging their eyes, or at least the iris portion of their eyes. There is a need for a camera system that is capable of obtaining high quality iris images.


SUMMARY

The present invention relates generally to structure and methods that provide high quality iris images that may be used for identification and/or tracking of people. In some instances, a camera system may include a focus camera and an iris camera. In some cases, the focus camera may be sensitive to ambient light or some spectrum thereof, while the iris camera may be sensitive to infrared or other spectrum of light. The focus camera and the iris camera may share an optical path that includes one or more lens that capture light, as well as a beam splitter or other optical element that directs light of some wavelengths to the focus camera and allows other wavelengths to reach the iris camera.





BRIEF DESCRIPTION OF THE FIGURES

The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.



FIG. 1 is a schematic illustration of an exemplary camera system in accordance with an example of the present invention;



FIG. 2 is a schematic illustration of how particular elements of the camera system of FIG. 1 support an iris camera;



FIG. 3 is a schematic illustration showing how subject movement may be monitored;



FIG. 4 is a schematic illustration showing how digital tilt and pan may be used to find and track an individual's irises;



FIG. 5 is a flow diagram showing a method that may be carried out using the camera system of FIG. 1;



FIG. 6 is a flow diagram showing a method that may be carried out using the camera system of FIG. 1; and



FIG. 7 is a flow diagram showing a method that may be carried out using the camera system of FIG. 1.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION

The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.



FIG. 1 provides an illustrative but non-limiting example of a camera system 10. Camera system 10 may include a focus camera 12 and an iris camera 14. In some instances, focus camera 12 may have a considerably lower resolution than iris camera 14, but this is not required. A lens 16 may be used to provide focus camera 12 with a field of view that is similar to a field of view of iris camera 14. In some cases, lens 16 may be excluded, depending on the particular specification and/or configuration of the focus camera 12 and/or the iris camera 14.


In some cases, focus camera 12 may be sensitive to ambient light or some spectrum thereof. Focus camera 12 may be any suitable camera that has a sufficiently high frame rate and sensitivity to perform an auto-focusing function, such as, for example a PixeLink PL-A741 camera. It will be recognized that having a relatively high frame rate may mean that focus camera 12 may have a relatively lower resolution, but this is not always the case. In some cases, focus camera 12 may have a frame rate of at least about 100 frames per second, or a frame every 10 milliseconds.


It is contemplated that iris camera 14 may be any suitable camera that is capable of acquiring an iris image in a desired light spectrum and with a desired quality, such as, for example, a REDLAKE ES11000® or a ES16000 digital camera. The light spectra used may include, but are not limited to, visible and infrared wavelengths. The desired image quality may depend on an intended security application. For example, higher security level applications typically require higher image quality. The image quality is typically dependent on the entire optical path including both the camera and its optics. For some applications, the minimum iris image quality for various security levels is defined in ANSI standard INCITS M1/03-0590.


Camera system 10 may include a lens 18 and optionally an extender lens 20. While a single lens 18 and a single extender lens 20 are illustrated, it will be recognized that in some applications, depending for example on a distance between camera system 10 and a possible subject, or perhaps depending at least in part on the particular optics of lens 18 and/or extender lens 20, two or more lens 18 and/or two or more extender lens 20 may be deployed, as desired. Lens 18 and/or extender lens 20 may be configured to provide any desired degree of magnification.


A beam splitter 22 or other optical element may be deployed downstream of lens 18 and extender lens 20. Beam splitter 22 may be a glass beam splitter, for example, and may be configured to permit some wavelengths of light to pass straight through while other wavelengths of light are deflected at an angle as shown. In some instances, beam splitter 22 may be configured to permit infrared light such as near infrared light (about 700 to about 900 nanometers) to pass through beam splitter 22 towards iris camera 14 while deflecting visible light (about 400 to about 700 nanometers) or some spectrum thereof towards focus camera 12.


As a result, focus camera 12 and iris camera 14 may see the same image, albeit in different wavelengths, and may be considered as sharing an optical path, i.e., through lens 18 and/or extender lens 20. Focus camera 12 may be considered as having an optical axis 24 while iris camera 14 may be considered as having an optical axis 26. In some cases, optical axis 24 is perpendicular or at least substantially perpendicular to optical axis 26, but this is not required. Rather, this may be a feature of the optical properties of beam splitter 22. In some instances, zoom lens 18 and extender 20 may be considered as being disposed along optical axis 26. In some cases, beam splitter 22 may be disposed at or near an intersection of optical axis 24 and optical axis 26, but this is not required.


Focus camera 12 may be used to move a focus lens that is part of lens 18 and that is used to focus it. Since focus camera 12 and iris camera 14 see the same image, by virtue of their common optical path, it will be recognized that focusing lens 18 via focus camera 12 may provide an initial focusing for iris camera 14, under ambient lighting conditions. In some cases, focus camera 12 may move the focus lens within lens 18 using one or more servo motors under the control of any suitable auto-focusing algorithm, as is known in the art. In some cases, a controller (not shown in FIG. 1) may orchestrate the auto-focusing operation.


Because light of differing wavelengths are refracted differently as they pass through particular materials (glass lenses and the like, for example), focusing lens 18 via one wavelength of light may not provide a precise focus for iris camera 14 at another wavelength of light. In some cases, it may be useful to calculate or otherwise determine a correction factor that may be used to correct the focus of lens 18 after lens 18 has been auto-focused using the focus camera 12, but before the iris camera 14 captures an image. Details regarding one such a correction can be found in, for example, patent application Ser. No. 11/681,251, filed Mar. 2, 2007, entitled CAMERA WITH AUTO FOCUS. This application is incorporated by reference in its entirety.



FIG. 2 is another schematic illustration of camera system 10, showing some of the functions and interactions of the individual components of camera system 10. Focus camera 12 may perform several tasks, including for example, finding a focus target point (generally indicated at reference number 28) and auto focusing (generally indicated at reference number 30).


Once camera system 12 is pointed at a face, the focus camera 12 (or a separate controller or the like) is tasked with finding a focus target within an image seen or sensed by focus camera 12. In some cases, the focus target may be a predefined point on the focus target, such as a predefined specific point on a face such as an eye pupil or the nose bridge. Once the focus target is located at functionality 28 and focus camera 12 is precisely autofocused on it via functionality 30, it may be necessary to provide a focus correction pertaining to the difference in focal length between the ambient light or some spectrum thereof used to auto-focus the lens, and the wavelength(s) to be captured by the iris camera, as indicated at 30. If/when the subject moves, such as by walking, bending, turning their head, and the like, focus camera 12 may be tasked to focus lens 18 in an ongoing process. Once focus has been achieved, camera system 10 may provide an in-focus flag 32 to initiate iris camera shutter control 34, and in some case, a flash controller.


In some cases, camera system 10 may be deployed in a position that permits detection and identification of people who are standing or walking in a particular location such as a hallway, airport concourse, and the like. FIG. 3 is a diagram showing how camera system 10 may track a moving individual. In this drawing, an individual is walking or otherwise moving along walking path 36, in a direction from upper right to lower left. Camera system 10 locks onto the individual at point 38 and is able to track the individual until they reach point 40. Camera system 10 may be configured to be able to lock onto and obtain sufficient iris images in the time between point 38 and point 40 to be able to identify the individual.


This illustration makes several assumptions. For example, a steering angle of plus or minus 22.5 degrees (or a total path width of about 45 degrees) has been assumed. It is assumed, for purposes of this illustration, that the individual is unaware of being identified and hence is being uncooperative. As a result, the individual happens to walk in a manner that increases the relative angle between the camera and the individual. The person is detected at a distance of about 2 to about 5 meters in this example.



FIG. 4 defines digital tilt and pan within a field of view of iris camera 14. In this example, iris camera 14 is capable of providing an image having about 11 megapixels. At a particular distance, iris camera 14 has a field of view that is indicated by box 42. Box 42 is in scale to an individual 44. A smaller box 46 shows the relative field of view necessary to view the individual's irises. It can be seen that unless the individual 44 moves excessively, iris camera 14 may digitally tilt and/or pan the image to track box 46 within larger box 42 without any need to mechanically adjust its physical pan and tilt. The specific numbers of FIG. 4 pertain to a particular system design parameter set that, according to the ANSI standard referenced above, is suitable for a lower security application.


It will be recognized that digital tilt and pan permit a camera to remain pointed at a face without requiring mechanical re-positioning as long as a desired portion of the image, such as a face or a portion of a face, remain within the viewable image. Because focus camera 12 and iris camera 14 have about the same field of view, they have about the same digital tilt and pan. A focus target algorithm finds the focus target (such as an eye pupil or nose bridge) within the focus camera image and then precisely focuses on it.



FIG. 5 is a flow diagram showing an illustrative but non-limiting method that may be carried out using camera system 10 (FIG. 1). At block 48, the lens is focused, often under ambient light or some spectrum thereof. In some instances, lens 18 (FIG. 1) may be focused via an iterative auto-focus algorithm using focus camera 12 (FIG. 1), sometimes under ambient lighting or some selected spectrum thereof. Control passes to block 50, where an iris image is captured. In some instances, an iris image may be captured using iris camera 14, which is timed with a flash that produces infrared light or any other light having a desired spectrum.



FIG. 6 is a flow diagram showing an illustrative but non-limiting method that may be carried out using camera system 10 (FIG. 1). At block 47, a focus target is located within a focus image. At block 48, the lens is focused at it. In some instances, lens 18 (FIG. 1) may be auto-focused via an iterative auto-focus algorithm using focus camera 12 (FIG. 1) under ambient lighting or some selected spectra thereof. Control is then passed to block 52, where the lens is adjusted. In some cases, the focus of lens 18 may be adjusted to correct for the differences between, for example, ambient and infrared light. Then, at block 50, an iris image is captured. In some instances, an iris image may be captured using iris camera 14, which is timed with a flash that produces infrared or any other desired light.



FIG. 7 is a flow diagram showing an illustrative but non-limiting method that may be carried out using camera system 10 (FIG. 1). At block 54, light that may be entering camera system 10 is split into an ambient light or some spectrum thereof and an infrared light portion. Control passes to block 56, where the ambient light portion is directed into or towards focus camera 12 (FIG. 1), and the infrared light portion is directed into or towards iris camera 14 (FIG. 1). In some cases, these steps may be achieved by beam splitter 22 (FIG. 1).


At block 58, a focus target is found within the focus camera image. Image data from a small area surrounding the focus target are extracted from the focus camera image at block 60, and the extracted data is used to precisely auto focus the focus camera 12. Control passes to block 62, where the focus setting is corrected, if necessary, for any differences between the light spectrum used for focusing and the light spectrum used for image acquisition by iris camera 14. Control passes to block 64, where an iris image is captured using, for example, infrared light sometimes aided by a flash discharge.


The invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the invention can be applicable will be readily apparent to those of skill in the art upon review of the instant specification.

Claims
  • 1. A camera system comprising: an iris camera having an optical axis, the iris camera configured to acquire iris images suitable for human identification;a focus camera having an optical axis, wherein the optical axis of the focus camera is angularly offset from the optical axis of the iris camera;an autofocus lens for receiving incoming light and for providing the incoming light to both the iris camera and the focus camera, wherein an output of the focus camera is used in auto-focusing the autofocus lens;a beam splitter arranged downstream of the autofocus lens, the beam splitter directing a first wavelength or range of wavelengths of the incoming light to the focus camera and a second wavelength or range of wavelengths of the incoming light to the iris camera; anda controller coupled to the iris camera and the autofocus lens, the controller configured to correct a focus setting of the autofocus lens to provide a focused image in the second wavelength or range of wavelengths to the iris camera after the output of the focus camera has been used to auto-focus the autofocus lens using the first wavelength or range of wavelengths of the incoming light, the controller further configured to activate the iris camera to capture an iris image of a subject that is suitable for human identification after the focus setting of the autofocus lens has been corrected.
  • 2. The camera system of claim 1, wherein the optical axis of the focus camera is arranged at least substantially perpendicular to the optical axis of the iris camera.
  • 3. The camera system of claim 1, wherein the beam splitter is configured to permit the second wavelength or range of wavelengths of incoming light to pass straight through the beam splitter.
  • 4. The camera system of claim 1, wherein the first wavelength or range of wavelengths of light includes ambient light.
  • 5. The camera system of claim 1, wherein the first wavelength or range of wavelengths of light includes visible light.
  • 6. The camera system of claim 1, wherein the second wavelength or range of wavelengths of light includes flash illumination light.
  • 7. The camera system of claim 1, wherein the second wavelength or range of wavelengths of light includes infrared light.
  • 8. The camera system of claim 1, wherein the focus camera is sensitive to visible light or some sub spectra thereof.
  • 9. The camera system of claim 1, wherein the iris camera is sensitive to infrared light or some sub spectra thereof.
  • 10. The camera system of claim 1, wherein the output of the focus camera is used to locate a given focus target within the field of view of the focus camera.
  • 11. The camera system of claim 10, wherein the output of the focus camera is used to auto-focus the lens on the focus target.
  • 12. The camera system of claim 1, further comprising a near infrared flash that is controlled by the controller and is used in conjunction with the iris camera.
  • 13. A camera system comprising: a lens;an auto-focus element for auto-focusing the lens;a first camera that is sensitive to ambient light, the first camera providing an output to the auto-focus element suitable for auto-focusing the lens onto a person of interest;a second camera that is sensitive to light from a flash discharge, the second camera capturing an infrared image of an iris of the person of interest suitable for human identification;a beam splitter disposed downstream of the lens, the beam splitter splitting the light passing through the lens into an ambient light image that is directed to the first camera, and a flash light image that is directed to the second camera;a controller configured to apply a correction factor to correct the focus of the lens so as to provide a focused image in infrared light to the second camera after the lens has been auto-focused using the output of the first camera that is sensitive to ambient light but before the second camera captures an infrared image of the iris; andwherein the lens, when corrected to provide a focused image in infrared light to the second camera does not provided a focused image in ambient light to the first camera.
  • 14. A method of capturing an iris image of an iris of a person of interest using a camera system comprising a focus camera, an iris camera and a lens disposed upstream of and shared by the focus camera and the iris camera, the method comprising the steps of: finding a focus target in a focus camera image;focusing the lens on the focus target using the focus camera;modifying a focus setting of the lens to provide a focused image to the iris camera after the lens has been focused by the focus camera;once the focus setting has been modified, initiating iris camera shutter control; andcapturing the iris image using the iris camera, wherein the iris image of the iris of the person of interest is suitable for human identification.
  • 15. The method of claim 14, wherein the focus camera focuses the lens using ambient light or some spectra thereof.
  • 16. The method of claim 14, further comprising a step of finding a focus target within an image seen or sensed by the focus camera.
  • 17. The method of claim 16, further comprising a step of extracting image data and using the image data to precisely auto focus the focus camera.
  • 18. The method of claim 14, further comprising the step of splitting the light that passes through the shared lens into an ambient light based image and an infrared light based image, wherein the ambient light based image is directed to the focus camera and the infrared light based image is directed to the iris camera.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/778,770, filed Mar. 3, 2006, and U.S. Provisional Application No. 60/807,046, filed Jul. 11, 2006. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/382,373, filed May 9, 2006. Each of these applications is hereby incorporated by reference. This application is related to U.S. patent application Ser. No. 10/979,129, filed Nov. 3, 2004, U.S. patent application Ser. No. 10/655,124, filed Sep. 5, 2003, now U.S. Pat. No. 7,183,895, U.S. patent application Ser. No. 11/275,703, filed Jan. 25, 2006, U.S. Provisional Application No. 60/647,270, filed Jan. 26, 2005, U.S. patent application Ser. No. 11/043,366, filed Jan. 26, 2005, U.S. patent application Ser. No. 11/372,854, filed Mar. 10, 2006, U.S. patent application Ser. No. 11/672,108, filed Feb. 7, 2007, and U.S. patent application Ser. No. 11/675,424, filed Feb. 15, 2007, all of which are hereby incorporated by reference.

Government Interests

The government may have rights in the invention.

US Referenced Citations (368)
Number Name Date Kind
4641349 Flom et al. Feb 1987 A
4836670 Hutchinson Jun 1989 A
5231674 Cleveland et al. Jul 1993 A
5291560 Daugman Mar 1994 A
5293427 Ueno et al. Mar 1994 A
5359382 Uenaka Oct 1994 A
5404013 Tajima Apr 1995 A
5551027 Choy et al. Aug 1996 A
5572596 Wildes et al. Nov 1996 A
5608472 Szirth et al. Mar 1997 A
5717512 Chmielewski, Jr. et al. Feb 1998 A
5751836 Wildes et al. May 1998 A
5859686 Aboutalib et al. Jan 1999 A
5896174 Nakata Apr 1999 A
5901238 Matsushita May 1999 A
5909269 Isogai et al. Jun 1999 A
5953440 Zhang et al. Sep 1999 A
5956122 Doster Sep 1999 A
5978494 Zhang Nov 1999 A
6005704 Chmielewski, Jr. et al. Dec 1999 A
6007202 Apple et al. Dec 1999 A
6021210 Camus et al. Feb 2000 A
6028949 McKendall Feb 2000 A
6055322 Salganicoff et al. Apr 2000 A
6064752 Rozmus et al. May 2000 A
6069967 Rozmus et al. May 2000 A
6081607 Mori et al. Jun 2000 A
6088470 Camus et al. Jul 2000 A
6091899 Konishi et al. Jul 2000 A
6101477 Hohle et al. Aug 2000 A
6104431 Inoue et al. Aug 2000 A
6108636 Yap et al. Aug 2000 A
6119096 Mann et al. Sep 2000 A
6120461 Smyth Sep 2000 A
6134339 Luo Oct 2000 A
6144754 Okano et al. Nov 2000 A
6246751 Bergl et al. Jun 2001 B1
6247813 Kim et al. Jun 2001 B1
6252977 Salganicoff et al. Jun 2001 B1
6282475 Washington Aug 2001 B1
6285505 Melville et al. Sep 2001 B1
6285780 Yamakita et al. Sep 2001 B1
6289113 McHugh et al. Sep 2001 B1
6299306 Braithwaite et al. Oct 2001 B1
6308015 Matsumoto Oct 2001 B1
6309069 Seal et al. Oct 2001 B1
6320610 Van Sant et al. Nov 2001 B1
6320973 Suzaki et al. Nov 2001 B2
6323761 Son Nov 2001 B1
6325765 Hay et al. Dec 2001 B1
6330674 Angelo et al. Dec 2001 B1
6332193 Glass et al. Dec 2001 B1
6344683 Kim Feb 2002 B1
6370260 Pavlidis et al. Apr 2002 B1
6377699 Musgrave et al. Apr 2002 B1
6393136 Amir et al. May 2002 B1
6400835 Lemelson et al. Jun 2002 B1
6424727 Musgrave et al. Jul 2002 B1
6424845 Emmoft et al. Jul 2002 B1
6433818 Steinberg et al. Aug 2002 B1
6438752 McClard Aug 2002 B1
6441482 Foster Aug 2002 B1
6446045 Stone et al. Sep 2002 B1
6483930 Musgrave et al. Nov 2002 B1
6484936 Nicoll et al. Nov 2002 B1
6490443 Freeny, Jr. Dec 2002 B1
6493669 Curry et al. Dec 2002 B1
6494363 Roger et al. Dec 2002 B1
6503163 Van Sant et al. Jan 2003 B1
6505193 Musgrave et al. Jan 2003 B1
6508397 Do Jan 2003 B1
6516078 Yang et al. Feb 2003 B1
6516087 Camus Feb 2003 B1
6516416 Gregg et al. Feb 2003 B2
6522772 Morrison et al. Feb 2003 B1
6526160 Ito Feb 2003 B1
6532298 Cambier et al. Mar 2003 B1
6540392 Braithwaite Apr 2003 B1
6542624 Oda Apr 2003 B1
6546121 Oda Apr 2003 B1
6553494 Glass Apr 2003 B1
6580356 Alt et al. Jun 2003 B1
6591001 Oda et al. Jul 2003 B1
6591064 Higashiyama et al. Jul 2003 B2
6594377 Kim et al. Jul 2003 B1
6594399 Camus et al. Jul 2003 B1
6598971 Cleveland Jul 2003 B2
6600878 Pregara Jul 2003 B2
6614919 Suzaki et al. Sep 2003 B1
6652099 Chae et al. Nov 2003 B2
6674367 Sweatte Jan 2004 B2
6690997 Rivalto Feb 2004 B2
6708176 Strunk et al. Mar 2004 B2
6711562 Ross et al. Mar 2004 B1
6714665 Hanna et al. Mar 2004 B1
6718049 Pavlidis et al. Apr 2004 B2
6718665 Hess et al. Apr 2004 B2
6732278 Baird, III et al. May 2004 B2
6734783 Anbai May 2004 B1
6745520 Puskaric et al. Jun 2004 B2
6751733 Nakamura et al. Jun 2004 B1
6753919 Daugman Jun 2004 B1
6754640 Bozeman Jun 2004 B2
6760467 Min et al. Jul 2004 B1
6765470 Shinzaki Jul 2004 B2
6766041 Golden et al. Jul 2004 B2
6775774 Harper Aug 2004 B1
6785406 Kamada Aug 2004 B1
6793134 Clark Sep 2004 B2
6819219 Bolle et al. Nov 2004 B1
6829370 Pavlidis et al. Dec 2004 B1
6832044 Doi et al. Dec 2004 B2
6836554 Bolle et al. Dec 2004 B1
6837436 Swartz et al. Jan 2005 B2
6845079 Lee et al. Jan 2005 B2
6853444 Haddad Feb 2005 B2
6867683 Calvesio et al. Mar 2005 B2
6873960 Wood et al. Mar 2005 B1
6896187 Stockhammer May 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6920237 Chen et al. Jul 2005 B2
6930707 Bates et al. Aug 2005 B2
6934849 Kramer et al. Aug 2005 B2
6950139 Fujinawa Sep 2005 B2
6954738 Wang et al. Oct 2005 B2
6957341 Rice et al. Oct 2005 B2
6972797 Izumi Dec 2005 B2
7053948 Konishi May 2006 B2
7071971 Elberbaum Jul 2006 B2
7136581 Fujii Nov 2006 B2
7183895 Bazakos et al. Feb 2007 B2
7184577 Chen et al. Feb 2007 B2
7197173 Jones et al. Mar 2007 B2
7277891 Howard et al. Oct 2007 B2
7298873 Miller, Jr. et al. Nov 2007 B2
7315233 Yuhara Jan 2008 B2
7362210 Bazakos et al. Apr 2008 B2
7362370 Sakamoto et al. Apr 2008 B2
7362884 Willis et al. Apr 2008 B2
7365771 Kahn et al. Apr 2008 B2
7406184 Wolff et al. Jul 2008 B2
7414648 Imada Aug 2008 B2
7443441 Hiraoka Oct 2008 B2
7518651 Butterworth Apr 2009 B2
7542945 Thompson et al. Jun 2009 B2
7580620 Raskar et al. Aug 2009 B2
7593550 Hamza Sep 2009 B2
7639846 Yoda Dec 2009 B2
7751598 Matey et al. Jul 2010 B2
7756301 Hamza Jul 2010 B2
7756407 Raskar Jul 2010 B2
7761453 Hamza Jul 2010 B2
7777802 Shinohara et al. Aug 2010 B2
7804982 Howard et al. Sep 2010 B2
20010026632 Tamai Oct 2001 A1
20010027116 Baird Oct 2001 A1
20010047479 Bromba et al. Nov 2001 A1
20010051924 Uberti Dec 2001 A1
20010054154 Tam Dec 2001 A1
20020010857 Karthik Jan 2002 A1
20020033896 Hatano Mar 2002 A1
20020039433 Shin Apr 2002 A1
20020040434 Elliston et al. Apr 2002 A1
20020062280 Zachariassen et al. May 2002 A1
20020077841 Thompson Jun 2002 A1
20020089157 Breed et al. Jul 2002 A1
20020106113 Park Aug 2002 A1
20020112177 Voltmer et al. Aug 2002 A1
20020114495 Chen et al. Aug 2002 A1
20020130961 Lee et al. Sep 2002 A1
20020131622 Lee et al. Sep 2002 A1
20020139842 Swaine Oct 2002 A1
20020140715 Smet Oct 2002 A1
20020142844 Kerr Oct 2002 A1
20020144128 Rahman et al. Oct 2002 A1
20020150281 Cho Oct 2002 A1
20020154794 Cho Oct 2002 A1
20020158750 Almalik Oct 2002 A1
20020164054 McCartney et al. Nov 2002 A1
20020175182 Matthews Nov 2002 A1
20020186131 Fettis Dec 2002 A1
20020191075 Doi et al. Dec 2002 A1
20020191076 Wada et al. Dec 2002 A1
20020194128 Maritzen et al. Dec 2002 A1
20020194131 Dick Dec 2002 A1
20020198731 Barnes et al. Dec 2002 A1
20030002714 Wakiyama Jan 2003 A1
20030012413 Kusakari et al. Jan 2003 A1
20030014372 Wheeler et al. Jan 2003 A1
20030020828 Ooi et al. Jan 2003 A1
20030038173 Blackson et al. Feb 2003 A1
20030046228 Berney Mar 2003 A1
20030053663 Chen et al. Mar 2003 A1
20030055689 Block et al. Mar 2003 A1
20030055787 Fujii Mar 2003 A1
20030058492 Wakiyama Mar 2003 A1
20030061172 Robinson Mar 2003 A1
20030061233 Manasse et al. Mar 2003 A1
20030065626 Allen Apr 2003 A1
20030071743 Seah et al. Apr 2003 A1
20030072475 Tamori Apr 2003 A1
20030073499 Reece Apr 2003 A1
20030074317 Hofi Apr 2003 A1
20030074326 Byers Apr 2003 A1
20030076161 Tisse Apr 2003 A1
20030076300 Lauper et al. Apr 2003 A1
20030076984 Tisse et al. Apr 2003 A1
20030080194 O'Hara et al. May 2003 A1
20030091215 Lauper et al. May 2003 A1
20030092489 Veradej May 2003 A1
20030095689 Volkommer et al. May 2003 A1
20030098776 Friedli May 2003 A1
20030099379 Monk et al. May 2003 A1
20030099381 Ohba May 2003 A1
20030103652 Lee et al. Jun 2003 A1
20030107097 McArthur et al. Jun 2003 A1
20030107645 Yoon Jun 2003 A1
20030108224 Ike Jun 2003 A1
20030108225 Li Jun 2003 A1
20030115148 Takhar Jun 2003 A1
20030115459 Monk Jun 2003 A1
20030116630 Carey et al. Jun 2003 A1
20030118212 Min et al. Jun 2003 A1
20030118217 Kondo et al. Jun 2003 A1
20030123711 Kim et al. Jul 2003 A1
20030125054 Garcia Jul 2003 A1
20030125057 Pesola Jul 2003 A1
20030126560 Kurapati et al. Jul 2003 A1
20030131245 Linderman Jul 2003 A1
20030131265 Bhakta Jul 2003 A1
20030133597 Moore et al. Jul 2003 A1
20030140235 Immega et al. Jul 2003 A1
20030140928 Bui et al. Jul 2003 A1
20030141411 Pandya et al. Jul 2003 A1
20030149881 Patel et al. Aug 2003 A1
20030152251 Ike Aug 2003 A1
20030152252 Kondo et al. Aug 2003 A1
20030156741 Lee et al. Aug 2003 A1
20030158762 Wu Aug 2003 A1
20030158821 Maia Aug 2003 A1
20030159051 Hollnagel Aug 2003 A1
20030163739 Armington et al. Aug 2003 A1
20030169334 Braithwaite et al. Sep 2003 A1
20030169901 Pavlidis et al. Sep 2003 A1
20030169907 Edwards et al. Sep 2003 A1
20030173408 Mosher, Jr. et al. Sep 2003 A1
20030174049 Beigel et al. Sep 2003 A1
20030177051 Driscoll et al. Sep 2003 A1
20030182151 Taslitz Sep 2003 A1
20030182182 Kocher Sep 2003 A1
20030191949 Odagawa Oct 2003 A1
20030194112 Lee Oct 2003 A1
20030195935 Leeper Oct 2003 A1
20030198368 Kee Oct 2003 A1
20030200180 Phelan, III et al. Oct 2003 A1
20030210139 Brooks et al. Nov 2003 A1
20030210802 Schuessler Nov 2003 A1
20030218719 Abourizk et al. Nov 2003 A1
20030225711 Paping Dec 2003 A1
20030228898 Rowe Dec 2003 A1
20030233556 Angelo et al. Dec 2003 A1
20030235326 Morikawa et al. Dec 2003 A1
20030235411 Morikawa et al. Dec 2003 A1
20030236120 Reece et al. Dec 2003 A1
20040001614 Russon et al. Jan 2004 A1
20040002894 Kocher Jan 2004 A1
20040005078 Tillotson Jan 2004 A1
20040006553 de Vries et al. Jan 2004 A1
20040010462 Moon et al. Jan 2004 A1
20040012760 Mihashi et al. Jan 2004 A1
20040019570 Bolle et al. Jan 2004 A1
20040023664 Mirouze et al. Feb 2004 A1
20040023709 Beaulieu et al. Feb 2004 A1
20040025030 Corbett-Clark et al. Feb 2004 A1
20040025031 Ooi et al. Feb 2004 A1
20040025053 Hayward Feb 2004 A1
20040029564 Hodge Feb 2004 A1
20040030930 Nomura Feb 2004 A1
20040035123 Kim et al. Feb 2004 A1
20040037450 Bradski Feb 2004 A1
20040039914 Barr et al. Feb 2004 A1
20040042641 Jakubowski Mar 2004 A1
20040044627 Russell et al. Mar 2004 A1
20040046640 Jourdain et al. Mar 2004 A1
20040049687 Orsini et al. Mar 2004 A1
20040050924 Mletzko et al. Mar 2004 A1
20040050930 Rowe Mar 2004 A1
20040052405 Walfridsson Mar 2004 A1
20040052418 DeLean Mar 2004 A1
20040059590 Mercredi et al. Mar 2004 A1
20040059953 Purnell Mar 2004 A1
20040104266 Bolle et al. Jun 2004 A1
20040117636 Cheng Jun 2004 A1
20040133804 Smith et al. Jul 2004 A1
20040146187 Jeng Jul 2004 A1
20040148526 Sands et al. Jul 2004 A1
20040160518 Park Aug 2004 A1
20040162870 Matsuzaki et al. Aug 2004 A1
20040162984 Freeman et al. Aug 2004 A1
20040169817 Grotehusmann et al. Sep 2004 A1
20040172541 Ando et al. Sep 2004 A1
20040174070 Voda et al. Sep 2004 A1
20040190759 Caldwell Sep 2004 A1
20040193893 Braithwaite et al. Sep 2004 A1
20040219902 Lee et al. Nov 2004 A1
20040233038 Beenau et al. Nov 2004 A1
20040240711 Hamza et al. Dec 2004 A1
20040252866 Tisse et al. Dec 2004 A1
20040255168 Murashita et al. Dec 2004 A1
20050008200 Azuma et al. Jan 2005 A1
20050008201 Lee et al. Jan 2005 A1
20050012817 Hampapur et al. Jan 2005 A1
20050012843 Kuwakino et al. Jan 2005 A1
20050029353 Isemura et al. Feb 2005 A1
20050031325 Fujii Feb 2005 A1
20050052566 Kato Mar 2005 A1
20050055582 Bazakos et al. Mar 2005 A1
20050063567 Saitoh et al. Mar 2005 A1
20050084137 Kim et al. Apr 2005 A1
20050084179 Hanna et al. Apr 2005 A1
20050099288 Spitz et al. May 2005 A1
20050102502 Sagen May 2005 A1
20050110610 Bazakos et al. May 2005 A1
20050125258 Yellin et al. Jun 2005 A1
20050127161 Smith et al. Jun 2005 A1
20050129286 Hekimian Jun 2005 A1
20050134796 Zelvin et al. Jun 2005 A1
20050138385 Friedli et al. Jun 2005 A1
20050138387 Lam et al. Jun 2005 A1
20050146640 Shibata Jul 2005 A1
20050151620 Neumann Jul 2005 A1
20050152583 Kondo et al. Jul 2005 A1
20050193212 Yuhara Sep 2005 A1
20050199708 Friedman Sep 2005 A1
20050206501 Farhat Sep 2005 A1
20050206502 Bernitz Sep 2005 A1
20050207614 Schonberg et al. Sep 2005 A1
20050210267 Sugano et al. Sep 2005 A1
20050210270 Rohatgi et al. Sep 2005 A1
20050210271 Chou et al. Sep 2005 A1
20050238214 Matsuda et al. Oct 2005 A1
20050240778 Saito Oct 2005 A1
20050248725 Ikoma et al. Nov 2005 A1
20050249385 Kondo et al. Nov 2005 A1
20050255840 Markham Nov 2005 A1
20060093190 Cheng et al. May 2006 A1
20060147094 Yoo Jul 2006 A1
20060165266 Hamza Jul 2006 A1
20060274919 LoIacono et al. Dec 2006 A1
20070036397 Hamza Feb 2007 A1
20070140531 Hamza Jun 2007 A1
20070160266 Jones et al. Jul 2007 A1
20070189582 Hamza et al. Aug 2007 A1
20070206840 Jacobson Sep 2007 A1
20070211924 Hamza Sep 2007 A1
20070274570 Hamza Nov 2007 A1
20070274571 Hamza Nov 2007 A1
20070286590 Terashima Dec 2007 A1
20080005578 Shafir Jan 2008 A1
20080075441 Jelinek et al. Mar 2008 A1
20080211347 Wright et al. Sep 2008 A1
20080252412 Larsson et al. Oct 2008 A1
20090092283 Whillock et al. Apr 2009 A1
20090316993 Brasnett et al. Dec 2009 A1
20100033677 Jelinek Feb 2010 A1
20100034529 Jelinek Feb 2010 A1
20100182440 McCloskey Jul 2010 A1
20100239119 Bazakos et al. Sep 2010 A1
Foreign Referenced Citations (187)
Number Date Country
0484076 May 1992 EP
0593386 Apr 1994 EP
0878780 Nov 1998 EP
0899680 Mar 1999 EP
0910986 Apr 1999 EP
0962894 Dec 1999 EP
1018297 Jul 2000 EP
1024463 Aug 2000 EP
1028398 Aug 2000 EP
1041506 Oct 2000 EP
1041523 Oct 2000 EP
1126403 Aug 2001 EP
1139270 Oct 2001 EP
1237117 Sep 2002 EP
1477925 Nov 2004 EP
1635307 Mar 2006 EP
2369205 May 2002 GB
2371396 Jul 2002 GB
2375913 Nov 2002 GB
2402840 Dec 2004 GB
2411980 Sep 2005 GB
9161135 Jun 1997 JP
9198545 Jul 1997 JP
9201348 Aug 1997 JP
9147233 Sep 1997 JP
9234264 Sep 1997 JP
9305765 Nov 1997 JP
9319927 Dec 1997 JP
10021392 Jan 1998 JP
10040386 Feb 1998 JP
10049728 Feb 1998 JP
10137219 May 1998 JP
10137221 May 1998 JP
10137222 May 1998 JP
10137223 May 1998 JP
10248827 Sep 1998 JP
10269183 Oct 1998 JP
11047117 Feb 1999 JP
11089820 Apr 1999 JP
11200684 Jul 1999 JP
11203478 Jul 1999 JP
11213047 Aug 1999 JP
11339037 Dec 1999 JP
2000005149 Jan 2000 JP
2000005150 Jan 2000 JP
2000011163 Jan 2000 JP
2000023946 Jan 2000 JP
2000083930 Mar 2000 JP
2000102510 Apr 2000 JP
2000102524 Apr 2000 JP
2000105830 Apr 2000 JP
2000107156 Apr 2000 JP
2000139878 May 2000 JP
2000155863 Jun 2000 JP
2000182050 Jun 2000 JP
2000185031 Jul 2000 JP
2000194972 Jul 2000 JP
2000237167 Sep 2000 JP
2000242788 Sep 2000 JP
2000259817 Sep 2000 JP
2000356059 Dec 2000 JP
2000357232 Dec 2000 JP
2001005948 Jan 2001 JP
2001067399 Mar 2001 JP
2001101429 Apr 2001 JP
2001167275 Jun 2001 JP
2001222661 Aug 2001 JP
2001292981 Oct 2001 JP
2001297177 Oct 2001 JP
2001358987 Dec 2001 JP
2002119477 Apr 2002 JP
2002133415 May 2002 JP
2002153444 May 2002 JP
2002153445 May 2002 JP
2002260071 Sep 2002 JP
2002271689 Sep 2002 JP
2002286650 Oct 2002 JP
2002312772 Oct 2002 JP
2002329204 Nov 2002 JP
2003006628 Jan 2003 JP
2003036434 Feb 2003 JP
2003108720 Apr 2003 JP
2003108983 Apr 2003 JP
2003132355 May 2003 JP
2003150942 May 2003 JP
2003153880 May 2003 JP
2003242125 Aug 2003 JP
2003271565 Sep 2003 JP
2003271940 Sep 2003 JP
2003308522 Oct 2003 JP
2003308523 Oct 2003 JP
2003317102 Nov 2003 JP
2003331265 Nov 2003 JP
2004005167 Jan 2004 JP
2004021406 Jan 2004 JP
2004030334 Jan 2004 JP
2004038305 Feb 2004 JP
2004094575 Mar 2004 JP
2004152046 May 2004 JP
2004163356 Jun 2004 JP
2004164483 Jun 2004 JP
2004171350 Jun 2004 JP
2004171602 Jun 2004 JP
2004206444 Jul 2004 JP
2004220376 Aug 2004 JP
2004261515 Sep 2004 JP
2004280221 Oct 2004 JP
2004280547 Oct 2004 JP
2004287621 Oct 2004 JP
2004315127 Nov 2004 JP
2004318248 Nov 2004 JP
2005004524 Jan 2005 JP
2005011207 Jan 2005 JP
2005025577 Jan 2005 JP
2005038257 Feb 2005 JP
2005062990 Mar 2005 JP
2005115961 Apr 2005 JP
2005148883 Jun 2005 JP
WO 9717674 May 1997 WO
WO 9721188 Jun 1997 WO
WO 9802083 Jan 1998 WO
WO 9808439 Mar 1998 WO
WO 9932317 Jul 1999 WO
WO 9952422 Oct 1999 WO
WO 9965175 Dec 1999 WO
WO 0028484 May 2000 WO
WO 0029986 May 2000 WO
WO 0031677 Jun 2000 WO
WO 0036605 Jun 2000 WO
WO 0062239 Oct 2000 WO
WO 0101329 Jan 2001 WO
WO 0103100 Jan 2001 WO
0128476 Apr 2001 WO
WO 0135348 May 2001 WO
WO 0135349 May 2001 WO
WO 0140982 Jun 2001 WO
WO 0163994 Aug 2001 WO
WO 0169490 Sep 2001 WO
WO 0186599 Nov 2001 WO
WO 0201451 Jan 2002 WO
0219030 Mar 2002 WO
WO 0235452 May 2002 WO
WO 0235480 May 2002 WO
WO 02091735 Nov 2002 WO
WO 02095657 Nov 2002 WO
WO 03002387 Jan 2003 WO
WO 03003910 Jan 2003 WO
WO 03054777 Jul 2003 WO
WO 03077077 Sep 2003 WO
WO 2004029863 Apr 2004 WO
WO 2004042646 May 2004 WO
WO 2004055737 Jul 2004 WO
WO 2004089214 Oct 2004 WO
WO 2004097743 Nov 2004 WO
2005008567 Jan 2005 WO
WO 2005013181 Feb 2005 WO
WO 2005024698 Mar 2005 WO
WO 2005024708 Mar 2005 WO
WO 2005024709 Mar 2005 WO
WO 2005029388 Mar 2005 WO
WO 2005062235 Jul 2005 WO
WO 2005069252 Jul 2005 WO
WO 05093510 Oct 2005 WO
WO 2005093681 Oct 2005 WO
WO 2005096962 Oct 2005 WO
WO 2005098531 Oct 2005 WO
WO 2005104704 Nov 2005 WO
WO 2005109344 Nov 2005 WO
WO 06012645 Feb 2006 WO
WO 2006023046 Mar 2006 WO
WO 06051462 May 2006 WO
2006063076 Jun 2006 WO
WO 06081209 Aug 2006 WO
WO 06081505 Aug 2006 WO
WO 07101269 Sep 2007 WO
WO 07101275 Sep 2007 WO
WO 07101276 Sep 2007 WO
WO 07103698 Sep 2007 WO
WO 07103701 Sep 2007 WO
WO 07103833 Sep 2007 WO
WO 07103834 Sep 2007 WO
WO 08016724 Feb 2008 WO
WO 08019168 Feb 2008 WO
WO 08019169 Feb 2008 WO
WO 08021584 Feb 2008 WO
WO 08031089 Mar 2008 WO
WO 08040026 Apr 2008 WO
Related Publications (1)
Number Date Country
20080075441 A1 Mar 2008 US
Provisional Applications (2)
Number Date Country
60778770 Mar 2006 US
60807046 Jul 2006 US
Continuation in Parts (1)
Number Date Country
Parent 11382373 May 2006 US
Child 11681505 US