Single membrane insulation material

Information

  • Patent Grant
  • 5496628
  • Patent Number
    5,496,628
  • Date Filed
    Tuesday, June 28, 1994
    30 years ago
  • Date Issued
    Tuesday, March 5, 1996
    28 years ago
Abstract
A single membrane insulation material comprising a flexible fluoropolymer coated substrate, an insulating material laminated to one side of said substrate, and an anti-porosity fluid barrier associated with said substrate and shielded by said insulating material from elevated temperatures at said one side. Also disclosed is the inclusion of a a melt bondable fluoropolymer adhesive layer between the flexible fluoropolymer coated substrate and the insulating material.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to flexible expansion joint materials for use in industrial flue ducts and other like applications, and is concerned in particular with an improved single membrane expansion joint material capable of withstanding elevated temperatures on the order of 500.degree.-1000.degree. F. and higher,
2. Description of the Prior Act
Flexible expansion joints permit interconnected sections of large flue ducts to undergo relative shifting in response to thermal changes. This is particularly important where normal operating temperatures range from 600.degree.-800.degree. F.
Fluoroplastic/fiberglass composites adequately serve as expansion joint materials in operating temperature ranges below about 500.degree. F. Higher temperatures cause thermal deterioration, thereby necessitating additional layers of insulation, usually uncoated fiberglass. The additional insulation layers are bulky, friable, difficult to install, and prone to sag when inverted. Sagging reduces insulating quality and interferes with the flow of gases through the duct.
A primary objective of the present invention is the provision of a single membrane expansion joint material capable of withstanding exposure to high temperature gases without undergoing thermal deterioration.
Companion objectives of the present invention include the provision of an expansion joint material which is relatively compact, easy to handle and install, with an insulation layer which remains intimately bonded to adjacent components of the composite, irrespective of the physical orientation of the material during installation and subsequent use.
SUMMARY OF THE INVENTION
In a preferred embodiment of the invention to be hereafter described in greater detail, an expansion joint material is formed by laminating a layer of porous insulating material to one side of a flexible substrate while simultaneously laminating a fluid barrier in the form of a fluoropolymer film to the opposite side of the substrate. Preferably, the substrate comprises a fiberglass web coated with polytetrafluoroethelene ("PTFE"), the insulating material comprises-a web of uncoated fiberglass, and the fluid barrier comprises a film of unsintered PTFE. The insulating material is adhered to the coated substrate by means of an adhesive interlayer which is preferably integrally associated with the substrate as by a surface coating. Preferred adhesive materials include perfluoroalkoxy ("PFA") and fluorinated ethylene propylene ("FEP").
Alternatively, prior to lamination, the adhesive interlayer may exist independently as a film component, and its thickness may if desired be increased sufficiently to additionally serve as a fluid barrier component, thereby obviating the need for a barrier film laminated to the opposite outer surface of the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded cross-sectional view of a preferred embodiment of an expansion joint material in accordance with the present invention;
FIG. 2 is a cross-sectional view showing the components of FIG. 1 following lamination under conditions of elevated temperature and pressure; and
FIGS. 3 and 4 are exploded cross-sectional views of alternate embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION
With reference initially to FIG. 1, a coating 10 of PFA (Ausimont Hyflon MFA Latex) is applied to one side only of a PTFE coated fiberglass substrate 12 (TCI TEXCOAT 1400). The coating 10 has a weight of 2.5 oz./sq. yd. and is bonded to the substrate 12 to serve as an integral adhesive. The other components include a 4 mil unsintered PTFE tape 14 and a layer of 60 oz./sq. yd. fiberglass fabric 16 (Newtex 2200). The separate components 14, 12/10 and 16 are laminated together at 40 psi and 715.degree. F. for 55 seconds to produce the single membrane composite shown in FIG. 2.
The insulating value of the resulting composite of FIG. 2 was compared to a conventional composite consisting solely of the PTFE film 14 and PTFE coated fiberglass substrate 12. Samples of each were tested by measuring the temperature of the PTFE film while applying heat to the opposite side of the composite by means of a hot plate in contact therewith. The PTFE film of the conventional composite reached a temperature of 300.degree. F. when the hot plate was heated to 575.degree. F. By contrast, the PTFE film of the composite of FIG. 2 did not reach 300.degree. F. until the temperature of the hot plate had been elevated to 800.degree. F.
The improved insulating capability of the composite of FIG. 2 stems from the interposition of the insulating material 16 and its intimate contact with the PTFE coated substrate 12. Intimate contact is assured by the PFA adhesive interlayer 10. Intimate contact is believed to be critical in that any air space between the insulating material 16 and the coated substrate 12 can give rise to deleterious thermally driven air flow, which occurs in conventional installations as a result of sagging of insulation layers.
The single membrane composite of FIG. 2 is flexible and easily manipulated during installation. The outer PTFE film 14 provides the required fluid barrier properties, and remains fully protected from thermal deterioration by the insulating qualities of the inner insulation layer 16. The coated substrate 12 provides the required tensile strength.
FIG. 3 illustrates an alternate embodiment wherein the PTFE coated substrate 12 and the fiberglass fabric 16 are laminated by means of a non-integral film 10a of PFA. Here, the film has a thickness on the order of 10 mils, and thereby serves both as an adhesive and as a fluid barrier, thereby obviating the need to apply an external PTFE barrier film.
FIG. 4 illustrates still another embodiment of the invention, where the PFA adhesive interlayer consists of a non-integral PFA film 10c having a thickness on the order of 3 mils. The film 10c serves as the adhesive interlayer, but is rendered non-porous during lamination, thereby necessitating the further application of an external PTFE film 14.
Claims
  • 1. An integrally formed insulating composite comprising: a flexible fabric substrate coated on opposite surfaces with polytetrafluoroethylene; a fiberglass fabric insulating layer laminated to one surface of said substrate by means of a melt bondable fluoropolymer adhesive coating applied to said one surface; and a polytetrafluoroethylene tape laminated to the other surface of said substrate.
  • 2. An integrally formed insulating composite as claimed in claim 1, wherein the tape is unsintered prior to lamination and is sintered during lamination.
  • 3. An insulated and integrally formed expansion joint material comprising:
  • a reinforced fluid barrier having a polytetrafluoroethylene tape laminated to a flexible fabric substrate coated with polytetrafluoroethylene; and
  • a fiberglass insulating layer laminated to said reinforced fluid barrier by means of a melt bondable fluoropolymer adhesive interlayer interposed therebetween.
  • 4. An insulated and integrally formed expansion joint material comprising:
  • a reinforced fluid barrier including a polytetrafluoroethelene film laminated to a flexible fabric substrate coated with polytetrafluoroethylene; and
  • a layer of fiberglass laminated to said reinforced fluid barrier by means of a melt bondable fluoropolymer adhesive interlayer interposed therebetween.
Parent Case Info

This is a continuation of application Ser. No. 08/199,765 filed on Feb. 22, 1994, now abandoned, which is a continuation of Ser. No. 07/981,198, filed Nov. 25, 1992, now U.S. Pat. No. 5,296,287.

US Referenced Citations (41)
Number Name Date Kind
2833686 Sandt May 1958
3086071 Preston Apr 1963
3159609 Harris et al. Dec 1964
3446686 Butler et al. May 1969
3513064 Westley May 1970
3547765 Snyder et al. Dec 1970
3579370 Punderson et al. May 1971
3623903 Dislich Nov 1971
3899622 Geiger Aug 1975
3928703 Cook Dec 1975
4013812 Geiger Mar 1977
4090726 Mischel May 1978
4104095 Shaw Aug 1978
4165404 Quehl Aug 1979
4168298 Fitzgerald Sep 1979
4194041 Gore et al. Mar 1980
4272851 Goldstein Jun 1981
4327893 Bachmann et al. May 1982
4347268 Close Aug 1982
4399183 Withers Aug 1983
4421878 Close Dec 1983
4423183 Close Dec 1983
4443511 Worden et al. Apr 1984
4452848 Geiger Jun 1984
4487878 Vasta Dec 1984
4490501 Vasta Dec 1984
4493311 Bachmann Jan 1985
4493342 Bachmann Jan 1985
4495247 Vasta Jan 1985
4495248 Vasta Jan 1985
4506054 Vasta Mar 1985
4511162 Broyles Apr 1985
4555543 Effenberger et al. Nov 1985
4582296 Bachmann Apr 1986
4610918 Effenberger et al. Sep 1986
4654235 Effenberger et al. Mar 1987
4732413 Bachmann et al. Mar 1988
4749168 Maxwell et al. Jun 1988
4770927 Effenberger et al. Sep 1988
4883716 Effenberger et al. Nov 1989
4943473 Sahatjian et al. Jul 1990
Non-Patent Literature Citations (1)
Entry
Goldman, Edward J., Robert A. Rosenberg and Warren E. Lee, "How to Use Fluorocarbon Plastics as Bonding Agents", Adhesives Age, Feb. 1967, pp. 30-34.
Continuations (2)
Number Date Country
Parent 199765 Feb 1994
Parent 981198 Nov 1992