The disclosure pertains to single mode fiber beam combiners.
Fiber devices are convenient for generation and delivery of optical beams for numerous applications due to their small size and flexible beam delivery. To increase the available optical power for some applications, optical beams from two or more laser diodes are combined in a single fiber device. For example, some metal cutting applications require output powers of 2-100 kW or more from apertures of 50-100 μm in diameter. Typical fiber lasers are limited in output power to less than about 400-800 W and beams from multiple fiber lasers must be combined to achieve these power levels.
An example optical system for combining such beams is illustrated in
While the configuration of
While beams propagating in more than one single mode fiber can be combined by arranging the fibers in a bundle, such an arrangement does not provide a suitable combined beam. Optical fibers must have diameters of at least between 60-100 μm for mechanical strength so that a fiber bundle using such fibers would necessarily be larger than 50 μm. While combined beams delivered from such a bundle could be demagnified, demagnification produces unacceptable increases in beam numerical aperture.
Single mode beam combiners are disclosed herein that can produce superior optical powers and power distributions. In some disclosed examples, beam combiners comprise two or more single mode fibers, each having an input surface configured to receive a respective input optical beam. Each fiber has a core and a cladding along which the respective received optical beams propagate. In addition, each fiber includes a tapered portion, wherein the tapered portions of the two or more fibers are situated so as to define a bundled fiber portion having a combiner output surface. The tapered portions have tapers sufficient so that the input beams propagate in a lowest order mode at the fiber input surfaces but are either expanded in size while remaining guided by the cores or become unguided by the cores and guided in the multi-mode inner cladding formed by the fused cores of the input fibers. In the case of light guided by the inner cladding, the outer cladding may be formed by an air interface or alternatively by a lower index transparent material. In some embodiments, the input surfaces of the two or more single mode fibers are situated on flexibly separable fiber portions. In other examples, a tapered combiner cladding is in optical contact with and surrounds the bundled portion, the tapered combiner cladding having a refractive index that is less than a refractive index of the single mode fiber claddings. In other representative examples, the tapered portion of each of the single mode fibers is such that the bundled portion of the fibers and the combiner cladding form a multimode optical waveguide. In still other examples, a guide fiber has an input surface and extends to the combiner output surface, wherein the guide fiber is configured to deliver visible optical radiation to the output surface.
Illuminators comprise a plurality of single mode input optical fibers and a beam combiner having an input coupled to the input optical fibers and an output configured to deliver a combined beam. The beam combiner includes a plurality of tapered fiber portions corresponding to the single mode input optical fibers, wherein the tapered fiber portions are single mode waveguides or few mode waveguides that have waveguide modes corresponding to the input fiber modes at the coupling to the input fibers. Few mode waveguides typically are operated so as to have V-numbers of less than about 5. The tapered fiber portions are tapered so that the single waveguide modes expand to have mode field diameters that are at least twice the mode field diameter of the input optical fibers. An outer cladding may be situated about the tapered fiber portions so as to define a multimode waveguide in combination with the tapered fiber portions. Alternately, a waveguide may be formed by the air glass interface between the fused fibers and the surrounding air. In some examples, lasers such as diode lasers or fiber lasers are coupled to the single mode input fibers. In other examples, at least one of the tapered fiber portions is rare earth doped and is configured to receive pump radiation from other tapered fiber portions. In other embodiments, the single mode input fibers have mode field diameters of between about 5 μm and 15 μm, and the tapered fiber portions are tapered by at least a factor of two, five, or ten from an input to an output. In additional representative examples, an output multimode fiber is optically coupled to the tapered fiber portions. In some case the output from the tapered device may be coupled to pump a fiber laser. For example the output from an array of 1020 nm Yb-doped double clad fiber lasers may be combined to pump a Yb laser.
Optical amplifiers comprise a plurality of tapered pump fibers fused to a doped signal fiber and situated in an outer cladding. The pump fibers are single mode fibers tapered and fused so as to define a multimode core, and the signal fiber is a rare earth doped fiber operable to provide optical gain in response to pump radiation from the tapered pump fibers. In other examples, the multimode core defines a multimode fiber in combination with the outer cladding.
Tapered couplers comprise a plurality of tapered, fused single mode fibers enclosed in a glass ferrule or twisted around each other prior to fusing, the fibers tapered by a factor of at least 2. In some examples, at least one of the tapered single mode fibers includes at least a first core and a second core, and the second core defines a confined waveguide mode at a smaller end of the taper. In some embodiments, at least one of the tapered single mode fibers includes a core and a cladding, and at a smaller end of the taper, a waveguide mode extends to at least substantially all of a cladding cross-sectional area. In typical examples, the fibers are tapered by between a factor of 5 and 10.
Methods comprise inserting a plurality of single mode optical fibers through a glass ferrule and heating the fibers and the ferrule. The heated fibers and ferrule are stretched so as to fuse and taper the fibers and the ferrule to form a tapered bundle having an output surface. The single mode fibers are tapered so that that a multimode fiber is defined by the fused fibers and the ferrule or glass air interface. In other examples, at least one of the single mode fibers is a fiber having a first core and second core, and the second core defines a single mode waveguide after tapering. In further examples, the single mode fibers are tapered so that a mode defined by a fiber core expands to fill at least a tapered single mode fiber cladding.
Beam combiners comprise two or more few mode optical fibers having respective tapered portions that are situated so as to define a tapered fiber bundle. The tapered portions have tapers sufficient so that a mode field diameter of a lowest order mode associated with the few mode optical fibers is expanded by a factor of at least two. In some examples, the lowest order mode field diameter is expanded in the tapered portions to be substantially the same as a cladding diameter of the few mode optical fibers. In other examples, the tapered portions are configured so that a lowest order mode of each of the few mode optical fibers is substantially unguided by respective few mode optical fiber cores. In still other examples, the tapered portions are configured so that a lowest order mode of the few mode optical fibers is expanded so as to substantially occupy a cross-sectional area of the tapered fiber bundle. According to some examples, the few mode optical fibers have V-numbers of less than 5 or are single mode optical fibers. In some examples, input surfaces of the two or more few mode fibers are situated on flexibly separable fiber portions. In additional embodiments, a tapered combiner cladding is in optical contact with and surrounds the bundled portion, the tapered combiner cladding having a refractive index that is less than a refractive index of the few mode fiber claddings. In some examples, the tapered portions of each of the few mode fibers are fused to form the bundled portion so that the fused fibers and the combiner cladding form a multimode optical waveguide. According to some representative examples, the tapered portions are configured so that a lowest order mode of the few mode optical fibers is expanded so as to substantially fill a cross-section of the fused bundled portion.
In some examples, a tapered fiber bundle has an output surface, and a beam combiner further comprises a guide fiber extending through the bundled portion to the output surface. The guide fiber can be selected to permit the delivery of visible light to a work surface. In some examples, the beam combiner includes a single mode signal fiber having a corresponding tapered portion in the tapered fiber bundle, wherein the signal fiber is configured to be a few mode optical waveguide or a single mode optical waveguide in the tapered portion. In other embodiments, the beam combiner includes a double core fiber having a first core and a second core and having a tapered portion that is situated in the tapered fiber bundle, wherein the tapered second core defines a few mode fiber. Typically, the double core fiber is a most central fiber in the tapered fiber bundle. In some examples, the few mode fibers are double core fibers having a first core and a second core, wherein a most tapered portion of the tapered second core defines a few mode optical fiber. In additional examples, the beam combiner includes a signal fiber having a corresponding tapered portion in the tapered fiber bundle, wherein the signal fiber is configured to be a few mode optical fiber in the tapered portion.
Fiber assemblies comprise a beam combiner having a plurality of few mode input optical fibers that are fused and tapered to form a fiber bundle having an output surface. The few mode fibers are tapered so that optical beams received by the few mode input optical fibers are expanded by the tapering. An output fiber is optically coupled to the output surface of the beam combiner. In some examples, the output fiber is a double clad fiber having a core and an inner cladding, wherein the beam combiner is configured to optically couple the few mode input optical fibers and the inner cladding. In further examples, the beam combiner includes a signal fiber that is tapered in the fiber bundle so as to define a few mode fiber at the output surface, and is optically coupled to the core of the double clad fiber. In additional examples, a mode field diameter of a lowest order mode of the tapered signal fiber is substantially the same as a mode field diameter associated with the double clad fiber core. In other examples, the signal fiber is a double core fiber that is tapered in the fiber bundle so that a lowest order mode associated with a first core of the double core fiber expands so as to substantially fill a second core of the double core fiber. In still other examples, the few mode input optical fibers have claddings having refractive indices that are less than a refractive index of the outer cladding of the double core signal fiber so that the few mode optical fibers are optically coupled to the outer cladding. In some example, radiation sources are coupled to corresponding few mode input optical fibers. In some examples, the few mode fibers are single mode fibers.
Illuminators comprise a plurality of single mode input optical fibers and a beam combiner having an input coupled to the input optical fibers and an output configured to deliver a combined beam. The beam combiner includes a plurality of tapered fiber portions corresponding to the single mode input optical fibers, wherein the tapered fiber portions are single mode waveguides that have waveguide modes corresponding to the input fiber modes at the coupling to the input fibers. The tapered fiber portions are tapered so that the single waveguide modes expand to have mode field diameters that are at least twice the mode field diameter of the input optical fibers. In some examples, illuminators include an outer cladding situated about the tapered fiber portions so as to define a multimode waveguide in combination with the tapered fiber portions. In typical examples, laser diodes, fiber lasers, or other lasers are coupled to the single mode input fibers. In some examples, the single mode input fibers have mode field diameters of between about 5 μm and 15 μm, and the tapered fiber portions are tapered by at least a factor of between two and five from an input to an output. In other examples, an output multimode fiber is optically coupled to the tapered fiber portions.
Optical amplifiers comprise a plurality of tapered pump fibers fused to a single mode signal fiber to form a fiber bundle, wherein the pump fibers are single mode fibers tapered and fused so as to define a multimode core. A rare earth doped fiber is optically coupled to the fiber bundle, wherein the rare earth doped fiber is operable to provide optical gain in response to pump radiation from the tapered pump fibers. In some examples, an outer cladding has a refractive index that is less than a refractive index of pump fiber claddings.
Tapered couplers comprise a plurality of tapered, fused single mode fibers enclosed in a glass ferrule, the fibers tapered by a factor of at least 2. In some examples, at least one of the tapered single mode fibers includes at least a first core and a second core, and the second core defines a confined waveguide mode at a smaller end of the taper. In additional examples, at least one of the tapered single mode fibers includes a core and a cladding, and at a smaller end of the taper, a waveguide mode of the at least one tapered single mode fibers extends to at least substantially all of a cladding cross-section. In typical examples, the fibers are tapered by between a factor of 5 and 10.
The foregoing and other objects, features, and advantages of the technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.”
The described systems, apparatus, and methods described herein should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and non-obvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed systems, methods, and apparatus are not limited to any specific aspect or feature or combinations thereof, nor do the disclosed systems, methods, and apparatus require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed systems, methods, and apparatus can be used in conjunction with other systems, methods, and apparatus. Additionally, the description sometimes uses terms like “produce” and “provide” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms will vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
Theories of operation, scientific principles, or other theoretical descriptions presented herein in reference to the apparatus or methods of this disclosure have been provided for the purposes of better understanding and are not intended to be limiting in scope. The apparatus and methods in the appended claims are not limited to those apparatus and methods which function in the manner described by such theories of operation.
Optical fibers or other optical waveguides are generally based on a variation of refractive index as a function of distance from a propagation axis. Such refractive index variations include so-called index steps such as those associated with typical step index fibers and continuous variations such as those associated with typical gradient index fibers. Many convenient examples are based on optical fibers having circular cross-sections. Such fibers generally include a central core that is surrounded by a cladding region and the core and cladding are selected to provide guided wave propagation. As described further below, some fibers include two or more cores or claddings.
In the disclosed examples, optical fibers or other waveguides or other optical elements or surfaces thereof are associated with inputs or outputs. It will be apparent that inputs and outputs can be reversed, depending on a particular application. In addition, the disclosed examples are typically described with reference to wavelengths between about 200 nm and 2000 nm, and typically between about 700 nm and 1600 nm, but other wavelengths and wavelength ranges can be used, and the disclosure is not limited to visible wavelengths. For purposes of this disclosure, a core of a single mode optical fiber waveguide is a portion of the fiber or waveguide that serves to guide optical radiation along a direction of propagation. A maximum radiation intensity occurs in the core for radiation propagating in the lowest order (single) mode. The described embodiments are typically based on fibers and other structures having circular cross-sections, but fibers and combiners can have circular, elliptical, oval, square, or polygonal or other cross-sectional areas or combinations of cross-sectional areas.
In the disclosed embodiments, combiners are formed by inserting a plurality of single mode optical fibers (without buffer coatings) into a glass ferrule and tapering and fusing the fibers and ferrule. In other examples, two or more fibers are formed into a bundle and then twisted and looped, and a twisted region of the fibers can be fused and tapered.
While single mode fibers are convenient, in some examples fibers that support a few modes are used and are referred to herein as “few mode” fibers. Such fibers have a normalized frequency parameter (V-number) defined as V=(2πa/λ)(ncore2−nclad2)1/2, wherein λ is vacuum wavelength, a is a fiber core radius, and ncore, nclad are fiber core and fiber cladding refractive indices, respectively. A total number M of modes supported by a fiber is M=4V2/π2. For single mode fibers, V is less than about 2.405. As used herein, a few mode fiber is defined as a fiber for which a V-number is less than about 2.5, 3, 3.5, 4, 4.5, or 5.
In some examples, so-called double clad or double core fibers are used. A double clad fiber typically includes a core, an inner cladding, and an outer cladding. The core is typically selected to define a single mode (or few mode) waveguide, while the inner cladding defines a multimode core. Generally, a refractive index difference between the inner cladding and the outer cladding is relatively large so that a numerical aperture of the multimode waveguide defined by the inner and outer claddings can be large. A double core fiber typically includes a first (inner) core, a second (outer) core, and an outer cladding. The first core is selected to define a single mode (or few mode) waveguide prior to any tapering. The second core is selected to define a single mode (or few mode) waveguide after tapering. Generally refractive index differences between first core, second core, and outer cladding are relatively small.
In representative examples, two or more nearly diffraction limited optical beams produced by, for example, laser diodes, fiber lasers, other lasers, or combinations thereof are combined to produce a combined beam of comparable beam quality. Beam quality can be conveniently assessed based on a so-called beam parameter product (BPP) which is defined as a product of a beam radius measured at a beam waist and a beam divergence (angular radius) in a far field region. BPP is typically measured in units of mm-mrad, and smaller BPPs correspond to better beam quality. For a diffraction limited Gaussian beam, BPP=λ/π. For a beam having λ=1064 nm, the diffraction limited BPP is about 0.339 mm-mrad. Typical Yb-doped fiber lasers at wavelengths between about 1070 nm and 1090 nm produce beams with BPPs of about 0.4 mm-mrad. In some applications, combined beams in a 50 μm diameter aperture with a 0.1 numerical aperture, or a BPP of about 5 mm-mrad are advantageous. Because the BPP of typical laser sources is more than 10 times less than that required, such a beam combination is theoretically possible. The disclosed examples permit achieving BPPs that can approach BPP theoretical limits, but are not limited to devices that offer such performance.
Typical beam combiners 200A-200B as manufactured are illustrated in
A diameter or entrance aperture of the outer cladding 204 can be selected so that the fibers 202A-202G fit within the entrance aperture without substantial gaps between the fibers. Typically, the optical fibers 202A-202G substantially fill the entrance aperture 220. A beam combiner such as the beam combiner 200 can be conveniently fabricated by selecting a plurality of single mode optical fibers or other fibers, and inserting the fibers, preferably without any polymer or other protective coatings, into a glass tube that can serve as an outer cladding. The fibers may but need not extend through the glass tube. The glass tube and fibers are then heated so that the fibers and the surrounding glass tube can be drawn so as to taper. The amount and rate of taper can be selected as needed. Typically, sufficient taper is provided so that an output aperture at a smallest portion of a taper corresponds to an aperture size suitable for a particular application, or so that a suitable beam numerical aperture is achieved. As noted above, the taper can be selected to be asymmetric or symmetric.
The glass tube or other outer cladding can have round, square, elliptical, polygonal or other cross-sectional shapes. While a plurality of single mode fibers of a common design can be used, in other examples, various combinations of fibers can be used, including single mode fibers at different wavelengths, multimode fibers, double clad fibers, or combinations thereof. In some examples, other structures such as solid glass or metal rods or tubes can be inserted along with the fibers to provide additional mechanical strength or to provide an aperture through which the input and output ends are connected. In some examples, one or more of the fibers is a single mode fiber at a visible wavelength and can be used to provide a visible beam along with the infrared beams provided by other fibers. A visible beam can simplify alignment of the beam combiner with a target. In other examples, a multimode fiber is provided and is coupled to a detector or detection system at an input end of the beam combiner to aid in monitoring optical power reflected or scattered from a work surface.
One convenient fabrication method for such beam combiners is illustrated in
It will be appreciated that it is convenient to extend fibers through a ferrule to perform the fusing and tapering operations. Such a procedure produces two combiners (see, for example,
A representative portion of a tapered region 500 of such a combiner is illustrated in
The taper can be selected as follows. At the input end 510, beams propagating in the fibers 502, 503 are substantially confined in a lowest order mode and are substantially confined in the fiber cores 504, 505. Within the tapered glass ferrule 514, the fiber diameters taper as well. As the fiber cores taper, the lowest order mode associated with each of the fibers grows in diameter. In a confined region 521, each of the fibers continues to provide single mode propagation, typically with propagation characteristics that are established during fiber manufacture. In an expanded mode region 522, the fiber cores 504, 505 are sufficiently decreased in cross section so that the fiber mode diameter expands, but the fibers continue to serve as waveguides. In an unguided region 523, the fiber cores 504, 505 have sufficiently decreased in cross section so that the fiber modes are no longer confined by the single mode fiber core/cladding interfaces, and the beams are unguided or weakly guided by the fiber cores 504, 505. In a guided multi-mode region 524, the beams from the fibers 502, 503 have expanded so as to be confined by the outer cladding provided by the ferrule 514. In a tapered multimode region 525, the multimode waveguide defined by the tapered fibers 502, 503 and the ferrule 514 is further tapered to provide a selected numerical aperture or multi-mode fiber core diameter.
Expansion of beam diameter associated with decreasing core diameter is indicated schematically in
While a fusion process is convenient, beam combiners can be formed by other processes. For example, a plurality of fibers can be tapered and fitted into a glass tube or other ferrule, and surrounded by an optically transmissive material of a suitable refractive index to serve as an outer cladding. Typically the tapered fibers should be in contact with each other, so that they are not separated (or not well separated) by the outer cladding material. If assembled in this manner, the ferrule need not be optically transmissive as it serves only to provide mechanical support. In some examples, the ferrule can be used during assembly and then removed. For example, an optical epoxy can be used as an outer cladding and cured within the ferrule. After curing is complete, the ferrule can be removed or left in place. It is generally preferable that any outer cladding material between fibers be thin or other spaces small enough so that fiber modes can expand in the tapered region.
To provide convenient taper lengths, a large diameter fiber can be coupled to a smaller diameter fiber that is more suited to tapering to produce the mode field transformation of
With reference to
With reference to
In one example of a system such as illustrated in
As discussed above with reference to
After tapering, the refractive indices of the first and second cores and the inner and outer claddings do not change, but fiber dimensions are reduced. The first core is reduced in size so that it can provide little or very weak guiding, and an expanded mode 1312 fills the second core. Preferably, dimensions of the second core are selected so that mode field diameter is at or near a minimum after tapering (i.e., at or near a minimum such as that shown in
An example of a beam combiner based on dual core fibers is illustrated in
An arrangement for pumping a single mode core for amplification of an optical signal is shown in
Use of a beam combiner to pump a double core fiber amplifier is illustrated in
A representative portion of a tapered region of a fused pump/signal combiner 1900 is illustrated in
Another representative tapered pump/signal combiner is shown in
In yet another example,
In another example, improved overlap between pump and signal modes can be provided based on a central signal fiber surrounded by low index cladding pump fibers, which are in turn surrounded by a still lower index glass ferrule. Improved overlap can minimize or reduce the required length of pumped fiber to produce sufficient gain for some applications, and can reduce undesirable non-linear effects such as stimulated Brillouin scattering (SBS). A refractive index profile for such a “triple core” structure is shown in
As shown in
The above embodiments are representative examples only, and we claim all that is encompassed by the appended claims and the equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
3505046 | Phaneuf | Apr 1970 | A |
4046537 | Deserno et al. | Sep 1977 | A |
4072399 | Love | Feb 1978 | A |
4087159 | Ulrich | May 1978 | A |
4179185 | Hawk | Dec 1979 | A |
4773924 | Berkey | Sep 1988 | A |
4818062 | Scifres et al. | Apr 1989 | A |
4871487 | Laursen | Oct 1989 | A |
5011251 | Miller et al. | Apr 1991 | A |
5017206 | Miller et al. | May 1991 | A |
5153932 | Blyler, Jr. et al. | Oct 1992 | A |
5239176 | Stevenson | Aug 1993 | A |
5259046 | DiGiovanni et al. | Nov 1993 | A |
5295210 | Nolan et al. | Mar 1994 | A |
5295211 | Weidman | Mar 1994 | A |
5305414 | Higby et al. | Apr 1994 | A |
5408554 | Cryan et al. | Apr 1995 | A |
5448673 | Murphy et al. | Sep 1995 | A |
5461692 | Nagel | Oct 1995 | A |
5568318 | Leger et al. | Oct 1996 | A |
5579422 | Head et al. | Nov 1996 | A |
5629997 | Hardy | May 1997 | A |
5664037 | Weidman | Sep 1997 | A |
5668903 | Neuberger et al. | Sep 1997 | A |
5715270 | Zediker | Feb 1998 | A |
5729643 | Hmelar et al. | Mar 1998 | A |
5734766 | Flint | Mar 1998 | A |
5745284 | Goldberg et al. | Apr 1998 | A |
5818630 | Fermann et al. | Oct 1998 | A |
5825803 | Labranche | Oct 1998 | A |
5864644 | DiGiovanni et al. | Jan 1999 | A |
5867305 | Waarts et al. | Feb 1999 | A |
5873923 | DiGiovanni | Feb 1999 | A |
5887097 | Henry et al. | Mar 1999 | A |
5935288 | DiGiovanni et al. | Aug 1999 | A |
5949932 | Lawrenz-Stolz | Sep 1999 | A |
6031953 | Rekow et al. | Feb 2000 | A |
6044096 | Wolak et al. | Mar 2000 | A |
6078716 | Huang et al. | Jun 2000 | A |
6101199 | Wang et al. | Aug 2000 | A |
6134362 | Au-Yeung et al. | Oct 2000 | A |
6198858 | Pan et al. | Mar 2001 | B1 |
6272268 | Miller et al. | Aug 2001 | B1 |
6278816 | Keur et al. | Aug 2001 | B1 |
6292608 | Toh | Sep 2001 | B1 |
6373868 | Zhang | Apr 2002 | B1 |
6385371 | Li | May 2002 | B1 |
6397636 | DiGiovanni et al. | Jun 2002 | B1 |
6404954 | Zhu et al. | Jun 2002 | B1 |
6421489 | Berkey et al. | Jul 2002 | B1 |
6434295 | MacCormack et al. | Aug 2002 | B1 |
6434302 | Fidric et al. | Aug 2002 | B1 |
6477295 | Lang et al. | Nov 2002 | B1 |
6496301 | Koplow et al. | Dec 2002 | B1 |
6516124 | Po | Feb 2003 | B2 |
6532244 | Dewey et al. | Mar 2003 | B1 |
6608951 | Goldberg et al. | Aug 2003 | B1 |
6666590 | Brosnan | Dec 2003 | B2 |
6668112 | Kaneda | Dec 2003 | B1 |
6700709 | Fermann | Mar 2004 | B1 |
6731837 | Goldberg et al. | May 2004 | B2 |
6778732 | Fermann | Aug 2004 | B1 |
6816652 | Lin et al. | Nov 2004 | B1 |
6868236 | Wiltsey et al. | Mar 2005 | B2 |
6907163 | Lewis | Jun 2005 | B2 |
6956876 | Aquaro et al. | Oct 2005 | B1 |
6970624 | DiGiovanni et al. | Nov 2005 | B2 |
6990278 | Vakili et al. | Jan 2006 | B2 |
7016573 | Dong et al. | Mar 2006 | B2 |
7046432 | Starodoumov | May 2006 | B2 |
7046875 | Gonthier et al. | May 2006 | B2 |
7209615 | Fishteyn | Apr 2007 | B2 |
7221822 | Grudinin et al. | May 2007 | B2 |
7236671 | Rasmussen | Jun 2007 | B2 |
7272956 | Anikitchev et al. | Sep 2007 | B1 |
7327920 | Dong et al. | Feb 2008 | B2 |
7336872 | Malo | Feb 2008 | B1 |
7343074 | Gallagher et al. | Mar 2008 | B1 |
7420996 | Schulte et al. | Sep 2008 | B2 |
7436868 | Schulte et al. | Oct 2008 | B2 |
7437046 | DiGiovanni et al. | Oct 2008 | B2 |
7443895 | Schulte et al. | Oct 2008 | B2 |
7526165 | Nielsen et al. | Apr 2009 | B2 |
7532792 | Skovgaard et al. | May 2009 | B2 |
7539377 | Gonthier | May 2009 | B2 |
7561769 | Fujimoto et al. | Jul 2009 | B2 |
7574087 | Inoue et al. | Aug 2009 | B2 |
7586963 | Schulte et al. | Sep 2009 | B2 |
7606452 | Bilodeau et al. | Oct 2009 | B2 |
7637126 | Koeppler et al. | Dec 2009 | B2 |
7729574 | Moriarty | Jun 2010 | B2 |
7746545 | Okuno | Jun 2010 | B2 |
7760978 | DiGiovanni et al. | Jul 2010 | B2 |
7787733 | DiGiovanni et al. | Aug 2010 | B2 |
7957432 | Seo et al. | Jun 2011 | B2 |
7991255 | Salokatve | Aug 2011 | B2 |
8068705 | Gapontsev et al. | Nov 2011 | B2 |
8213070 | Koplow | Jul 2012 | B2 |
8248688 | Baird et al. | Aug 2012 | B2 |
8346038 | Gonthier | Jan 2013 | B2 |
8433168 | Filippov et al. | Apr 2013 | B2 |
RE44262 | Gonthier et al. | Jun 2013 | E |
8457456 | Kopp et al. | Jun 2013 | B2 |
8472765 | Holland | Jun 2013 | B2 |
8483533 | Mehl | Jul 2013 | B1 |
8498046 | Dong et al. | Jul 2013 | B2 |
8711471 | Liu et al. | Apr 2014 | B2 |
20020172486 | Fermann | Nov 2002 | A1 |
20030021530 | Li | Jan 2003 | A1 |
20030031442 | Siegman | Feb 2003 | A1 |
20040228593 | Sun et al. | Nov 2004 | A1 |
20050008044 | Fermann et al. | Jan 2005 | A1 |
20050041702 | Fermann et al. | Feb 2005 | A1 |
20050226286 | Liu et al. | Oct 2005 | A1 |
20050265653 | Cai et al. | Dec 2005 | A1 |
20050265678 | Manyam et al. | Dec 2005 | A1 |
20050276556 | Williams et al. | Dec 2005 | A1 |
20060215976 | Singh et al. | Sep 2006 | A1 |
20070062222 | Janka et al. | Mar 2007 | A1 |
20070086501 | Karlsen | Apr 2007 | A1 |
20070116071 | Schulte et al. | May 2007 | A1 |
20070116077 | Farmer et al. | May 2007 | A1 |
20070196062 | Inoue et al. | Aug 2007 | A1 |
20070237453 | Nielsen et al. | Oct 2007 | A1 |
20070266738 | Gallagher et al. | Nov 2007 | A1 |
20070280597 | Nakai et al. | Dec 2007 | A1 |
20080050069 | Skovgaard et al. | Feb 2008 | A1 |
20080063348 | Kumano et al. | Mar 2008 | A1 |
20080118213 | Andrieu et al. | May 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080170823 | Gonthier | Jul 2008 | A1 |
20080205840 | Wakabayashi et al. | Aug 2008 | A1 |
20090003788 | Galvanauskas | Jan 2009 | A1 |
20090010286 | Messaddeq et al. | Jan 2009 | A1 |
20090052840 | Kojima et al. | Feb 2009 | A1 |
20090060417 | Bilodeau et al. | Mar 2009 | A1 |
20090092365 | Donlagic | Apr 2009 | A1 |
20090136176 | Kopp et al. | May 2009 | A1 |
20090202204 | Nielsen et al. | Aug 2009 | A1 |
20100111118 | Seo et al. | May 2010 | A1 |
20100142894 | Gonthier | Jun 2010 | A1 |
20100247047 | Filippov et al. | Sep 2010 | A1 |
20100278486 | Holland et al. | Nov 2010 | A1 |
20110032602 | Rothenberg | Feb 2011 | A1 |
20110032603 | Rothenberg | Feb 2011 | A1 |
20110032604 | Rothenberg et al. | Feb 2011 | A1 |
20110058250 | Liu et al. | Mar 2011 | A1 |
20110069723 | Dong et al. | Mar 2011 | A1 |
20110100066 | Bohme et al. | May 2011 | A1 |
20110157671 | Koplow | Jun 2011 | A1 |
20110305250 | Chann et al. | Dec 2011 | A1 |
20120127563 | Farmer et al. | May 2012 | A1 |
20120219026 | Saracco et al. | Aug 2012 | A1 |
20120230352 | Minelly et al. | Sep 2012 | A1 |
20120260781 | Price et al. | Oct 2012 | A1 |
20130287338 | Majid et al. | Oct 2013 | A1 |
20140119694 | Abedin et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2176840 | Dec 2001 | RU |
WO 9210014 | Jun 1992 | WO |
WO 9742533 | Nov 1997 | WO |
WO 2005022705 | Mar 2005 | WO |
WO 2009043968 | Apr 2009 | WO |
WO 2011066440 | Jun 2011 | WO |
WO 2013102033 | Jul 2013 | WO |
Entry |
---|
Eidam et al., “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35:94-96 (2010). |
Geshiro et al., “Truncated parabolic-index fiber with minimum mode dispersion,” IEEE Transaction on Microwave Theory and Technology, 26(2):115-119, 1978. |
Geshiro et al., “Analysis of wave modes in slab waveguide with truncate parabolic index,” IEEE Jouranl of Quantum Electronics, 10(9):647-649, 1974. |
International Search Report from International Application No. PCT/US2012/072003, dated Apr. 4, 2013, 2 pp. |
International Search Report from International Application No. PCT/US2013/030569, dated Jul. 4, 2013, 3 pp. |
Niels Asger Mortensen, “Air-clad fibers: pump absorption assisted by chaotic wave dynamics?,” Optics Express, vol. 15, No. 14, Jul. 9, 2007 (published Jul. 5, 2007). |
nLIGHT Corporation, “nLIGHT Introduces New Line of All Fiber Mode Field Tapers” Jan. 23, 2009 News Release, http://nlight.net/new/releases/92˜nLIGHT-Introduces-New-Line-of-All-Fiber-Mode-Field, downloaded Jan. 18, 2014. |
nLIGHT, spreadsheet listing Order dates for tapers. |
Russbueldt et al., “400 W Yb:YAG Innoslab fs-amplifier,” Optics Express, vol. 17(15):12230-12245 (2009). |
Stolzenburg et al., “Picosecond Regenerative Yb:YAG Thin Disk Amplifier at 200 kHz Repetition Rate and 62 W Output Power,” Advanced Solid-State Photonics, OSA Tech Digest, MA6 (2007). |
Written Opinion from International Application No. PCT/US2013/030569, dated Jul. 4, 2013, 5 pp. |
Written opinion from International Application No. PCT/US2012/072003, dated Apr. 4, 2013, 3 pp. |
Jauregui et al., “All-fiber Side Pump Combiner for High Power Fiber Lasers and Amplifiers,” Proc. of SPIE, 7580:75801E-1-75801E-8 (2010). |
“Pump and Signal Taper for Airclad Fibers Final Report,” Air Force Research Laboratory, 8 pages (May 1, 2006). |
International Search Report from PCT Publication No. PCT/US2013/077242, 2pp. (dated May 22, 2014). |
International Search Report from PCT Publication No. PCT/US2013/077243, 2pp. (dated Apr. 17, 2014). |
Written Opinion from PCT Publication No. PCT/US2013/077242, 4pp. (dated May 22, 2014). |
Written Opinion from PCT Publication No. PCT/US2013/077243, 4pp. (dated Apr. 17, 2014). |