The present invention relates to a single mode laser, in particular a single mode slotted laser comprising a facet coating for additional side mode suppression. The invention further relates to a method of manufacturing a single mode slotted laser and a method of side mode suppression in a slotted laser.
Fabry Perot laser diodes containing discrete refractive index perturbations have being shown to operate in a single longitudinal mode over a wide temperature range, see EP 1 214 763 (Trinity College Dublin) and IE S2003/0516 (Eblana Photonics Limited) the contents of which are incorporated herein by reference. So called “slotted lasers”, which achieve single longitudinal mode emission by means of optical feedback resulting from the formation of slot features along the laser cavity, are also disclosed in Irish Patent No S82521 (National University of Ireland, Cork).
For ease of description the term “slot” will be taken to include a slot etched, or otherwise formed, in a part of the laser cavity as well as any other form of discrete refractive index perturbation which has the effect of modifying optical feedback within the cavity. Suitable such refractive index perturbation means are disclosed in the prior art cited above.
Typically the wider the temperature range which the device is expected to work over the greater the level of optical feedback which required from the slot features. However the introducing slot features which are capable of providing optical feedback is accompanied by an increase in the internal loses of the laser diode. This is an undesirable effect, the primary result of which is to lower the slope efficiency of the laser diode in question. In order to minimise internal loses it is therefore appropriate to keep the number of etch slot features to a minimum. This requires a slot pattern that provides just enough optical feedback to ensure that the laser operates in a single longitudinal mode over the temperature range of interest.
It is an object of the present invention to address the difficulties which arise in balancing the internal loses arising from the incorporation of slots with the need for sufficient optical feedback within the laser cavity.
It is further object of the invention to provide a slotted laser which allows greater flexibility in slot pattern design taking into account the difficulties set out above.
Accordingly the invention provides a laser in accordance with claim 1 with advantageous embodiments detailed in dependent claims thereto. The invention also provides a method of forming a laser in accordance with claim 9 and a method of suppressing side modes in accordance with claim 10.
In accordance with a first embodiment, the present invention provides a laser emitting light of substantially a single wavelength comprising: a lasing cavity, having a lasing medium and primary optical feedback means in the form of a facet at either end of the cavity; and secondary optical feedback means in the form of one or more effective refractive index perturbations in the lasing cavity; wherein at least one of the facets preferentially reflects a specific wavelength or band of wavelengths.
Either or both of the facets may comprise a coating which preferentially reflects a desired wavelength or band of wavelengths.
Suitably either or both facets may comprise a coating formed from one or more layers of material selected from the group consisting of SiO2, TaO2, Si, Al2O3 and mixtures thereof.
Preferably, either or both facets are adapted to preferentially reflect light at the wavelength the laser is designed to emit at.
The invention also provides a method of manufacturing a laser emitting light of substantially a single wavelength comprising the steps of:
forming a lasing cavity, having a lasing medium and primary optical feedback means in the form of a facet at either end of the cavity; forming secondary optical feedback means in the form of one or more effective refractive index perturbations in the lasing cavity; and applying to at least one of the facets a coating which preferentially reflects a specific wavelength or band of wavelengths.
The present invention further provides a method of suppressing side modes in a slotted laser emitting light of substantially a single wavelength (single mode) comprising the step of applying a coating to either or both facets of a laser, wherein said coating preferentially reflects a specific wavelength or band of wavelengths.
The invention is described in detail below with reference to the accompanying drawings in which:
In order to provide more flexibility in slotted laser design while taking into account the internal loses arising as a result of the incorporation of slots, the present invention provides a means of facilitating a reduction in the level optical feedback which is needed from the slot pattern in order to achieve single mode operation over a specified temperature range. This in turn leads to higher slope efficiencies, and ultimately to greater output powers from uncooled laser diodes containing slot features.
It has been shown (“Deep-Etched Distributed Bragg Reflector Lasers with curved mirrors—Experiments and Modeling”—IEEE Journal of Quantum Electronics, Vol. 37, No. 6, June 2001, Modh et al) that the ratio of reflected to scattered power is far larger for index changes that have a confinement factor of 1.0 with the guided mode (
The basis of the present invention is the finding that the above effect can be used to complement the optical feedback which is provided by a pattern of etched slot features. More specifically the mirror loss spectra of a laser diode can be more efficiently manipulated by the combination of an appropriate pattern of slot features and suitable facet coatings, rather than a pattern of slot features alone. Furthermore such coatings are especially appropriate for use in conjunction a discrete number of etched slot features, since, in these structures, the longitudinal modes are determined by the laser facets and the coatings which are applied to them. Therefore, the mirror loss profiles of the coatings applied to either facet will be almost independent of cleave accuracy and cavity length. This is not the case in DFB laser, since in such devices the primary source of feedback is provided by the grating and not the cavity mirrors. In order to complement the mirror loss profile of the slot pattern the reflectivity spectra of coatings used preferably have a global or local maxima at, or near, the design wavelength of the laser diode. Other factors that may affect the efficiency and the effectiveness of a particular coating design are thickness of the coating and relative curvature of the reflectivity spectrum with respect to wavelength. The thickness of the coating should preferably be kept as thin as possible in order to minimise both the scattering loses within the coating itself and the stress placed upon the laser facet. Furthermore it is preferable to have the relative curvature of the reflectivity spectrum high enough to discriminate against the presence of unwanted side modes.
The facet coatings typically comprise one or more layers, the imaginary refractive index of which is negligible at the wavelength of interest (in other words there is no loss due to absorption by the coating material, ie the band gap of the material is greater than the design wavelength of the device) and which can be controllably deposited on the laser facets using available coating technologies. Suitable such materials include for example SiO2, TaO2, Si, Al2O3 and mixtures thereof.
A laser according to the invention may be produced by forming a lasing cavity, having a lasing medium and primary optical feedback means in the form of a facet at either end of the cavity; forming secondary optical feedback means in the form of one or more effective refractive index perturbations in the lasing cavity; and applying to at least one of the facets a coating which preferentially reflects a specific wavelength or band of wavelengths. Such a process may typically involve some or all of the following processing steps:
In the description of specific embodiments that follows, it is only a coating on the output facet of the laser together with the etched slot features that are used alter the shape mirror loss spectra of the device. However, coatings on either or both facets of the laser may be used to adapt the mirror loss spectra of the device. Also within the scope of the invention are any and all lasers diodes containing discrete features that locally perturb the effective index of the guided mode, coated in such a way that the mirror loss spectra of the coating and that of the laser complement each other. Lasers according to the invention facilitate single mode operation over wider temperatures ranges than would otherwise be possible and enhance output power.
The coating may comprise one or more layers which may be formed of any material or combination of materials which provide selective or preferential reflection of the wavelength or wavelengths desired.
A first embodiment of the invention employs a class of coatings which comprises one or more layers whose thickness, d, is given by
In this equation λ is the free space wavelength of the laser light and n is the refractive index of the coating layer in question. Layers whose thicknesses obey the above criteria are termed “half wave layers” since their thicknesses are equal in length to half the wavelength of light in that particular material. Due to the previously discussed considerations regarding coating thickness and facet stress, it is less preferred to consider coatings with more than ten such layers. Other embodiments may use a multiple of “2n” as the denominator in the above equation.
The present invention also incorporates coatings which have a larger relative curvature for a given thickness of coating material compared to the “half wave design” discussed above. To illustrate this point the calculated mirror loss spectra for two lasers according to the invention are shown in
The first instance (
It is clear from
The invention has been described with regard to preferred embodiments which, it will be appreciated, are illustrative of the invention and are not intended to limit the invention in any way. It will be appreciated that modifications can be made to the described exemplary embodiments without departing from the spirit and scope of the invention and it is not intended that the invention be limited in any way except as may be deemed necessary in the light of the appended claims. Furthermore the words comprises/comprising when used in this specification are to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
Number | Date | Country | Kind |
---|---|---|---|
S2004/0497 | Jul 2004 | IE | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP05/53392 | Jul 2005 | US |
Child | 11656931 | Jan 2007 | US |