Single mode optical fiber

Abstract
An optical transmission fiber includes a central core having an index difference Δn1 with an outer optical cladding; a first inner cladding having an index difference Δn2 with the outer cladding; and a second buried inner cladding having an index difference Δn3 with the outer cladding of less than −3.10−3. The second buried inner cladding moreover contains Germanium in a weight concentration of between 0.5% and 7%. The fiber shows reduced bending and microbending losses whilst exhibiting the optical performances of a standard single-mode fiber (SSMF).
Description

The present invention relates to the field of optical fiber transmissions, and more specifically to a line fiber having reduced bending and microbending losses.


For optical fibers, the index profile is generally qualified in relation to the plotting of a graph showing the function associating the refractive index of the fiber with the radius of the fiber. Conventionally, the distance r to the center of the fiber is shown along the abscissa axis, and the difference between the refractive index and the refractive index of the fiber cladding is shown along the ordinate axis. The index profile is therefore described as “step”, “trapezoid” or “triangular” for graphs respectively showing step, trapezoid or triangular shapes. These curves are generally representative of the theoretical or set profile of the fiber, the stresses of fiber manufacture possibly leading to a substantially different profile.


An optical fiber conventionally consists of an optical core whose function is to transmit and optionally amplify an optical signal, and an optical cladding whose function is to confine the optical signal within the core. For this purpose, the refractive indexes of the core nc and of the cladding ng are such that nc>ng. As is well known, the propagation of an optical signal in a single-mode optical fiber breaks down into a fundamental mode guided in the core, and into secondary modes guided over a certain distance in the core-cladding assembly and called cladding modes.


As line fibers for optical fiber transmission systems, Single Mode Fibers (SMF) are typically used. These fibers show chromatic dispersion and a chromatic dispersion slope meeting specific telecommunications standards.


For the needs of compatibility between the optical systems of different manufacturers, the International Telecommunication Union (ITU) has laid down a standard referenced ITU-T G.652 which must be met by a Standard Single Mode Fiber (SSMF).


This G.652 standard for transmission fibers, recommends inter alia, a range of [8.6; 9.5 μm] for the Mode Field Diameter (MFD) at a wavelength of 1310 nm; a maximum of 1260 nm for the cabled cut-off wavelength; a range of [1300;1324 nm] for the dispersion cancellation wavelength denoted λ0; a maximum of 0.093 ps/nm2-km for the chromatic dispersion slope. The cabled cut-off wavelength is conventionally measured as the wavelength at which the optical signal is no longer single-mode after propagation over twenty-two meters of fiber, such as defined by sub-committee 86A of the International Electromechanical Commission under standard IEC 60793-1-44.


Also, for a given fiber, a so-called MAC value is defined as the ratio of the mode field diameter of the fiber at 1550 nm over the effective cut-off wavelength λceff otherwise called cut-off wavelength. The cut-off wavelength is conventionally measured as the wavelength at which the optical signal is no longer single-mode after propagation over two meters of fiber such as defined by sub-committee 86A of the International Electrotechnical Commission under standard IEC 60793-1-44. The MAC value is used to assess fiber performance, in particular to find a compromise between mode field diameter, effective cut-off wavelength and bending losses.



FIG. 1 illustrates the experimental results of the applicant giving the bending losses at a wavelength of 1625 nm with a bending radius of 15 mm in a standard SSMF fiber in relation to the MAC value at a wavelength of 1550 nm. It can be seen that the MAC value influences the bending losses of the fiber and that these bending losses may be reduced by reducing the MAC value.


However, a reduction in the MAC value by reducing the mode field diameter and/or by increasing the effective cut-off wavelength, may lead to overstepping the G.652 standard, making the fiber commercially incompatible with some transmission systems.


Adhering to the G.652 standard and the reduction in bending losses is a true challenge for applications of fibers intended for optical fiber systems to homes, called Fiber To The Home systems (FTTH) or fiber optical systems up to the curb or up to the building, so-called fibers to the curb (FTTC).


Indeed, a transmission system through optical fibers comprises storage boxes in which fiber overlengths are provided in the case of future interventions; these overlengths are wound in the boxes. Because of the intention to miniaturize these boxes for FTTH or FTTC applications, the single mode fibers in this context are intended to be wound on increasingly small diameters (so as to reach bending radii as small as 15 mm or 11 mm). Moreover, within the scope of FTTH or FTTC applications, the fiber risks being subject to harsher installation constraints than in applications at longer distances, i.e., the presence of accidental bendings related to the low cost of the installation and to the environment. Provision must be made for the presence of accidental bending radii equal to 7.5 mm or even 5 mm. It is therefore absolutely necessary in order to meet the constraints related to the storage boxes and to the installation constraints that the single mode fibers used for FTTH or FTTC applications have limited bending losses. Nevertheless it is understood that this reduction in bending losses should not be achieved to the detriment of a loss of the single mode character of the signal which would strongly deteriorate the signal or to the detriment of introducing significant junction optical losses.


The publication by S. Matsuo et al. “Bend-Insensitive and Low Splice-Loss Optical Fiber for Indoor Wiring in FTTH”, OFC'04 Proceedings, paper Th13 (2004) describes an index profile for single mode fiber (SMF) which enables a reduction in bending losses. However, this fiber shows a chromatic dispersion of between 10.2 ps/nm-km and 14.1 ps/nm-km which lies outside the G.652 standard.


The publication by I. Sakabe et al. “Enhanced Bending Loss Insensitive Fiber and New Cables for CWDM Access Networks”, 53rd IWCS Proceedings, pp. 112-118 (2004) proposes reducing the Mode Field Diameter to reduce bending losses. This reduction in mode field diameter leads however to overstepping the G.652 standard.


The publication by K. Bandou et al. “Development of Premise Optical Wiring Components Using Hole-Assisted Fiber” 53rd IWCS Proceedings, pp. 119-122 (2004) proposes a hole fiber having the optical characteristics of a SSMF fiber with reduced bending losses. The cost of manufacturing said fiber and the high attenuation levels at the present time (>0.25 dB/km) make it difficult to be given commercial use in FTTH systems.


The publication by T. Yokokawa et al. “Ultra-Low Loss and Bend Insensitive Pure-Silica-Core Fiber Complying with G.652 C/D and its Applications to a Loose Tube Cable”, 53rd IWCS Proceedings, pp 150-155 (2004) proposes a pure silica core fiber PSCF, having reduced transmission and bending losses, but with a reduced mode field diameter lying outside the G.652 standard.


U.S. Pat. No. 6,771,865 describes a profile of a transmission fiber with reduced bending losses. The fiber has a central core, an annular inner cladding and an optical outer cladding. The annular cladding is co-doped with Germanium and Fluorine. The information given in this document does not enable determination of whether or not the fiber meets the criteria laid down by the G.652 standard.


U.S. Pat. No. 4,852,968 describes the profile of a transmission fiber having reduced bending losses. However this fiber has a chromatic dispersion which does not meet the criteria of G.652 standard; the G.652 standard requires cancellation of chromatic dispersion at wavelengths of between 1300 nm and 1324 nm, but the fiber described in U.S. Pat. No. 4,852,962 shows cancellation of the chromatic dispersion at the wavelengths of between 1400 nm and 1800 nm.


WO-A-2004/092794 describes a profile of a transmission fiber with reduced bending losses. The fiber has a central core, a first inner cladding, a second buried inner cladding and an outer optical cladding. Some of the fiber examples described in this document also meet the criteria of the G.652 standard. The fiber described in this document is manufactured by Vapor phase Axial Deposition (VAD) or Chemical Vapor Deposition (CVD) type techniques. The fiber described in this document does not however identify the problems of microbending losses.


There is therefore a need for a transmission fiber with which it is possible to meet the criteria of the G.652 standard, i.e. which can be given commercial use in transmission systems of the FTTH or FTTC type, and which shows both reduced bending losses and reduced microbending losses. In FTTH or FTTC applications, fibers are subjected to higher bending and microbending stresses than in long-haul transmission applications. Indeed, in FTTH or FTTC applications, overlengths of fibers are generally wound in increasingly miniaturized storage boxes; moreover the fiber will be subject to significant bending stresses related to the environment of its installation.


For this purpose, the invention proposes a fiber profile comprising a central core, a first inner cladding, a deeply buried second inner cladding, and an outer cladding. The second inner cladding contains Germanium.


The presence of Germanium in the deeply buried cladding, even though Germanium is a dopant whose effect is to increase the index of silica, makes it possible to increase the elastic-optical coefficient of the buried cladding. Therefore when stresses are applied to the fiber, in particular when the fiber undergoes bending or micro-bending, the presence of the deeply buried cladding containing Germanium allows to limit the effects of stresses on the changes in refractive index in the fiber. The optical losses are therefore reduced when such stresses are applied to a fiber having a second deeply buried inner cladding containing Germanium.


More particularly, the invention proposes an optical transmission fiber comprising:

    • a central core having an index difference Δn1 with an outer optical cladding;
    • a first inner cladding having an index difference Δn2 with the outer cladding;
    • a second, buried, inner cladding having an index difference Δn3 with the outer cladding of less than −3.10−3, and containing Germanium in a weight concentration of between 0.5% and 7%.


According to one characteristic, the index difference Δn3 of the second inner cladding with the outer cladding is greater than −15.10−3.


According to another characteristic, the index difference between the central core and the first inner cladding (Δn1−Δn2) lies between 3.9.10−3 and 5.9.10−3.


According to another characteristic, the second buried cladding has a radius of between 12 μm and 25 μm.


According to another characteristic, the central core has a radius of between 3.5 μm and 4.5 μm, and shows an index difference with the outer cladding of between 4.2.10−3 and 6.1.10−3.


According to another characteristic, the first inner cladding has a radius of between 7.5 μm and 14.5 μm, and shows an index difference with the outer cladding of between −1.2.10−3 and 1.2.10−3.


According to another characteristic, the integral of the central core, defined as:







I
1

=




0

r
1





Dn


(
r
)


·


r






r
1

×
D






n
1







lies between 17.10−3 μm and 24.10−3 μm.


According to another characteristic, at a wavelength of 1310 nm, the present fiber shows a chromatic dispersion slope of 0.093 ps/nm2-km or less.


According to another characteristic, the present fiber shows cancellation of chromatic dispersion at a wavelength of between 1300 nm and 1324 nm.


According to another characteristic, the present fiber has a cabled cut-off wavelength of 1260 nm or less.


According to another characteristic, at a wavelength of 1625 nm, the present fiber shows bending losses for a winding of 100 turns around a bending radius of 15 mm, that are 1 dB or less.


According to another characteristic, at a wavelength of 1625 nm, the present fiber shows bending losses for a winding of 1 turn around a bend radius of 11 mm, of 0.5 dB or less.


According to another characteristic, at a wavelength of 1625 nm, the present fiber shows bending losses for a winding of 1 turn around a bend radius of 5 mm, of 2 dB or less.


According to another characteristic, up to a wavelength of 1625 nm, the present fiber shows microbending losses, measured by the so-called fixed diameter drum method, of 0.8 dB/km or less.


The invention also concerns a method for manufacturing an optical transmission fiber of the invention, the method comprising the steps of:

    • providing a silica tube and positioning said tube on a lathe;
    • injecting a gaseous mixture of oxygen O2, silica SiCl4, Fluorine C2F6 and Germanium GeO2 in the tube;
    • ionizing the gaseous mixture to obtain a plasma by microwave heating to deposit a layer of doped silica forming the second, buried, inner cladding;
    • successively injecting gaseous mixtures and ionizing said mixtures to deposit layers of doped silica forming the first inner cladding and the central core.


The invention further relates to a Fiber To The Home (FTTH) or Fiber To The Curb (FTTC) optical system comprising at least an optical module or a storage box according to the invention.





Other characteristics and advantages of the invention will become apparent on reading the following description of embodiments of the invention given by way of example and with reference to the appended drawings showing:



FIG. 1, previously described, a graph illustrating the bending losses at a wavelength of 1625 nm with a bending radius of 15 mm in a standard single-mode fiber (SSMF) in relation to the MAC value at a wavelength of 1550 nm;



FIG. 2, a graph showing the set profile of a single-mode fiber (SMF) according to one embodiment of the invention,



FIGS. 3
a to 3c, graphs illustrating, for different bending radii, the bending losses at a wavelength of 1625 nm in relation to the MAC value at a wavelength of 1550 nm for different standard single-mode fibers (SSMF) and for different fibers of the invention,



FIGS. 4
a and 4b, graphs illustrating losses through micro-bending.





The present fiber has a central core, a first inner cladding and a second, buried, inner cladding. By buried cladding is meant a radial portion of the fiber whose refractive index is lower than the index of the outer cladding. The second, buried, inner cladding has an index difference with the outer cladding that is less than −3.10−3 and may reach −15.10−3. Also, the buried cladding contains Germanium in a weight concentration of between 0.5% and 7%.


As known per se, an optical fiber is obtained by drawing of a preform. For example the preform may be a glass tube (pure silica) of very high quality which forms part of the outer cladding and surrounds the central core and the inner claddings of the fiber; this tube can then be sleeved or refilled to increase its diameter before proceeding with the drawing operation on a draw tower. To manufacture the preform, the tube is generally mounted horizontally and held in place at its two ends by glass rods in a lathe; the tube is then rotated and locally heated to deposit components determining the composition of the preform. This composition determines the optical characteristics of the future fiber.


The depositing of components in the tube is commonly called “doping”, i.e. “impurities” are added to the silica to modify its refractive index. Hence, Germanium (Ge) or Phosphorus (P) increase the refractive index of the silica; they are often used to dope the central core of the fiber. Also, Fluorine (F) or Boron (B) lower the refractive index of the silica; they are often used to form buried claddings or as co-dopant with Germanium when it is desired to compensate for the increase in refractive index in a photosensitive cladding.


A preform with an buried cladding is difficult to manufacture. Fluorine does not incorporate easily in silica when heated beyond a certain temperature whereas a high temperature is required to manufacture glass. The compromise between a high temperature, required for glass-making, and a low temperature promoting proper incorporation of the Fluorine does not make it possible to obtain indexes much lower than that of silica.


It is proposed to manufacture the preform of the present fiber using a PCVD technique (Plasma Chemical Vapor Deposition) since it allows reactions at lower temperatures than conventional techniques (CVD, VAD, OVD) by ionizing the reaction components. Said manufacturing technique is described in documents U.S. Pat. No. RE 30,635 and U.S. Pat. No. 4,314,833; it allows major incorporation of Fluorine in the silica in order to form deeply buried claddings.


The use of the PCVD technique to manufacture the inventive fiber also makes it possible to add Germanium to the buried cladding. As indicated previously, Germanium increases the refractive index of the silica; it is therefore generally highly unadvisable to incorporate the same in a fiber section for which it is sought to obtain a lower refractive index than silica. PCVD makes it possible however to produce a high number of highly reactive Fluorine ions; it then becomes possible to add Germanium to the reaction and nonetheless to obtain an buried inner cladding.


Therefore, the present fiber comprises Germanium in the assembly of inner claddings including the cladding whose index is less than −3.10−3. The presence of Germanium in the buried cladding modifies the viscosity of the silica and the elastic-optical coefficient in this said cladding.



FIG. 2 illustrates an index profile for a transmission fiber of the invention. The illustrated profile is a set profile, i.e. it represents the theoretical profile of the fiber, the fiber actually obtained after drawing from a preform possibly giving a substantially different profile.


The single-mode transmission fiber of the invention comprises a central core having an index difference Δn1 with an outer cladding, acting as optical cladding; a first inner cladding having an index difference Δn2 with the outer cladding; a second inner cladding, deeply buried and having an index difference Δn3 with the outer cladding. The refractive indexes in the central core, in the first cladding and in the second inner cladding are substantially constant over their entire width; the set profile is therefore truly a single-mode fiber. The width of the core is defined by its radius r1 and the width of the claddings by their respective outer radii r2 and r3.


To define a set index profile for an optical fiber, the index of the outer cladding is generally taken as reference. The index values of the central core, buried claddings and the ring are then given as index differences Δn1,2,3. Generally, the outer cladding is formed of silica, but this outer cladding may be doped to increase or reduce its refractive index, for example to modify the signal propagation characteristics.


Each section of the fiber profile can therefore be defined using integrals which associate the variations in indexes with the radius of each fiber section.


Three integrals can hence be defined for the present fiber, which represent the core surface I1, the surface of the first inner cladding I2 and the surface of the second, buried, inner cladding I3. The expression “surface” is not to be construed geometrically but corresponds to a value taking two dimensions into account. These three integrals can be expressed as follows:







I
1

=




0


r





1





Dn


(
r
)


·


r






r
1

×

Dn
1










I
2

=





r
1


r
2





Dn


(
r
)


·


r






(


r
2

-

r
1


)

×

Dn
2










I
3

=





r
2


r
3





Dn


(
r
)


·


r






(


r
3

-

r
2


)

×

Dn
3







Table I below gives the limit values of radii and index differences, and the limit values of the integral I1 that are required so that the fiber shows reduced bending losses and microbending losses whilst meeting the optical propagation criteria of G.652 standard for transmission fibers. The values given in the table correspond to the set profiles of the fibers.

















TABLE I





r1
r2
r3

Δn1
Δn2
Δn3

I1


(μm)
(μm)
(μm)
r1/r2
(·103)
(·103)
(·103)
Δn1 − Δn2
(μm · 103)























3.5
7.5
12.0
0.27
4.2
−1.2
−15
3.9
17


4.5
14.5
25.0
0.5
6.2
1.2
−3
5.9
24









The value of the integral I1, of the central core influences the shape and size of the fundamental propagation mode of the signal in the fiber. An integral value for the central core of between 17.10−3 μm and 24.10−3 μm makes it possible in particular to maintain a mode field diameter that is compatible with the G.652 standard.


Table II below gives examples of possible index profiles for an transmission fiber according to the invention. The first column allocates a reference to each profile. The following columns give the radii values of each section (r1 to r3); and the following columns give the values of the index differences of each section with the outer cladding (Δn1 to Δn3). The index values are measured at the wavelength of 633 nm.















TABLE II






r1
r2
r3





Example
(μm)
(μm)
(μm)
Δn1 (·103)
Δn2 (·103)
Δn3 (·103)





















1
2.86
6.90
13.24
5.41
2.00
−3.70


2
3.86
9.50
15
5.16
0.69
−5.0


3
4.02
9.55
15
5.31
0.45
−5.0


4
3.86
8.66
15
5.41
0.85
−5.0









The present transmission fiber, having an index profile such as described previously, shows reduced bending losses and microbending losses at useful wavelengths.


In addition, the present fiber meets the criteria of G.652 standard.


Tables III and IV below illustrate the simulated optical characteristics for transmission fibers corresponding to the index profiles in Table II.


In Table III, column one reproduces the references of Table II. The following columns, for each fiber profile, give the values of the effective cut-off wavelength λCeff, cabled cut-off wavelength λCC, mode field diameters 2W02 for the wavelengths 1310 nm and 1550 nm, the cancellation wavelength of the chromatic dispersion λ0, the dispersion slope P0 at λ0, the chromatic dispersions C for the wavelengths 1550 nm and 1625 nm.


In Table IV, column one reproduces the references of Table III. The following column gives the MAC values at a wavelength of 1550 nm. The three following columns give the values for the bending losses BL for the respective bending radii of 5, 11 and 15 mm at a wavelength of 1625 nm. The following column, for a radius of 15 mm, gives the relative bending losses normalized with respect to the standard bending losses of a SSMF fiber having the same MAC value at a wavelength of 1550 nm. The last-but-one column gives the microbending losses obtained with the pin-array test (10 pins of 1.5 mm) at a wavelength of 1550 nm.


This test uses an array of ten polished needles, of diameter 1.5 mm and spaced apart by 1 cm. The fiber is woven across the array orthogonally to the axis of the needles. The fiber and the array are pressed between two rigid plates coated with a layer of approximately 3 mm of high density polyethylene foam. The layers of the assembly (plates, array, fiber) are positioned horizontally and the assembly is covered with a weight of 250 g. The last column indicates the microbending losses measured using the fixed diameter drum method at a wavelength of 1625 nm. This method is described in the technical recommendations of the International Electrotechnical Commission, sub-committee 86A under reference IEC TR-62221. The diameter of the drum used is 60 cm; the drum is covered with extra-fine sandpaper. The values of the bending losses BL are indicated at a wavelength of 1625 nm.

















TABLE III








2W02
2W02


C
C



λCeff
λCC
@1310 nm
@1550 nm
λ0
P0
@ 1550 nm
@ 1625 nm



(μm)
(μm)
(μm2)
(μm2)
(nm)
(ps/nm2-km)
(ps/nm-km)
(ps/nm-km)







1
1.13
<1.26
9.10
10.18
1308
0.097
19.2
23.9


2
1.23
<1.26
9.16
10.36
1312
0.091
18.1
22.9


3
1.25
<1.26
9.01
10.13
1318
0.089
17.3
22.0


4
1.25
<1.26
9.00
10.08
1318
0.091
17.8
22.5























TABLE IV











BLμ
BLμ




BL
BL
BL

Pin-array
Drum




R = 5 mm
R = 11 mm
R = 15 mm
BLrel
test
method



MAC
@1625 nm
@1625 nm
@1625 nm
R = 15 mm
@1550 nm
@1625 nm



@1550 nm
(dB/turn)
(dB/turn)
(dB/100 turns)
@1625 nm
(dB)
(dB/km)






















1
9.0
≦5
≦2

1/5




2
8.4
2
≦0.5
≦1
1/5
0.025
≦0.8


3
8.1
1
≦0.1
≦0.4
1/5
≦0.025
≦0.8


4
8.1
1
≦0.1
≦0.4
1/5
≦0.025
≦0.8









It can be seen in Table III that examples 2 to 4 indeed comply with the G.652 standard, example 1 shows a dispersion slope P0 lying slightly outside the G.652 standard.


In particular, the fiber in examples 2 to 4 shows cancellation of chromatic dispersion for a wavelength of between 1300 nm and 1324 nm; this is in agreement with the G.652 standard. The fiber in examples 2 to 4 also shows, for a wavelength of 1310 nm, a chromatic dispersion slope that is 0.093 ps/nm2-km or less; which complies with the G.652 standard. Also the fiber in examples 2 to 4 shows a cabled cut-off wavelength that is 1260 nm or less, meeting the criteria of the G.652 standard which requires a cabled cut-off wavelength of 1260 nm or less.


In addition, it can be seen in table IV that examples 2 to 4 exhibit distinctly improved bending losses with respect to the losses of standard SSMF transmission fiber. The microbending losses are also improved.


The graphs in FIGS. 3a, 3b and 3c show bending loss measurements obtained with fibers manufactured according to the invention and for standard fibers, with bending radii of R=5 mm, R=11 mm and R=15 mm at a wavelength of 1625 nm. The bending losses here are given at the end of one loop (for R=5 mm and R=11 mm) or at the end of 100 loops (for R=15 mm).



FIG. 4
a shows microbending losses for fibers manufactured according to the invention, characterized by the pin-array test and measured at a wavelength of 1550 nm, in relation to the MAC value at a wavelength of 1550 nm for different SSMF fibers and for a fiber of the invention.



FIG. 4
b shows microbending losses using the fixed diameter drum test in relation to the wavelength for a SSMF fiber and for a fiber of the invention having MAC values at a wavelength of 1550 nm of 8.11 and 8.31, respectively.


Also, the graphs in FIGS. 4a and 4b clearly show that the sensitivity of the present fiber to microbending is markedly reduced with respect to that of a SSMF fiber. It can be seen in FIG. 4a that the microbending losses (pin-array test) measured for a fiber of the invention, having a MAC value of 8.44 at a wavelength of 1550 nm, amounts 0.025 dB whereas they are ten times higher for a SSMF fiber having the same MAC value. It can also be seen in FIG. 4b that microbending losses (fixed drum method) for a fiber of the invention increase much more slowly with the wavelength than for a SSMF fiber which has a greater MAC value however at the 1550 nm wavelength. In this graph it can be seen that the present fiber guarantees a sensitivity to microbending up to long wavelengths, greater than 1650 nm, which is equivalent to the sensitivity which can be guaranteed for a SSMF fiber up to a wavelength of 1550 nm.


The present transmission fiber may be manufactured by drawing a preform having one of the above-described index profiles. Said preform profiles may be made for example from a sleeve of silica in which layers of doped silica are deposited. Deposition may be made by a Plasma Chemical Vapor Deposition (PCVD) type deposition method mentioned previously. This chemical of deposition in the vapour form activated by plasma (PCVD) is particularly suitable for obtaining a buried inner cladding layer for the present fiber; this buried cladding layer comprising Germanium in a weight concentration of between 0.5% to 7%. The weight concentration of Germanium is preferably between 0.5% and 1.5% since this allows an optimum balance between lower costs and more ease of manufacturing on the one hand and good fiber characteristics on the other hand.


A pure silica tube is provided and mounted on a lathe. The tube is then caused to rotate and a gaseous mixture of silica and dopants is injected into the tube. The tube passes through a microwave cavity in which the gaseous mixture is locally heated. Microwave heating generates a plasma by ionization of the gases injected into the tube and the ionized dopants react strongly with the silica particles to cause the depositing of layers of doped silica on the inside of the tube.


The strong reactivity of the dopants generated by microwave heating, makes it possible to incorporate a high concentration of dopants in the silica layers. For Fluorine in particular, which is difficult to incorporate into silica with local burner heating, the PCVD technique allows doping of a silica layer with a high concentration of Fluorine to form deeply buried layers.


Within the scope of the invention, the creation of the second buried cladding is obtained by depositing a layer of silica doped with Fluorine and Germanium; a gaseous mixture containing oxygen O2, silica SiCl4, Fluorine C2F6 and Germanium GeO2 is injected into the tube. This gaseous mixture is ionized in the microwave cavity of a PCVD installation, the Fluorine and Germanium ions are incorporated in the silica particles.


The proportions of injected gases are monitored so as to obtain a layer of doped silica containing Germanium in a weight concentration of 0.5% to 7%. and Fluorine in a concentration that is required to obtain the targeted refractive index.


The strong concentration Fluorine ensures the required reduction in index for the buried cladding, and the low concentration of Germanium brings the changes in viscosity and elastic-optical coefficient that are required to reduce bending losses and microbending losses in the fiber obtained.


The transmission fiber according to the invention may be used in a transmitting or receiving module in an FTTH or FTTC system or in a high rate and long distance optical transmission cable, with reduced optical losses. The fiber of the invention is compatible with the marketed systems as it meets the G.652 standard. In particular, overlengths of the fiber according to the invention may be wound in storage boxes associated with optical modules of FTTH or FTTC systems, the fiber according to the invention may be wound with a bending radius less than 15 mm, or even less than 5 mm without inducing strong optical losses. The fiber according to the invention is also very suitable for supporting accidental bendings related to its installation at an individual's home, with bending radii ranging down to 5 mm.


Evidently, the present invention is not limited to the embodiments described by way of example. In particular, a manufacturing method other than PCVD may be considered provided the method allows the incorporation of Germanium in an buried layer in accordance with the claimed proportions and index differences. In addition, the fiber according to the invention may also be used in applications other than FTTH or FTTC.

Claims
  • 1. An optical transmission fiber, comprising: a central core and an outer optical cladding, the central core having a first refractive index difference (Δn1) as compared to the outer optical cladding;a first inner cladding immediately surrounding the core, the first inner cladding having a second refractive index difference (Δn2)as compared to the outer cladding;a second, buried, inner cladding disposed between the first inner cladding and the outer cladding, the second inner cladding having a third refractive index difference (Δn3) as compared to the outer cladding,wherein the second refractive index difference (Δn2) is between −1.2×10−3 and 2.0×10−3,wherein the third refractive index difference (Δn3) is less than −3×10−3, andwherein the second inner cladding contains Germanium in a weight concentration of between 0.5% and 7%.
  • 2. The fiber according to claim 1, wherein the third refractive index difference (Δn3) is between −3×1031 3 and −15×10−3.
  • 3. The fiber according to claim 1, wherein the first refractive index difference (Δn1) and the second refractive index (Δn2) satisfy: −3.9×10−3≦(Δn1−Δn2)≦5.9×10−3.
  • 4. The fiber according to claim 1, wherein the second, buried, inner cladding has a radius (r3) of between 12 μm and 25 μm.
  • 5. The fiber according to claim 1, wherein the central core has a radius (r1) of between 3.5 μm and 4.5 μm, and the first refractive index difference (Δn1) is between 4.2×10−3 and 6.1×10−3.
  • 6. The fiber according to claim 1, wherein the first inner cladding has a radius (r2) of between 7.5 μm and 14.5 μm and the second refractive index difference (Δn2) is between −1.2×10−3 and 1.2×10−3.
  • 7. The fiber according to claim 1, wherein the integral of the central core (I1) defined as:
  • 8. The fiber according to claim 1, wherein at a wavelength of 1310 nm, the fiber has a chromatic dispersion slope of 0.093 ps/(nm2•km) or less.
  • 9. The fiber according to claim 1, wherein the fiber exhibits a cancellation of the chromatic dispersion at a wavelength of between 1300 and 1324 nm.
  • 10. The fiber according to claim 1, wherein the fiber has a cabled cut-off wavelength of 1260 nm or less.
  • 11. The fiber according to claim 1, wherein at a wavelength of 1625 nm, the fiber shows bending losses, for a winding of 100 turns around a bending radius of 15 mm, that are 1 dB or less.
  • 12. The fiber according to claim 1, wherein at a wavelength of 1625 nm, the fiber shows bending losses for a winding of one turn around a bending radius of 11 mm that are 0.5 dB or less.
  • 13. The fiber according to claim 1, wherein, at a wavelength of 1625 nm, the fiber shows bending losses for a winding of one turn around a bend radius of 5 mm that are 2 dB or less.
  • 14. The fiber according to claim 1, wherein up to a wavelength of 1625 nm, the fiber shows microbending losses, measured by the so-called fixed diameter drum method, that are 0.8 dB/km or less.
  • 15. The fiber according to claim 1, wherein, the second, buried, inner cladding contains Germanium in a weight concentration of between 0.5% and 1.5%.
  • 16. An optical module comprising a housing receiving at least a wound portion of the fiber according to claim 1.
  • 17. A storage box receiving at least a wound portion of the fiber according to claim 1.
  • 18. The optical module of claim 16, wherein the fiber is wound with a bending radius less than 15 mm.
  • 19. The optical module of claim 16, wherein the fiber is wound with a bending radius being less than 11 mm.
  • 20. A Fiber To The Home (FTTH) or Fiber To The Curb (FTTC) optical system comprising at least one optical module according to claim 16.
  • 21. An optical transmission fiber, comprising: a central core and an outer optical cladding, the central core having a maximum first refractive index difference (Δn1) with the outer optical cladding between 4.2×10−3 and 6.1×10−3; a first inner cladding immediately surrounding the central core, the first inner cladding having a second refractive index difference (Δn2) with the outer cladding between −1.2×10−3 and 1.2×10−3; anda second, buried, inner cladding disposed between the first inner cladding and the outer cladding, the second inner cladding having a third refractive index difference (Δn3) with the outer cladding less than −3×10−3.
  • 22. The optical transmission fiber according to claim 21, wherein the central core possesses a step refractive-index profile.
  • 23. The optical transmission fiber according to claim 22, wherein the refractive index difference between the central core and the first inner cladding (Δn1−Δn2) is between about 3.9×10−3 and 5.9×10−3.
  • 24. The optical transmission fiber according to claim 21, wherein the integral of the central core (I1) defined as: is between 17×10−3 μm and 24×10−3 μm,wherein r1 is the radius of the central core and n1 is the refractive index of the central core.
  • 25. The optical transmission fiber according to claim 21, wherein the second inner cladding is doped with Germanium.
  • 26. The optical transmission fiber according to claim 21, wherein the fiber possesses: a mode field diameter (MFD) between 8.6 microns and 9.5 microns at a wavelength of 1310 nanometers;a dispersion cancellation wavelength (λ0) between 1300 nanometers and 1324 nanometers;a chromatic dispersion slope of 0.093 ps/(nm2•km) or less at a wavelength of 1310 nanometers; anda cabled cut-off wavelength of 1260 nm or less.
  • 27. The optical transmission fiber according to claim 21, wherein, at a wavelength of 1625 nm, the fiber has bending losses of (i) 1 db or less for a winding of 100 turns around a bending radius of 15 mm, (ii) 0.5 db or less for a winding of one turn around a bending radius of 11 mm, and/or (iii) 2 db or less for a winding of one turn around a bending radius of 5 mm.
  • 28. A cable containing one or more fibers according to claim 21.
  • 29. An optical module receiving at least a portion of the fiber according to claim 21.
  • 30. A Fiber-To-The-Home (FTTH) or a Fiber-To-The-Curb (FTTC) system comprising at least a portion of the fiber according to claim 21.
Priority Claims (1)
Number Date Country Kind
05 11443 Nov 2005 FR national
US Referenced Citations (116)
Number Name Date Kind
4114980 Asam et al. Sep 1978 A
RE30635 Kuppers et al. Jun 1981 E
4314833 Kuppers Feb 1982 A
4385802 Blaszyk et al. May 1983 A
4641917 Glodis et al. Feb 1987 A
4750806 Biswas Jun 1988 A
4836640 Gartside, III et al. Jun 1989 A
4838643 Hodges et al. Jun 1989 A
4852968 Reed Aug 1989 A
5032001 Shang Jul 1991 A
5106402 Geittner et al. Apr 1992 A
5175785 Dabby Dec 1992 A
5235660 Perry et al. Aug 1993 A
5448674 Vengsarkar et al. Sep 1995 A
5491581 Roba Feb 1996 A
5555340 Onishi et al. Sep 1996 A
5586205 Chen et al. Dec 1996 A
5673354 Akasaka et al. Sep 1997 A
5721800 Kato et al. Feb 1998 A
5802236 DiGiovanni et al. Sep 1998 A
5851259 Clayton et al. Dec 1998 A
5852690 Haggans et al. Dec 1998 A
5917109 Berkey Jun 1999 A
5946439 Terasawa et al. Aug 1999 A
5963700 Kato et al. Oct 1999 A
5966490 Minns et al. Oct 1999 A
6181858 Kato et al. Jan 2001 B1
6185353 Yamashita et al. Feb 2001 B1
6266467 Kato et al. Jul 2001 B1
6280850 Oh et al. Aug 2001 B1
6317551 Mitchell et al. Nov 2001 B1
6334019 Birks et al. Dec 2001 B1
6360046 Sasaoka et al. Mar 2002 B1
6396987 de Montmorillon et al. May 2002 B1
6415089 Kato et al. Jul 2002 B2
6422042 Berkey Jul 2002 B1
6424776 Nouchi et al. Jul 2002 B1
6466721 Tsukitani et al. Oct 2002 B1
6477305 Berkey et al. Nov 2002 B1
6490396 Smith Dec 2002 B1
6510268 de Montmorillon et al. Jan 2003 B1
6529666 Dultz et al. Mar 2003 B1
6530244 Oh et al. Mar 2003 B1
6535676 de Montmorillon et al. Mar 2003 B1
6542683 Evans et al. Apr 2003 B1
6587623 Papen et al. Jul 2003 B1
6603913 Okuno Aug 2003 B1
6647190 Matsuo et al. Nov 2003 B2
6650814 Caplen et al. Nov 2003 B2
6658190 Hirano et al. Dec 2003 B2
6671442 Wang et al. Dec 2003 B2
6687440 Balestra et al. Feb 2004 B2
6687445 Carter et al. Feb 2004 B2
6744959 Takahashi Jun 2004 B2
6754425 Jeon et al. Jun 2004 B2
6771865 Blaszyk et al. Aug 2004 B2
6804441 Arai et al. Oct 2004 B2
6819848 Takahashi Nov 2004 B2
6856744 Kumano Feb 2005 B2
6859599 Mukasa Feb 2005 B2
6885802 Oliveti et al. Apr 2005 B2
6901196 Takahashi et al. May 2005 B2
6904772 Berkey et al. Jun 2005 B2
6917740 Boek et al. Jul 2005 B2
6917743 Honma et al. Jul 2005 B2
6928211 Tanigawa et al. Aug 2005 B2
6952519 Bickham et al. Oct 2005 B2
6959137 Kalish et al. Oct 2005 B2
6985662 Bickham Jan 2006 B2
7008696 Kim et al. Mar 2006 B2
7072552 Manyam et al. Jul 2006 B2
7164835 Matsuo et al. Jan 2007 B2
7171074 DiGiovanni et al. Jan 2007 B2
7171090 Mattingly, III et al. Jan 2007 B2
7187833 Mishra Mar 2007 B2
7254305 Mishra Aug 2007 B2
7272289 Bickham et al. Sep 2007 B2
7283714 Gapontsev et al. Oct 2007 B1
7295741 Sako et al. Nov 2007 B2
7315677 Li et al. Jan 2008 B1
7356234 de Montmorillon et al. Apr 2008 B2
7366386 Sako et al. Apr 2008 B2
7366387 Matsuo et al. Apr 2008 B2
7450807 Bickham et al. Nov 2008 B2
7505660 Bickham et al. Mar 2009 B2
20020031317 Tsukitani et al. Mar 2002 A1
20020122644 Birks et al. Sep 2002 A1
20030081921 Sillard et al. May 2003 A1
20030152349 Lauzon et al. Aug 2003 A1
20030190128 Jang et al. Oct 2003 A1
20030210878 Kumano et al. Nov 2003 A1
20030223717 Blaszyk et al. Dec 2003 A1
20030231847 Varner et al. Dec 2003 A1
20040031288 Blinov Feb 2004 A1
20040033039 Oliveti et al. Feb 2004 A1
20040086245 Farroni et al. May 2004 A1
20040197063 Changdar et al. Oct 2004 A1
20050244120 Mishra Nov 2005 A1
20060061175 Matsuo et al. Mar 2006 A1
20060115224 Kutami et al. Jun 2006 A1
20060140560 Allen et al. Jun 2006 A1
20070003198 Gibson et al. Jan 2007 A1
20070003199 Mattingly et al. Jan 2007 A1
20070053642 Mishra Mar 2007 A1
20070104437 Bookbinder et al. May 2007 A1
20070127878 Demontmorillon et al. Jun 2007 A1
20070147756 Matsuo et al. Jun 2007 A1
20070196061 Bickham et al. Aug 2007 A1
20070258686 de Montmorillon et al. Nov 2007 A1
20070280615 de Montmorillon et al. Dec 2007 A1
20080013905 Bookbinder et al. Jan 2008 A1
20080056654 Bickham et al. Mar 2008 A1
20080056658 Bickham et al. Mar 2008 A1
20080124028 Bickham et al. May 2008 A1
20080152288 Flammer Jun 2008 A1
20080226241 Sugizaki et al. Sep 2008 A1
Foreign Referenced Citations (30)
Number Date Country
3700565 Jul 1988 DE
0 059 564 Sep 1982 EP
0327702 Aug 1989 EP
0848266 Jun 1998 EP
0991967 Apr 2000 EP
1 195 628 Apr 2002 EP
1398653 Mar 2004 EP
1443347 Aug 2004 EP
1698920 Sep 2006 EP
1762867 Mar 2007 EP
1785754 May 2007 EP
1845399 Oct 2007 EP
2228585 Aug 1990 GB
09-048629 Feb 1997 JP
09-218319 Aug 1997 JP
09-311231 Dec 1997 JP
2006-133314 May 2006 JP
9900685 Jan 1999 WO
0014580 Mar 2000 WO
0127667 Apr 2001 WO
0147822 Jul 2001 WO
0212931 Feb 2002 WO
2002012931 Feb 2002 WO
0229459 Apr 2002 WO
2002039159 May 2002 WO
2003107054 Dec 2003 WO
2004027941 Apr 2004 WO
2004092794 Oct 2004 WO
2004109352 Dec 2004 WO
2008027351 Mar 2008 WO
Related Publications (1)
Number Date Country
20070127878 A1 Jun 2007 US