Information
-
Patent Grant
-
6357867
-
Patent Number
6,357,867
-
Date Filed
Friday, May 7, 199925 years ago
-
Date Issued
Tuesday, March 19, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 347 40
- 347 42
- 347 48
- 347 85
- 347 89
- 347 75
- 347 102
-
International Classifications
-
Abstract
A method of single pass printing, a single pass ink jet print head has an array of ink jet orifices arranged transversely to a substrate which moves relative to the print head during printing. A pump supplies ink from an ink reservoir to the print head. UV curable ink is provided in the reservoir. The UV curable ink is jetted through the orifices to print on the substrate. The UV-curable ink is circulated through the print head when jetting and when not jetting.
Description
BACKGROUND OF THE INVENTION
This invention relates to single-pass ink jet printing. In many instances, it is desirable to print images on a continuously moving object such as a package carried on a conveyor, or on a web or a sheet of substrate in a single pass, i.e., without requiring any repeated or return motion of the ink jet head with respect to the object. The spacing of ink jet orifices in an ink jet printer in a row extending across the width of the substrate, however, normally does not provide high enough resolution to produce an acceptable image. Moreover, in many cases it is desirable to be able to change the color of the ink used in printing without replacing the printhead but conventional printers are not usually capable of permitting printing of different colored inks from the same printhead.
SUMMARY OF THE INVENTION
In general, in one aspect, the invention features a method of single pass printing. A single pass ink jet print head has an array of ink jet orifices arranged transversely to a substrate which moves relative to the print head during printing. A pump supplies ink from an ink reservoir to the print head. UV curable ink is provided in the reservoir. Ink is jetted through the orifices to print on the substrate. The UV-curable ink is circulated through the print head when jetting and when not jetting.
Implementations of the invention may include one or more of the following features.
The ink jet head may include an ink inlet through which ink is supplied and an ink outlet through which ink is removed from the ink jet head. The reservoir may be positioned remotely from the print head and the ink may be directed from the outlet to the reservoir. Ink pressure may be controlled downstream of the reservoir, e.g., by a J-tube, so that a negative pressure is maintained at the ink jet orifices when the orifices are not jetting. The head may include ink jet modules extending transversely to the direction of the motion of the substrate. The modules may overlap and communicate with a manifold which distributes ink from the inlet to each of the modules. The head may have a print width of about 5.5 inches or more or about 10 inches and a resolution of about 275 dots per inch or more or about 600 dots per inch. The ink may be filtered at the ink outlet or the ink inlet. The jetting may be effected by piezoelectric transduction. The ink at the head may be maintained at a substantially uniform temperature.
Other features and advantages of the invention will become apparent from the following description and from the claims.
DRAWINGS
FIG. 1
is a schematic block diagram illustrating the arrangement of a representative embodiment of a single pass ink jet printer.
FIG. 2
is a schematic perspective exploded view showing a representative arrangement of an ink jet module for use in the printer.
FIG. 3
is a perspective exploded view showing certain of the components of a representative embodiment of an ink jet printhead for use in the printer.
FIG. 4
is a perspective view illustrating the components of
FIG. 3
in assembled relation.
FIG. 5
is a schematic cross-sectional view illustrating the disposition of the printhead shown in FIG.
4
.
FIG. 6
is a schematic plan view illustrating a further representative embodiment of the invention.
FIG. 7
is schematic cross-sectional view of the embodiment shown in
FIG. 6
taken on the line VII—VII and looking at the direction of the arrows.
DESCRIPTION
In the representative arrangement schematically illustrated in
FIG. 1
, a printhead
10
is disposed adjacent to a platen
12
on which a substrate
14
, such as a web of paper, is supported. In operation, the web of paper
14
is continuously driven in a direction perpendicular to the plane of the figure and, in response to printing signals received on a line from a control unit, the printhead
10
ejects ink drops from orifices in an orifice plate along adjacent paths
20
in a manner described hereinafter. The drops are ejected toward the web
14
in timed relation to the motion of the web to produce in a single pass an image which may extend substantially across the full width of the substrate. In this way, the necessity for scanning a printhead across the width of the substrate is eliminated and the image can be printed in a single scanning motion between the substrate and the printhead, i.e., the motion of the web
14
with respect to the printhead
10
. It will be understood that, instead of being applied to a web
14
supported on a platen
12
, the surface to which the ink drops are applied may be the surface of an object such as a package carried past the printhead
10
by a conveyor.
In order to supply ink of selectable color to the printhead, an ink supply line
22
is connected through a disposable filter
24
and a quick disconnect coupling
26
to a further filter
28
which is a part of the printhead
10
. Ink is circulated from the supply line
22
through the printhead in the manner described hereinafter by a pump
30
which withdraws ink from a disposable ink bottle
32
through a strainer
34
. At the outlet end of the printhead
10
, another quick disconnect coupling
36
is connected to a return line
38
leading to a J-tube unit
40
having a vent open to the atmosphere through a filter
42
.
A standpipe drain
44
leads from the J-tube unit
40
to the disposable ink bottle
32
which in turn is vented through a filter
46
to the atmosphere. To prevent weeping of ink from the orifices in the orifice plate, a slight negative pressure is maintained at the printhead orifices by positioning the J-tube unit
40
so that the level of ink
48
in the J-tube outlet
49
to the standpipe drain
44
is at a selected distance
50
below the ink jet orifices which are in an orifice plate
52
at the bottom of the printhead as viewed in FIG.
1
. The J-tube unit
40
includes a valve
41
between the inlet from the return line
38
and the filter
42
which is normally closed but may be opened to purge air bubbles from the standpipe
44
and another valve
43
between the inlet
38
and the outlet
49
which is normally open but may be closed when pressure is applied to the ink in the printhead to purge the orifices in the orifice plate
52
. As described hereinafter, the orifice plate
52
in the printhead
10
is preferably a single plate formed with 1536 orifices for the embodiment described hereinafter with respect to
FIGS. 2-5
or 6144 orifices for an orifice plate used in an embodiment of the type shown in
FIGS. 6 and 7
.
Because clogging of a single orifice in the orifice plate with foreign material could cause sufficient image degradation to make the printhead unusable, and since the quick disconnect couplings for the ink supply provide an opportunity for introduction of contaminants into the system, specific filtering arrangements are provided to prevent any contamination of the ink supplied to the orifices in the printhead. For this purpose, both the disposable ink bottle
32
and the J-tube unit
40
, which are vented to the atmosphere, have their vents covered with the filters
42
and
46
, which preferably are one micron filters, to prevent contamination as air is drawn into those components during operation of the system. In addition, the disposable filter
24
, which preferably is a five-to-ten micron cartridge-type filter, is included in the line
22
at the quick disconnect coupling
26
, and the filter
28
, which is preferably a ten-micron Nucleopore filter, trap any contaminants which might be introduced when the quick disconnect coupling is disconnected and reconnected.
In the exploded view of
FIG. 2
, the arrangement of a representative ink jet module
54
which is used in the printhead
10
is illustrated. The manufacture and assembly of such ink modules is described in detail in the Moynihan et al. U.S. Pat. No. 5,701,148 incorporated by reference herein. The ink jet module
54
shown in
FIG. 2
includes a carbon pressure chamber plate
56
which is formed on opposite sides with arrays
58
of closely spaced grooves forming ink pressure chambers and each of those arrays is covered by a piezoelectric transducer plate
60
having an array of electrodes
62
which are positioned with respect to the pressure chambers in the arrays
58
so as to selectively deflect a corresponding portion of the transducer plate and thereby change the volume of a corresponding pressure chamber in response to an appropriate electrical signal.
The pressure chamber plate
56
also has a longitudinally extending opening
64
which, in the illustrated embodiment, receives ink at one end from an internal passage
66
leading from the lower end surface
68
of the plate
56
and, after supplying ink to the pressure chamber, discharges ink at the opposite end through an internal passage
70
to an opening in the lower end
68
of the plate.
In order to extract dissolved air from the ink as it is passing through the longitudinally extending opening
64
, a deaerator
72
, consisting of a tubular member
74
made of air-permeable, ink-impermeable material such as extruded poly-tetrafluoroethylene, preferably having a 0.1 mm. thickness and a 1.5 mm. internal diameter, extends through the longitudinally extending opening
64
and through an opening
76
in the end of the pressure chamber plate
56
. A plug
78
closes the projecting end of the tubular member
74
and the opposite end is connected to a vacuum source
80
supplying a sufficient negative pressure, such as 0.7 atmosphere, to reduce the dissolved air content of the ink passing through the longitudinal opening
64
to a level below the level at which air bubbles can form in the pressure chamber during operation of the ink jet system. In order to prevent the tube
72
from collapsing in response to the application of negative pressure, a porous support such as a rod of porous carbon or helical wire having a diameter substantially equal to the internal diameter of the tube is inserted into the tube.
Referring also
FIGS. 3 and 4
, to form the printhead
10
a plurality of ink jet modules
54
are mounted on a manifold sandwich
84
which is positioned in a support frame
82
. The manifold sandwich
84
consists of a stiffener plate
85
, a filter layer
86
, a manifold plate
88
and an orifice plate
90
. The orifice plate
90
has linear arrays of uniformly spaced orifices
91
arrayed in two groups with the end orifices in adjacent arrays spaced from each other in the direction of the arrays at the same spacing as the orifices in the arrays. Moreover, the orifices in the successive arrays in each group are offset by a distance equal to the orifice spacing in each array divided by the number of arrays in each group minus one. In this way the resolution in the resulting image in the direction along the length of the arrays is equal to the number of orifices per unit length in each array multiplied by the number of arrays in the group.
The filter layer
86
in the manifold assembly
84
is provided to block potentially orifice-clogging solid material from reaching the orifices
91
in the orifice plate
90
but to permit particles of solid material smaller than the size of the orifices in the plate
90
to pass through the filter layer. The filter layer may be of the type described, for example, in Moynihan et al. U.S. Pat. No. 5,724,082 which is incorporated herein by reference. For example, if the orifices
91
have a diameter of about 50 μm, the size of the openings in the filter layer
86
may be about 25 to 30 μm.
The stiffener plate
85
is provided to impart rigidity and electrical isolation to the manifold sandwich
84
and may be made, for example, of ceramic alumina material. Both the stiffener plate
85
and the filter layer
86
have a plurality of holes
92
which are aligned with the ink inlet and outlet passages
66
and
70
in each of the ink jet modules
54
and with screw holes
94
for screws
95
by which the modules are secured to the manifold plate
88
and for further screws
95
by which the manifold plate is secured to the support frame
82
, the orifice plate
90
being adhesively bonded to the manifold plate
88
.
The manifold plate is of the type described in the above-mentioned Moynihan et al. U.S. Pat. No. 5,701,148 and has appropriate passages
96
by which ink received through an inlet opening
98
on the edge of the frame
82
and passing through openings
100
in the filter layer
86
and the stiffener plate is distributed to the ink inlet openings
66
in the ink jet modules
54
. Ink delivered to the manifold plate from the ink outlet openings
70
in the modules is carried by corresponding return passages
101
in the manifold plate
88
and through openings
102
in the filter layer and the stiffener plate to an outlet opening
104
in the edge of the support frame
82
. The support frame outlet opening
104
is in turn connected through the quick disconnect coupling
36
to the return line
38
shown in FIG.
1
.
For convenience in forming the necessary passages, the manifold plate
88
is preferably made of carbon as described in the above-mentioned U.S. Pat. No. 5,701,148 while, for purposes of imparting rigidity, the support frame
82
may be made of aluminum. The support frame
82
includes two further apertures
106
to accommodate heating elements arranged to maintain the manifold assembly
84
at a uniform and constant temperature above ambient temperature.
FIG. 4
illustrates an assembled printhead in which, for simplicity of illustration, only the four ink jet modules
54
shown in
FIG. 3
have been mounted in the frame
82
. The cross-sectional view of
FIG. 5
, however, shows all twelve ink jet modules
54
mounted in the frame
82
. These are provided in two side-by-side groups with the adjacent ends of the modules being overlapped. With 128 jets in each ink jet module spaced at 0.022 inch (0.56 mm.), a resolution of about 275 dots per inch (108 dots/cm.) in the direction across the web and a maximum image width of about 5.6 (14.2 cm.) inches are provided.
Moreover, since the printhead itself does not contain the ink reservoir, there is a minimal volume of ink within the printhead. Consequently, when the ink supply is disconnected from the printhead and another ink supply with a different kind of ink is to be used, the ink remaining in the printhead may be flushed out quickly and conveniently before the new ink supply is connected to the printhead, with the outlet line
38
being connected to a waste disposal until the new ink has passed through the printhead. As shown in
FIG. 5
, the printhead
10
is supported by a head mount
108
adjacent to the web
14
in closely spaced relation to the platen
12
and the web
14
is moved continuously by drive rolls
110
past the orifice plate
88
from which ink drops are deposited on the web along corresponding paths
20
. The ink jet modules
54
are connected to a head interface board
112
which receives drop ejection actuation signals on the line
16
from the control unit
18
and supplies them to the modules
54
at the appropriate times to produce the image on the web
14
as it moves past the printhead.
As also shown in
FIG. 5
, heaters
114
are mounted in the support frame openings
106
. In this embodiment, which is especially useful for inks which are liquid at room temperature, the heaters
114
are preferably controlled to maintain a constant uniform temperature in the printhead at a level which should be slightly above maximum ambient temperature so that the viscosity of the ink, and therefore the drop size, may be kept constant.
In the further embodiment shown in
FIGS. 6 and 7
, a printhead
120
contains forty-eight modules
54
arranged in the manner described above with respect to the first embodiment except that the orifices in each row are spaced by about 0.020 inch (0.51 mm.) and four groups of twelve modules each are provided in side-by-side overlapped relation across the width
121
of a web, thereby producing a print image width of about 10¼ inches (26.0 cm.). In this embodiment, as shown in
FIG. 7
, a replaceable ink reservoir
122
is mounted in a frame
124
in which the modules
54
are mounted by affixing the reservoir to the printhead. Relative motion and vibration between the reservoir and the printhead are thus minimized, thereby avoiding pressure surges which could affect the jetting and the image quality. In this case, the reservoir
122
is sealed from the atmosphere and has a connection line
126
leading to a negative pressure source to maintain the desired negative pressure of about three to five inches (7.6 to 12.7 cm.) water gauge at the orifice plate. As in the embodiment of
FIGS. 2-5
, each ink jet module
54
is connected to an interface board
128
which in turn is connected through the line
16
to the control unit
18
which supplies actuating signals to the piezoelectric transducer electrodes to initiate drop ejection. For use with hot melt ink, the ink reservoir
122
as well as the frame
124
and the modules
54
are maintained at a temperature above the melting point of the ink by printhead heaters of the type described above with respect to
FIG. 5 and a
reservoir heater
129
shown schematically in FIG.
7
.
In certain ink jet systems a liquid ink may be used which is curable by exposure to ultraviolet or other radiation. In such cases the printer may include a radiation source
132
for curing the ink applied to the web
14
as it leaves the printhead
10
.
In response to the actuating signals from the control unit, ink drops are ejected along paths
20
toward a web
14
which is driven by the drive rolls
110
along a platen
12
spaced at a small distance 130 of about 0.02 to 0.03 inch (0.51 to 0.76 mm.) from the orifice plate in the manifold assembly
84
. With this arrangement, a resolution of about 600 dots per inch (236 dots per cm.) can be provided across an image width of about 10¼ inches (26.0 cm.), the resolution in the direction of web motion being controlled by the web speed and the rate at which actuating signals are supplied to the ink jet modules so as to provide approximately the same image resolution in that direction. Preferably, the adjacent modules
54
in each group have a spacing 134 of about 0.32 to 0.4 inch (0.8 to 1.0 cm.) so that the overall width of the array of modules in the direction of motion of the web is about 3.5 to 4.4 inches (8.9 to 11.2 cm.).
In high resolution ink jet systems drop placement and drop volume errors cause loss of image quality. Providing heaters arranged to maintain a constant and uniform ink temperature as described above reduces drop volume errors to a tolerable level. Drop placement errors are minimized by positioning the orifices in the orifice plate with an accuracy of about 0.0001 inch (2.5 μm), by maintaining the web
14
at the minimum possible distance
130
from the orifice plate, and by maintaining the tracking of the web
14
in precise alignment with the axis of the printhead.
If desired, multi-color images can be produced by providing two or more printheads
10
in succession along the path of motion of the web
14
. In this case, the corresponding image pixel orifices in the orifice plates of the printheads must be in precise alignment and precise tracking of the web
14
must be maintained during its passage adjacent to the successive printheads. It will be understood that, instead of being applied to a web
14
driven by drive rolls
110
across a platen
12
, the ink drops ejected from the printhead may be applied to adjacent surfaces of objects such as packages or containers carried by a conveyor in the same direction as the web.
Although the invention has been described herein with reference to specific embodiments, many modifications and variations therein will readily occur to those skilled in the art. Accordingly, all such variations and modifications are included within the intended scope of the invention.
Claims
- 1. A method of single pass printing, comprising:providing a single pass ink jet system including a single pass ink jet print head that has an array of ink jet orifices, arranged transverse to a substrate which moves relative to the print head during printing, an ink reservoir, and a pump arranged to supply ink curable by exposure to ultraviolet or other radiation through the orifices, and circulating ink curable by exposure to ultraviolet or other radiation though the print head when jetting and when not jetting.
- 2. The method of claim 1 wherein the ink jet head includes an ink inlet through which ink curable by exposure to ultraviolet or other radiation is supplied and an ink outlet through which ink curable by exposure to ultraviolet or other radiation is removed from the ink jet head.
- 3. The method of claim 2 comprising positioning the reservoir remotely from the print head, and directing ink from the outlet to the reservoir.
- 4. The method of claim 2 further comprising:controlling ink pressure downstream of the outlet.
- 5. The method of claim 4 wherein the pressure control includes a J-tube.
- 6. The method of claim 4 comprising:maintaining a negative pressure at the ink jet orifices when the orifices are not jetting.
- 7. The method of claim 2 wherein the single pass ink jet head includes jet modules extending transversely to the motion of the substrate.
- 8. The method of claim 7 wherein adjacent modules are overlapped.
- 9. The method of claim 8 wherein the modules communicate with a manifold which distributes ink curable by exposure to ultraviolet or other radiation from the inlet to each of the modules.
- 10. The method of claim 1 wherein the ink jet head has a print width of about 5.5 inches or more.
- 11. The method of claim 10 when the ink jet head has a print width of about 10 inches.
- 12. The method of claim 1 wherein the ink jet head has a resolution of about 275 dots/inch or more.
- 13. The method of claim 12 wherein the ink jet head has a resolution of about 600 dots/inch.
- 14. The method of claim 2 comprising filtering the ink at the ink inlet or ink outlet.
- 15. The method of claim 1 maintaining ink curable by exposure to ultraviolet or other radiation in the head at a substantially uniform temperature.
- 16. The method of any one of claims 1 to 14 or 15 in which the jetting is effected by piezoelectric transduction.
US Referenced Citations (21)