1. Domain of the Invention
The invention relates to the permanent attachment of a two or three-part metallic assembly in the shape of a “T” accessible only on one outside face. It is used particularly to assemble a thin, closed and partitioned shroud such as a vane placed in the fan duct, on the output side of the fan in a turbojet.
2. Prior Art and Problem That Arises
The function of this type of vane is to stiffen the turbojet structure, particularly by creating a connection between two coaxial annular envelopes, and possibly to guide or deviate the cold air flow circulating in the fan duct. These vanes are metallic blades preferably composed of a hollow shroud inside which stiffener elements are placed. These shrouds are difficult to make and many operations are necessary, particularly for making primary parts and for making the assembly and the attachment such that the dimensions of the shroud are correct.
With reference to
Therefore, this method uses two successive passes of a laser beam each of which causes successive deformations.
It can be added that this type of assembly requires additional material in the form of filler wire, in order to prevent shape defects after welding. This is particularly applicable to roughness and various recesses and undercuts. Furthermore, the tooling investment is relatively expensive because parts need to be held in position with respect to each other continuously and the use of a filler wire unwinder. Finally, it is essential that the wire position should be controlled during welding.
Therefore, the purpose of the invention is to overcome these disadvantages.
The main purpose of the invention is a laser welding method for the assembly of metal parts arranged in the shape of a T, the stem of the T being formed of a plate with parallel surfaces, the assembly only being accessible from the head side of the T, through an external surface, the method comprising the following phases:
According to the invention, the two welds are made at the same time and are parallel to each other and perpendicular to the top surface of the head of the T, such that each of the two welding axes is tangent to one of the surfaces of the plate forming the stem of the T.
In one preferred embodiment of the invention, the two welds are made simultaneously with a bifocal welding head.
In a first embodiment of the assembly using the welding method according to the invention, the stem plate of the T is provided with tabs with a determined length and thickness, and the assembly includes a second part forming the head of the T with slots with length and thickness corresponding to the dimensions of the tabs on the stem plate of the T.
In this case, it is advantageous if the height H of the tabs is slightly more than the thickness of the second part of the assembly forming the head of the T.
In a second embodiment of the T assembly using the welding method according to the invention, the head of the T is formed of two plates perpendicular to the stem of the T and with their edge in contact with the stem plate.
The invention and its various technical characteristics will be better understood after reading the following description of two embodiments of the invention. This description is accompanied by figures.
First Assembly
With reference to
A laser welding head 20 is placed vertically above the tabs 11 of the assembly. This laser welding head 20 is of the bifocal type, in other words it can emit two laser beams 21 parallel to each other. The laser welding head 20 is adjusted such that the two laser beams 21 are at a spacing equal to a given separation distance equal to the thickness of the stem part 10. In other words, each of the two laser beams is tangent to one surface of the stem part 10.
It is intended to cut the tabs 11 of the stem part and the slots 16 in the head part 15 by laser cutting, but other cutting methods could be used.
Therefore, welding on both sides of the top of the stem part 10 along and between the tabs 11 is done in a single pass by longitudinal displacement of the laser welding head 20.
The height of the tabs 11 is slightly more than the thickness of the head part 15 so that they project beyond it slightly. As shown in
Second Assembly
A bifocal weld, as described above for the previous assembly, can be used in exactly the same way, each of the two axes of the two laser beams 21 being parallel to a vertical face of the stem part 30, the weld being made along the entire length of the assembly.
The main advantage of the invention is that welding is done in a single pass without the need for any filler wire. The result is thus a weld seam without any shape defect and the risks of the assembly being deformed during the weld are minimized.
Number | Date | Country | Kind |
---|---|---|---|
02 13914 | Nov 2002 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4661677 | La Rocca | Apr 1987 | A |
4691093 | Banas et al. | Sep 1987 | A |
4866242 | Martyr | Sep 1989 | A |
5483034 | Havard et al. | Jan 1996 | A |
6146094 | Obana et al. | Nov 2000 | A |
Number | Date | Country |
---|---|---|
195 21 892 | Aug 1996 | DE |
195 33 831 | Jan 1997 | DE |
199 07 926 | Dec 2000 | DE |
0 890 745 | Jan 1999 | EP |
1 312 435 | May 2003 | EP |
2 705 603 | Dec 1994 | FR |
2 789 609 | Aug 2000 | FR |
Number | Date | Country | |
---|---|---|---|
20040089641 A1 | May 2004 | US |