This application claims priority to Chinese Patent Application No. 201310410729.1 filed on Sep. 11, 2013 in the State Intellectual Property Office Of The P.R.C, the contents of which are incorporated by reference herein.
The disclosure relates to a single photon source die and a method of manufacturing the single photon source die.
A single photon source die includes a plurality of single photon points, certain positions and sizes of the single photon points need to be settled.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The only drawing is not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure. The description is not to be considered as limiting the scope of the embodiments described herein.
Referring to
At block 601, a precursor 100 is provided. The precursor 100 comprises a first semiconductor layer 140, a prep layer 150 and a connecting layer 160. The prep layer 150 and the connecting layer 160 are formed on the first semiconductor layer 140 successively. In at least one embodiment, the precursor 100 can also comprise a substrate 110, a first buffer layer 120 and a second buffer layer 130.
The substrate 110 can be made of sapphire, silicon carbide (SiC), silicon (Si), or gallium nitride (GaN), etc.
The first buffer layer 120 is formed on the substrate 110. The first buffer layer 120 can be a low-temperature un-doped GaN layer. A range of temperature of growing the first buffer layer 120 can be from 500° C. to 600° C.
The second buffer layer 130 is formed on the first buffer layer 120. The second buffer layer 130 can be a high-temperature un-doped GaN layer. A range of temperature of growing the second buffer layer 130 can be from 1000° C. to 1100° C.
The first semiconductor layer 140 is formed on the second buffer layer 130. The first semiconductor layer 140 can be an n-type GaN layer.
The prep layer 150 is formed on the first semiconductor layer 140. The prep layer 150 can be a quantum well layer. The prep layer 150 can be made of InxGa1-xN (0<x≦1). The x can be equal to 1, the prep layer is made of InN. A thickness of the prep layer 150 can be less than or equal to 100 nm. In at least one embodiment, the thickness of the prep layer 150 can be about 2 nm.
The connecting layer 160 is formed on the prep layer 150. The connecting layer 160 can be made of AlyGa1-yN (0≦y≦1). The y can be equal to zero, the connecting layer 160 is made of GaN. The y can be equal to 1, the connecting layer 160 is made of AlN.
At block 602, the connecting layer 160, the prep layer 150 and a part of the first semiconductor layer 140 are etched to form a first surface 200, a second surface 2022 and a plurality of wedge structures 201. The connecting layer 160, the prep layer 150 and the first semiconductor layer 140 can be etched by lithography etching or nanoimprint lithography, etc. The first surface 200, the second surface 2022 and wedge structures 201 are formed by etching.
At block 603, the wedge structures 201 are etched to form columnar structures 202. A semi-finished product 400 can be obtained as shown in
At block 604, the semi-finished product 400 is annealed in NH3 environment. During annealing, a solubility of element In (indium) of InxGa1-xN (0<x≦1) of the prep layer 150 decreases, a part of element In precipitates out from InxGa1-xN (0<x≦1) and generates to a plurality of indium enrichment areas, and InxGa1-xN (0<x≦1) of the prep layer 150 changes to a InzGa1-zN (0<z≦1). The prep layer 150 transforms into a new layer, illustrated as a single photon point layer 151 in
At block 605, a middle layer 170 is formed on the second surface 2022 of the first semiconductor layer 140 and formed out of the flank 2021 of each columnar structure 202 (see
At block 606, a second semiconductor layer 180 is formed on the columnar structures 202.
The second semiconductor layer 180 is formed on the top surfaces 2023 of the columnar structures 202. The second semiconductor layer 180 can be a p-type GaN layer. During a process of growing the second semiconductor layer 180, the second semiconductor layer 180 can grow on the top surfaces 2023 of the columnar structures 202 along a direction from the substrate 110 to the columnar structures 202 initially and then grow along a direction parallel to the substrate 110 to form the second semiconductor layer 180 on the top surfaces 2023 of the columnar structures 202.
In at least one embodiment, a space 171 is defined among the first semiconductor layer 140, the second semiconductor 180 and the middle layer 170 of the columnar structures 202. In at least one embodiment, the space 171 can be filled with the same material as the middle layer 170 (not shown).
A conducting layer 190 can be formed on the second semiconductor layer 180. The conducting layer 190 can be an indium tin oxide (ITO) layer.
At block 607, two electrodes 301, 302 are formed on the second semiconductor 180 and the first semiconductor layer 140, respectively.
Referring to
The substrate 110 can be made of sapphire, silicon carbide (SiC), silicon (Si), or gallium nitride (GaN), etc.
The first buffer layer 120 is formed on the substrate 110. The first buffer layer 120 can be a low-temperature un-doped GaN layer. A range of temperature of growing the first buffer layer 120 can be from 500° C. to 600° C.
The second buffer layer 130 is formed on the first buffer layer 120. The second buffer layer 130 can be a high-temperature un-doped GaN layer. A range of temperature of growing the second buffer layer 130 can be from 1000° C. to 1100° C.
The first semiconductor layer 140 is formed on the second buffer layer 130. The first semiconductor layer 140 can be an n-type GaN layer.
A top surface 2023 and a flank 2021 are defined in each columnar structure 202. Each columnar structure 202 comprising a bottom layer 141, a single photon point layer 151 and a connecting layer 160. The bottom layer has a same material as the first semiconductor 140. The single photon point layer 151 and the connecting layer 160 are formed on the bottom layer 141 successively. The single photon point layer 151 can be made of InzGa1-zN (0<z≦1). The single photon point layer 151 comprises a plurality of single photon points 1501. The connecting layer 160 is coupled to the second semiconductor layer 180. The connecting layer 160 can be made of AlyGa1-yN (0≦y≦1).
The second semiconductor layer 180 is formed on the top surfaces 2023 of the columnar structures 202. The second semiconductor layer 180 can be a p-type GaN layer.
A conducting layer 190 can be formed on the second semiconductor 180. The conducting 190 can be an indium tin oxide (ITO) layer.
A first electrode 301 is formed on the first surface 200 of the first semiconductor layer 140. A second electrode 302 is formed on the conducting layer 190.
A middle layer 170 is formed on the second surface 2022 of the first semiconductor layer 140 and formed out of the flanks 2021 of the columnar structures 202. The middle layer 170 is a dielectric layer. The middle layer 170 can be an oxide layer. In at least one embodiment, the middle layer 170 can be made of SiOmNn.
In at least one embodiment, a space 171 is defined among the first semiconductor layer 140, the second semiconductor 180 and the middle layer 170 of the columnar structures 202. In at least one embodiment, the space 171 can be also filled with the middle layer 170 (not shown).
It is to be further understood that even though numerous characteristics and advantages have been set forth in the foregoing description of embodiments, together with details of the structures and functions of the embodiments, the disclosure is illustrative only; and that changes may be made in detail, including in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of a single photon source die and a method of manufacturing a single photon source die. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0410729 | Sep 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20040056258 | Tadatomo et al. | Mar 2004 | A1 |
20100193813 | Kao et al. | Aug 2010 | A1 |
20110272671 | Skiba-Szymanska et al. | Nov 2011 | A1 |
20120001210 | Mochizuki | Jan 2012 | A1 |
20120112160 | Chen et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
201031019 | Aug 2010 | TW |
201128801 | Aug 2011 | TW |
201203601 | Jan 2012 | TW |
201220530 | May 2012 | TW |
Number | Date | Country | |
---|---|---|---|
20150069323 A1 | Mar 2015 | US |