The present invention relates to the field of hydrodynamic bearing assemblies, and especially to such assemblies adapted to have good stiffness and long useful life.
Many motors, spindles and the like are based on bearing cartridges comprising a shaft and sleeve and bearings supporting these two elements for relative rotation. For example, a shaft may be mounted by means of two ball bearings to a sleeve rotating around the shaft. One of the bearings is typically located at each end of the shaft/sleeve combination. These bearings allow for rotational movement between the shaft and the hub while maintaining accurate alignment of the sleeve to the shaft. The bearings themselves are normally lubricated by grease or oil.
The conventional bearing system described above is prone, however, to several shortcomings. First is the problem of vibration generated by the balls rolling on the raceways. Ball bearings in such cartridges frequently run under conditions that result in physical contact between raceways and balls; this occurs in spite of the lubrication layer provided by the bearing oil or grease. Hence, bearing balls running on the generally even and smooth, but microscopically uneven and rough raceways, transmit this surface structure as well as their imperfections in sphericity in the form of vibration to the rotating element. This vibration results in misalignment between whatever device is supported for rotation and the surrounding environment. This source of vibration limits therefore the accuracy and the overall performance of the system incorporating the cartridge.
Another problem is related to damage caused by shocks and rough handling. Shocks create relative acceleration between stationary and rotating parts of a system which in turn shows up as a force across the bearing system. Since the contact surfaces in ball bearings are very small, the resulting contact pressures may exceed the yield strength of the bearing material and leave permanent deformation and damage on raceways and balls, which would also result in tilt, wobble, or unbalanced operation of the bearing.
Moreover, mechanical bearings are not always scalable to smaller dimensions. This is a significant drawback since the tendency in the high technology industry has been to continually shrink the physical dimensions.
As an alternative to conventional ball bearing spindle systems, researchers have concentrated much of their efforts on developing a hydrodynamic bearing. In these types of systems, lubricating fluid—either gas or liquid—functions as the actual bearing surface between a stationary base or housing and the rotating spindle or rotating hub and the stationary surrounding portion of the motor. For example, liquid lubricants comprising oil, more complex ferro-magnetic fluids, or even air have been utilized for use in hydrodynamic bearing systems. Such bearings scale well to small sizes without being prone to many of the defects of ball bearings outlined above. Because of the lack of metal-to-metal contact, the bearing has a long life. Because of the stiffness of the bearing, it is highly stable and useful as a reference in devices such as optical encoders and the like.
However, it is apparent that a difficulty with such a hydrodynamic bearing design is their sensitivity both to machining tolerances and the temperature ranges across which they are utilized. Both of these issues are critical in hydrodynamic bearings, because the very narrow gaps between the rotating and stationary parts must be maintained so that the fluid is effective in lubricating the bearing surfaces. Further, the tolerances between the surfaces of the bearing must be very fine so that no tilting or misalignment between the two parts occurs. In other words, it is important to have a very stiff bearing which does not allow for any tilting of the rotating part relative to the stationary part. A further difficulty with prior art designs is that frequently voids or gas bubbles occur in the bearing area, thereby reducing the effective bearing surface and the related load capacity.
Thus it is clear that a number of considerations must be balanced in designing an effective hydrodynamic bearing cartridge, regardless of the area in which it will eventually be utilized.
It is therefore a primary objective of the present invention to provide a hydrodynamic bearing which is simple in design, and highly adaptable and scalable for use in many different environments. It is a further objective of the invention to provide a hydrodynamic bearing having a reliable, repeatable design so that the bearing has the necessary stiffness to be used in applications which have no tolerance for tilt, wobble, or other inaccuracies.
It is a further and related objective of the present invention to provide a hydrodynamic bearing in which the fluid circulation is controlled and directed so that the wear and tear on the two prior surfaces defining the bearing is minimized.
Another related objective of the present invention is to provide for fluid circulation within the hydrodynamic bearing such that the possibility of voids within the lubricant is minimized.
A related objective of the invention is to provide a hydrodynamic bearing design having optimized boundary conditions between the various sections of the bearings to optimize fluid flow and diminish sensitivity to temperature and machining tolerances, thereby providing a greater consistency in the dynamic performance of the invention.
These and other objectives are achieved by providing a hydrodynamic bearing having a shaft relatively rotatable with respect to a surrounding sleeve and having a thrust plate on one end thereof rotating in a recess of the sleeve. The shaft is preferably interrupted by a equi-pressure groove accessing a central reservoir in the shaft and having journal bearings defined by herringbone patterns above and below the groove to stabilize and provide stiffness to the cartridge. The stiffness of the cartridge is further enhanced by a thrust plate carried at one end of the shaft and rotating in a recess of the sleeve and being used to define thrust bearings on either surface thereof. In a typical embodiment, chevron patterns may be coined or etched on both surfaces of the thrust plate so that appropriate pressure patterns can be set up between the thrust plate surface and either a shoulder of the sleeve or a facing counterplate. Alternatively, a counterplate may be provided in which the chevron pattern is stamped thereon, and may in a preferred embodiment even extend beyond the edges of the thrust plate and the recess in which it rotates so that disturbances to the pressure patterns are minimized.
The features and advantages of the present invention will be better understood by reference to the following drawings wherein
The basic principles of the present invention are derived from hydrodynamic bearings as already known in the technology, an example of which is shown in
At the lower end of the shaft 24 near its base end, a thrust plate 30 is stepped into the shaft. This thrust plate 30 extends into a recess defined in this particular embodiment by a lower horizontal surface 32 of the sleeve 20 and an upper surface 34 of a counterplate 36. In this embodiment the counterplate 36 is shown as an element separate from the sleeve 20, pressed in place against a step 38 and inside a shoulder 40 of the sleeve. Other approaches to the assembly for defining this recess are also available and within the scope of the invention. The thrust plate 30 is stepped into the recess 31 of the shaft 24, taking advantage of a small indentation 42 in the shaft 24 which allows the thrust plate to be more easily pressed into place. A small recess 50 is also provided in the sleeve 24 at the top of the shoulder 40 to allow the counterplate 36 to be stepped into place. The recess 50 terminates in the step 38 of the sleeve 20 which is important in locating the vertical spacing of the counterplate 36. The axial location of the counterplate 36 will define the gap between the counterplate 36 and thrust plate 30, forming an operative portion of the hydrodynamic bearing. Immediately below the counterplate 36 is located a shield 60 which is provided to close the bottom region of the bearing assembly, below the rotating shaft 24, from the outside working environment.
With respect to the lower thrust bearing which the thrust plate 30 is the primary component, this thrust plate is rotating in a recess defined by the sleeve surface 32 facing the upper side of the thrust plate, the sleeve recess 62 and recess defining surface 64 which extend along the outer diameter of the thrust plate, and the counterplate 36 captured in the shoulder 40 of the sleeve. The effective surfaces of the thrust bearing in maintaining the stability of the rotating system are the gap 70 between the upper surface of the thrust plate and the bottom shoulder 32 of the sleeve, and the gap 72 between the lower surface of the thrust plate and the upper surface of counterplate 36. The fluid will circulate through these gaps 70 and 72 and the reservoir 62, establishing and maintaining the axial force equilibrium which results form the thrust forces or lifts created in the gaps 70 and 72 and any external axial force applied to the rotating shaft 24 with respect to the sleeve 20.
In addition to the fluid present in the gaps between the rotating shaft 24 and sleeve 20, and between the thrust plate and sleeve and thrust plate and counterplate, fluid is also provided in a reservoir 80 incorporated into the center of the shaft 24, and communicating with the gap 22 between shaft 24 and sleeve 20 through a bore 82. Generally speaking, the direction of fluid flow through the hydrodynamic bearing will be from the reservoir 80 through the lower opening 84 of the reservoir and between the rotating shaft 24 and counterplate 36, through gap 72, reservoir 62 and gap 32 and through the gap 22 between rotating shaft 22 and sleeve 20. This fluid circulation with its accompanying definition of supporting pressure waves, is enhanced by herringbone patterns pressed, coined, or otherwise defined on the upper surface 32 and lower surface 34 of the thrust plate carried on the rotating shaft, as well as the chevron or herringbone style patterns known in this technology and carried on one of the surfaces of the rotating shaft 24 or sleeve 20 facing the defining gap 22.
The development of these pressure differentials is enhanced by the use of a herringbone pattern such as shown in
The fluid circulation and pressure differentials which maintain and enhance the stiffness of the hydrodynamic bearing are further created by the use of upper and lower journal bearings 90, 92 defined between the rotating shaft 24 and sleeve 20. Alternate embodiments with spiral grooves defined on the rotating shaft that is the outside surface of the rotating shaft 24 instead of on the internal bushing of the stationary sleeve are also available without significantly altering the behavior of the design.
The upper and lower internal bearings 90, 92 are separated by the bore 82 which communicates with reservoir 80 and ends in an equi-pressure groove 94. This groove is at the edge of the rotating shaft 24 adjacent the interior surface of sleeve 24. The upper and lower bearings 90, 92 are further defined by a herringbone pattern preferably comprising multiple (at least two) spiral groove axial sections pressed or otherwise defined into the surface of the sleeve 70. The geometry of this pattern is such as will be described further below that relative motion between the sleeve 20 and rotating shaft 24 surfaces will build up a positive pressure with respect to both ends of the bearing, thereby enhancing the desired fluid circulation through the bearing and maintaining the fluid within the bearing rather than allowing it to escape into the environment in which the hydrodynamic bearing is used.
The upper journal bearing 90 that is the bearing between the reservoir exit bore 82 and the rotating head cap portion 100 of the shaft 24 is also defined between the rotating outer surface of the rotating shaft 24 and the internal surface of sleeve 20. The bearing has a similar grooved pattern as described with respect to the lower journal bearing that is a herringbone pattern such that positive pressure is built up and established with respect to both ends of the bearing that is the end near to the reservoir exit bore 82, and the other end near to the upper tapered surface 102 of the outer sleeve 20.
As previously mentioned, the path of the circulation of the fluid past the journal bearing and thrust bearing includes equi-pressure groove 94 and radial bore 82, and a reservoir 80 which comprises a center bore in the rotating shaft, filled with lubricant. If gas bubbles or a void should appear in the fluid, they are likely to be trapped in this center bore due to the centrivical force differential between the heavier circulating fluid and the lighter bubble, thereby diminishing the prospect of a bubble or a void appearing in one of the thrust or journal bearings. Any such bubble or void can diminish the stiffness of the bearing, and lead to accelerated wear in the bearing. This feature is especially important during the assembly process, where it is used to fill and bleed the bearing properly, with the voids being bled out as they accumulate in the reservoir.
It should also be noted that the radial thrust plate gap or cavity 62 adjacent the end of the radial thrust plate 30 and define between that and in the interior wall 64 of sleeve 20 is also filled with lubricant. The cavity is large enough to enforce an infinite manifold boundary condition between the two thrust bearings defined in gaps 32, 34. The upper equi-pressure groove 94 and radial bore 82 connect the upper boundary of the lower journal bearing 92 and the lower boundary of the upper journal bearing 90 to the reservoir 80, thus enforcing an ambient pressure boundary condition. The circulating fluid thus can leave the journal bearing through the radial bore 82 and travel into the center bore reservoir 80 in order to maintain proper fluid circulation. A middle equi-pressure groove (not shown) may also be provided at the junction or intersection between the lower journal bearing 92 and the upper thrust bearing 32. This groove would fill with lubricant and would be large enough to enforce an infinite manifold boundary condition between the upper thrust bearing and lower journal bearing to further aide in the development of the proper pressure distribution across these surfaces.
The hydrodynamic bearing of the present invention further includes a capillary seal generally indicated at 110. It is formed at the radial gap between the rotating shaft 24 and the sleeve 20, the gap between these two facing surfaces of the two members having a progressively increasing width 102. The capillary action due to the surface tension in the bearing fluid prevents the fluid in the hydrodynamic bearing from spilling out of the bearing in a standstill condition.
The bearing further includes an enlarged recess 120 above the capillary seal 110 and defined between an upper shoulder 122 of the sleeve and a lower surface 124 of the rotating shaft. This gas trap 120 inhibits any net gas or fluid flow out of the bearing assembly to the atmosphere surrounding the assembly. However, gasses may still leave the fluid at the upper boundary of the upper journal bearing. Further, lubricant droplets created under excessive shock may also be defined to be collected in the same gas trap 170.
The ability to prevent exiting of particles or gasses from the hydrodynamic bearing is further enhanced by a seal 130 formed by the curved wall of the upper hub end of the rotating shaft rotating over the upright shoulder of the sleeve 20.
As a further protection against any escape of gas or the like, the lower surface 124 of the hub end of the shaft 24 and the horizontal surface 122 of the upper main body portion of the sleeve.
As a further protection, the surfaces 122, 124 of the gas trap reset may be colored with a non-wetting material to prevent fluid creep from the bearing into the gas trap. These coatings may also be applied to both the surfaces of the seal generally indicated at 130. The use of these barrier coatings may be significant because without them the seal may lose much of its sealing function, since evaporation from a wet surface will maximize in a narrow gap.
The other circumferential surface 140 of the gas trap, defined by an inner surface of the sleeve, may also be coated with holder ring of absorbent material on the surface thereof. This will eliminate condensing gasses and bind droplets accumulating in the gas trap 120.
A second rotating shaft hydrodynamic bearing is shown in
The lower journal bearing 212 extends substantially down to a thrust plate 214 where the shaft terminates, with the reservoir 204 extending down through this thrust plate. As described in greater detail in the incorporated Leuthold et al. application, a counterplate 216 faces the bottom surface of the thrust plate 214. In a preferred embodiment, the chevron or herringbone patterns which are needed to establish the proper pressure distributions across the hydrodynamic bearing are formed on the upper surface 218 of this counterplate, facing the flat bottom surfaces of the thrust plate 214. Herringbone or chevron patterns are also formed on the upper surface 220 of the thrust plate facing the top surface of the recess 222 in which the thrust plate rotates so that both upper and lower thrust bearings are formed to enhance the lateral and axial stability of the rotating shaft in the hydrodynamic bearing. This arrangement incorporating a counterplate inserted between the shoulder 224 of the sleeve 202 forms a hydrodynamic bearing having a very flat bottom surface and a tall thin profile which has many potential uses.
In all other respects the cartridge operates according to the same principles described above with respect to rotating shaft hydrodynamic bearing cartridges.
Other features and advantages of the present invention will become apparent to a person of skill in this field who studies the present invention disclosure. For example, the embodiments of both
This application is related to and may be used in common with the invention disclosed in A-60203/JAS, entitled “Vacuum Fill Technique for Hydrodynamic Bearing”, U.S. Ser. No. 08/503,568, filed Jul. 18, 1995, inventor: Parsoneault; A-60465/JAS entitled “Absorbent Oil Barrier”, unfiled, inventor: Parsoneault; A-60464/JAS entitled “Thrustbearing Built with Single Sided Grooved Plates”, unfiled, inventor: Leuthold; A-59788/JAS entitled “Single Plate Hydrodynamic Bearing with Fluid Circulation Path and Self Balancing Fluid Level”, U.S. Ser. No. 08/278,754, filed Jul. 22, 1994, inventor: Leuthold, all of said applications being assigned to the assignee of the present invention and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 08976373 | Nov 1997 | US |
Child | 10400082 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08546932 | Oct 1995 | US |
Child | 08976373 | Nov 1997 | US |