a, 1b show two barrel shaped air valve devices with spring to provide force between devices, in accordance with an aspect of the present invention.
a and 3b show HVAC unit section with first, second and third outlet, air valve device, and actuation device, in accordance with an aspect of the present invention.
a, 4b show another perspective view of air valve devices showing sharing common shaft, with spring mechanism attached to air valve devices, in accordance with an aspect of the present invention.
a, 5b show a perspective cross-section view of an automotive HVAC unit with three outlets and air valve devices, in accordance with an aspect of the present invention.
a, 7b are side schematic view of multiple air valve device unit having repulsion mechanism and barrel doors, in accordance with an aspect of the present invention.
In various aspects of the present invention, an HVAC unit is provided having three or more air outlets. Air valves are arranged in a configuration wherein two air valve devices are required to achieve the functionality of an automotive HVAC mode system comprising three air outlets.
Figure one shows an HVAC unit with an arrangement of first, second and third air outlets. For example, an outlet leading to the floor of an automotive vehicle cockpit or passenger compartment is provided in the center of panel and defrost outlets Other outlets, so called defrost air outlets, lead to an area of the vehicle where defrost needs occur.
The HVAC unit outlets are provided with air valves arranged in a configuration such that each door shares the same, or ‘common’ axis of rotation. The axis of the first air valve forms an inner shaft that is surrounded by the hollow axis of the second air valve. An actuation device interfaces with the shafts of the air valves by means of a portion of one of the shafts, for example, that is flat on one or another, or preferably, both sides, having a rectangular cross section of high aspect ratio.
Such physical mechanism will hereafter be referenced as an actuator blade. The physical mechanism whereby actuation can cause both air devices to move in response to the command or demand of one actuation device, is commonly referred to as a blade, tab or extension (collectively referred to herein as an ‘actuator blade’), such actuator blade serving as a means to turn the doors relative to one another.
a and 1b illustrate multiple air valve unit (10), with air valves devices (11, 12) which form a seal (13) together when closed. Repulsion device (14) is a spring, which open the seal (13) the two air valves (11, 12) at an angle up to 60°.
As described herein, a hollow outer shaft of a first air valve can be slotted in a manner that allows an actuation blade to rotate freely with respect to the first air valve by an angle equal to the total rotation angle of a second air valve. Inner shaft of the second air valve device can also slotted) in a manner that allows the actuation blade to rotate freely with respect to the second air valve by an angle equal to the total rotation angle of the first air valve.
A repulsion mechanism, such as a spring, in various aspects of the present invention, is utilized to apply a force to separate a first air valve device from a second air valve device. This force creates a torque on the air valve devices which is less than the torque from the actuation device, the torque required to compress the seal between first and second air valve devices to the desired compression ratio. This force is greater than the force of gravity applied to the air valve device plus the force of the airflow impingement applied to the air valve.
In one embodiment, this force will be created by a mechanism, herein referred to as a repulsion device, such as a spring. In another embodiment, the force is created by an alternative device or mechanism, such as a magnetic seal. Force can additionally be created by weighting air valve devices, e.g. using different weighted doors in place of the spring.
a shows three HVAC air outlets, first air outlet (36), second air outlet (37) and third air outlet (38), with first air valve device (39) also shown. Second air valve device shaft (40) and first air valve device shaft (41) as shown on
a shows actuation means (43) and motion transferor (44) with actuator blade (45) which directly interfaces with both shafts (40, 41), to rotate air valves devices 39 and 40 (not shown), to allow air to be delivered or control air access to outlets (36, 37, 38).
a and 4b show multiple air valve unit (400) with air valve devices (411, 420) and bearing (450) on one side. Sealing portions (422, 423) of air valve devices (424) has air valve devices (411, 410), in closed position, is illustrated. Concentric shafts (415, 416) providing for shaft interfaces, relating to air valve devices (420, 421) respectively are present, and shafts directly interface with motion transferor (not shown) or actuator (not shown), to turn both air valve devices.
a and 5b illustrate an HVAC unit section 500, having housing outlets (510, 511, 512) positioned downstream of multiple air valve unit (600). Central axis (601) of multiple air valve unit is shown, with first barrel door (621) and second barrel door (622) in an open position.
a and 7b show barrel shaped doors (722, 721) of multiple air valve device (700), and repulsion device, in this case, a spring (724) around concentric shafts (751, 752) of doors. Common axis (730) is represented by a point.
When the actuator torque is applied, it only applies torque to one air valve at a time. The direction of the torque imparted by the actuator on air valve one is always in the same direction, and is always opposite of the direction of the torque imparted by the repulsion mechanism on air valve one. The direction of the torque imparted by the actuator on air valve two is always opposite of that of air valve one. It is always in the same direction, and is always opposite of the direction of the torque imparted by the repulsion mechanism on air valve two.
c, shows the valve mechanisms in a natural position without any torque applied from the actuator. The repulsion mechanism applies equal and opposite torque to Air Valve 1 and Air Valve 2, positioning them away from each other and forcing them to seal as shown in
In order to achieve positions as shown in
In order to achieve positions as shown in
Unless stated otherwise, dimensions and geometries of the various structures depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components can be provided by a single integrated structure. Alternatively, a single integrated structure might be divided into separate plural components. In addition, while a feature of the present invention may have been described in the context of only one of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.
The preferred embodiment of the present invention has been disclosed. A person of ordinary skills in the art would realize, however, that certain modifications will come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.