This Application claims rights under 35 USC §119(e) from U.S. Application Ser. No. 61/527,159 filed Aug. 25, 2011, the contents of which are incorporated herein by reference.
Embodiments are generally related to direction finding systems. Embodiments are also related to a method and system for determining north in target locator systems. Embodiments are additionally related to a single receiver GPS pointing vector sensing system.
GPS (Global Positioning System) navigation systems include a constellation of satellites each of which provides a coded signal which may be picked up by radio receivers on the surface of the earth. Separate coded signals from a set of satellites may be processed by a receiver system for use in determining location as defined by latitude, and longitude based on the code carried by the signals. The operation of GPS systems in determining location based on coded signals received from satellites reflects the conventional functioning of such systems.
However, it has been found that the signals generated by GPS satellites may be used in other ways and in particular the carrier phase of the signals may be used in certain surveying applications. For example, a pair of stationary antenna/receiver combinations may be located at the ends of a baseline (whose length is required to be determined) and, based on the observed relative phase of the GPS carrier signal from satellites at known positions, determine the orientation of the antenna pair relative to an earth reference.
Current GPS orientation techniques require two position measurements either accomplished using two antennas and two receivers as typical in surveying applications or requiring precise movement of a single antenna/receiver pair to two different relative positions. These approaches typically require significant separation (>1 meter) between measurements in order to mitigate position inaccuracy between measurements making for large, bulky equipment.
Digital magnetic compasses are currently used in handheld target systems to determine orientation relative to north. These devices may be easily influenced by local fields due to geological formations, metal vehicles and even equipment worn by the user. There is generally no indication when these devices are compromised leading to incorrect targeting solutions. GPS solutions are generally discounted as they can be influenced by multipath effects or jamming.
A need therefore exists for compact GPS, non-magnetic sensing of azimuth direction for target systems.
The following summary is provided to facilitate an understanding of some of the innovative features unique to the disclosed embodiment and is not intended to be a full description. A full appreciation of the various aspects of the embodiments disclosed herein can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
It is, therefore, one aspect of the disclosed embodiments to provide for direction finding systems.
It is another aspect of the disclosed embodiments to a method and system for determining north in target locator systems.
It is yet another aspect of the disclosed embodiments to provide for a single receiver GPS pointing vector sensing system.
It is another aspect of the present invention to provide a GPS system for determining north in a target locator system with two antennas includes two stationary GPS antennas separated by less than half a wavelength. A single receiver is also included, and is used to determine the pointing vector of the system.
It is yet another aspect of the disclosed embodiments to provide a GPS system in which the outputs of two antennas are scaled with time varying gains and summed in order to generate a carrier phase modulation that is dependent on satellite orientation.
It is yet another aspect of the disclosed embodiments to provide a GPS system that includes a three axis gyroscope that allows determination of the pointing vector while in motion.
The aforementioned aspects and other objectives and advantages can now be achieved as described herein. A system and method of determining a pointing vector using two GPS antennas and a single GPS receiver is disclosed. Two stationary GPS antennas, with a separation preferably less than half of a wavelength (˜100 mm) may use a single receiver to determine the pointing vector of the system. Incorporation of a three axis angular rate measurement allows pointing determination during system rotation. The present invention provides the ability to sense multipath and jamming, potentially alerting the user that the measurement may not be reliable.
The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the disclosed embodiments and, together with the detailed description of the invention, serve to explain the principles of the disclosed embodiments.
The particular values and configurations discussed in these non-limiting examples can be varied and are cited merely to illustrate at least one embodiment and are not intended to limit the scope thereof.
Referring to
The phase at the second antenna 104 can also be calculated. The GPS carrier frequency is nominally 1.57542 GHz corresponding to with a wavelength of 190.3 millimeters. If the first and second antennas 102 and 104 are separated by fifty four millimeters, the phase 112 on the carrier wave 110 on the second antenna 104 relative to the first antenna 102 is calculated as
−380*54/190.3=−102 degrees
The Doppler shift in carrier frequency caused by the motion of the satellite has an insignificant impact on this phase difference.
Referring to
Extending this relationship to three dimensions, the phase difference observed between the two antennas for each of the satellites in degrees for this example can be determined as
Phase difference=102*cos θ,
where θ is the angle between the vector defined by the phase centers 108 and the vector pointing to the transmission direction 106 of the satellite.
The angle between the two unit vectors can be determined using the following relationship:
cos(θn)=Zn·Zb=xbxn+ybyn+zbzn Equation (1)
where Zn is the unit vector pointing to the nth satellite and Zb is the unknown unit vector connecting the two antenna phase centers in the coordinate system defined for Zn. θn is the angle between these vectors for the nth satellite.
From
αn(t)β Cos(θn)=β(xbxn(t)+ybyn(t)+zbzn(t))+nn(t) Equation (2)
where β is the maximum phase difference determined by the antenna separation of hundred and two degrees.
The vector to the satellite defined by xn, yn, Zn are indicated as time varying as the satellites are in motion. There is an additive noise term nn that represents the noise on the carrier phase measurement from the GPS receiver. Note that there are three unknowns in the equation (2), xb, yb and zb. In a noise free measurement, these values may be determined from three satellite measurements to satisfy the three equations, three unknown criteria for the unique solution. In the presence of noise, the three unknowns can be solved by taking many measurements, either using more than three satellites or using many measurements through time. The GPS position solution requires a minimum of four satellites and generally, more than four satellites are available adding more measurements to the least squares fit. The problem is amenable to recursive least square solution for a static system or may be incorporated into a Kalman estimator for a dynamic system with the addition of inertial sensors to predict rotation of the xb, yb and zb vector components.
The state equations used for such an estimator can be constructed from the previous equation as
where the measurement is αm1=α1+n1
One embodiment of this disclosure is the method used to sense the satellite dependent carrier phase shift at the two receiving antennas using a single receiver. In this embodiment, the antenna outputs are scaled by time varying gains and summed in order to generate a carrier phase modulation that is dependent on satellite orientation.
Referring to
The GPS receiver 124 processes the summed antenna signal 123 using standard GPS receiver software to generate a satellite almanac 132 that allows prediction of satellite position, provide raw carrier phase measurements 134 and determine the GPS receiver location 136. These standard data outputs are input to a processor 126 along with the measured modulation 120 and the measured inertial rotation rates 127 provided by the inertial measurement system for example three axis gyroscope 128. The raw carrier phase measurements include a measure of the phase modulation induced by the time varying summation of the two antenna signals. The processor 126 determines the pointing vector 130 based on the signals from GPS receiver 124 and three axis gyroscope 128.
The carrier signals measured from first and second antennas 102 and 104 are scaled and expressed as in equations (4) and (5), the variable a representing the gain, which varies from 0.0 to 1.0 in sinusoidal manner, applied to first antenna 102 output. In these equations, the maximum phase shift between these antennas, β, is relative to first antenna 102.
s1n=α sin(ωct) Equation (4)
s2n=(1−α)sin(ωct+γ) Equation (5)
γ=β cos(θn) Equation (6)
The second antenna output can be equivalently expressed as:
s2n=(1−α)cos(γ)sin(ωct)+(1−α)sin(γ)cos(ωct) Equation (7)
The sum of the two weighted antenna outputs
an=s1n+s2n=a sin(ωct)+b cos(ωct) Equation (8)
a=α+(1−α)cos(β cos(θn)) Equation (9)
b=(1−α)sin(β cos(θn)) Equation (10)
an=√(a2+b2)sin(ωct+a tan(b/a)) Equation (11)
The variation of carrier amplitude as a function of alpha parametric with gamma depicted as 416, 402, 404, 406, 408, 410, 412 and 414 for relative carrier phase delta values 0, 0.5236, 1.0472, 1.5708, 1.78, 2.0944, 2.618 and 3.1416 radians respectively are shown in
Referring to
A Kalman estimator is provided here as the preferred implementation for the pointing vector estimator 608, other estimator implementations are possible. The state for the estimator is defined as:
where xb, yb and zb is the pointing vector of the system. The state prediction for the next update is given by
{circumflex over (X)}k,k-1=F{circumflex over (X)}k-1 Equation (13)
where F is a DCM calculated representing system motion relative to the previous estimator iteration.
Earth referenced unit vectors for satellites 1 through n are calculated from the satellite almanac 132 provided by the GPS receiver 124:
For a 1 Hz phase modulation, the gain on antenna 1, α, is defined as
αk=0.5 sin(2πtk)+0.5 Equation (15)
The measurement prediction is the predicted carrier phase in expressed in meters as determined by:
where λ is the carrier wavelength, α is the modulation used for the antenna gain and β is determined by the antenna separation. γk and θk,k-1, a and b are n×1 vectors. The a tan arguments are evaluated element by element rather than as a matrix divide.
The linearized measurement prediction is determined from:
{circumflex over (θ)}′k,k-1=H{circumflex over (X)}k,k-1 Equation (20)
H=dU(αk−0.5) Equation (21)
where d is the distance between centers of the two antennas.
The kalman estimator then uses the standard set of equations:
Pk,k-1=FkPk-1+Q Equation (22)
where Q is zero for stationary operation. For dynamic operation, Q must be set based con the rotational motion anticipated.
yk=θm−k,k-1 Equation (23)
Sk=HkPk,k-1HkT+R Equation (24)
R is a diagonal matrix with the values in the diagonal set to the set to the variance of the carrier phase noise, high pass filtered with a 1 Hz cutoff frequency.
Kk=Pk,k-1HkTSk−1 Equation (25)
{circumflex over (X)}k={circumflex over (X)}k,k-1+Kkyk Equation (26)
Pk=(I−KkHk)Pk,k-1 Equation (27)
The magnitude of the predicted carrier phase modulation and the measured carrier phase modulation ideally match at steady state. The magnitude of the difference between measurement and prediction can be used as a measure of the accuracy of the solution. Satellite signals with significant difference between prediction and measurement are likely impacted by multipath or jamming signals and can be selectively dropped from the solution until a minimum accuracy as determined by the remaining difference has been achieved.
It will be appreciated that variations of the above disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/051056 | 8/16/2012 | WO | 00 | 5/3/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/028443 | 2/28/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5185610 | Ward et al. | Feb 1993 | A |
5266958 | Durboraw, III | Nov 1993 | A |
5347284 | Volpi et al. | Sep 1994 | A |
5952968 | McDowell | Sep 1999 | A |
6281841 | Nevill | Aug 2001 | B1 |
6441779 | Bennett et al. | Aug 2002 | B1 |
6615135 | Davies | Sep 2003 | B2 |
20050043887 | Chenus et al. | Feb 2005 | A1 |
Entry |
---|
PCT/US12/051056, Extended European Search Report mailed Jul. 8, 2015. |
Number | Date | Country | |
---|---|---|---|
20130328718 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61527159 | Aug 2011 | US |