This invention relates to an extruder for 3D printing or other application from which a resin extrudes or flows for deposit. More particularly, this invention pertains to the arrangement, scaling, and structural form of a relatively small extruder having a screw rotating in a conical bore of an extrusion barrel for use with standard plastic pellets and/or micro-pellets, designed to be mounted is a vertical or substantially vertical position.
Plastic parts are commonly made using injection molding, blow molding or extrusion equipment or machines (hereinafter “plasticating machines”). Plasticating machines such as these have been used for decades. Typical plasticating machines used today are relatively large in size (i.e., typically from 3 to 16 feet in length, but sometimes up to 40 feet in length) for increased capacity and throughput, to make multiple parts quickly and efficiently. In most operations, the machine receives polymer or thermoplastic resin pellets in solid form, then heats and works the resin to convert it to a homogenously melted or molten state. The longer the length of the machine, the larger diameter of the extruder bore and the more residence time pellets have for homogenous melting and mixing.
The basic plasticating machine (either extruder or injection molding machine) has an elongated cylindrical barrel heated at various locations along its length. An axially supported and rotating screw extends longitudinally through the barrel. The screw is responsible for forwarding, melting, pressurizing and homogenizing the material as it passes from an inlet port to an outlet port of the barrel. The screw has a root core with a helical flight thereon and the flight cooperates with the cylindrical inner surface of the barrel to define a helical valley forming a path for forward passage of the resin to the outlet port.
In a typical plasticating machine, a feed section extends forward from the inlet port of a feed opening where the solid thermoplastic polymer resin, generally in pellet form, is introduced and pushed downstream by the screw along the inside of the barrel. The resin is then worked and heated in the melt section (also sometimes referred to as a “transition section,” “barrier section” or “compression section”), and the melt or molten material is then passed to a metering section for delivery under pressure through a restricted outlet or discharge port to an extrusion die or injection mold. As described in more detail by Womer et al., in U.S. Pat. Nos. 5,798,077, 5,931,578, 6,488,399, 6,497,508, 6,547,431, 6,672,753 7,014,353, and 7,156,550, it is desirable that the molten material leaving the machine be completely melted and homogeneously mixed, resulting in uniform temperature, viscosity, color and composition. Plasticating machines typically operate at a constant or steady screw speed, usually around 125 revolutions per minute (“rpm”), for consistency, uniformity and continuity of the process.
With the growth of 3D printing, an opportunity has been created to invent and develop a relatively small extruder, appropriately scaled to size that can deliver a consistently uniform and repeatable flow of molten plastic to a printer head at a rate of 20 lbs per hour or less (hereinafter “micro-extruder”). On account of size and area limitations of small and medium size 3D printer (i.e., known as “medium area additive manufacturing” [abbreviated “MAAM” in the industry] having printer dimensions of approximately 5 ft×10 ft×3 ft to “small area additive manufacturing” [abbreviated “SAAM” in the industry] having printer dimensions of approximately 30 in×22 in×23 in), the extruder has weight and length constraints, relatively short heat-resonance limits, feed angle constraints, and confinements for the torque drive mechanism need to control the speeds and torque of the screw, it is not practical to simply scale down a standard plasticating machine for use in 3D printing. Engineering is required. In 3D printing, for example, the extruder must be able to operate at varied screw speeds (e.g., 0 to 400 rpm) during printing. Further, the micro-extruder needs to be designed to process industrial feedstock pellets. More specifically, as extruders get smaller, a problem develops at the feed opening; namely, industry size plastic pellets are too large for the shallow channel depth of the helical valley for passage into and through the feed section.
As a result of these complications, small and medium sized 3D printers (i.e., SAAM and MAAM 3D printers) are forced to use spools of plastic filaments or strands (like weed trim-cord) fed to a printer head. In a typical 3D printer on the market, the filament is fed from a spool to the printer head where it is heated, melted and deposited. With this design, it is critical that each spool has a filament that is uniform in composition and dimension (i.e., usually about 1.75 mm and 2.85 mm in diameter with very close cross-sectional tolerances and pure chemical composition). Otherwise, the deposit rate of molten material is not uniform from spool-to-spool or from beginning-to-end of the spool, and the filament may break during operation. As a result, the 3D printer must be stopped and reloaded. Since filament spools need to meet very close composition and dimensional tolerances, spool costs are substantial and not all thermoplastic polymer resins are available in spool form. In addition, the deposit rate of 3D printers using spools is relatively slow and not ideal for making large printed objects. In summary, spool driven 3D printers are slow, failure prone, labor intensive, expensive to operate, and limited to particular polymer resins.
For 3D printing to become more cost-effective and competitive as an industry tool for manufacturing, a relatively small extruder is needed to replace the spool fed 3D printer head. To be clear, there is a need for a small efficient extruder that is mountable to a 3D printer that can deliver a uniform molten polymer resin to the printer head consistently, uniformly and quickly. Moreover, the extruder is needed that can process commonly available, standard size industrial pellets, in addition to micro-pellets, in a timely, efficient and effective manner, and within a confined space. The instant invention accomplishes this objective, and provides the benefits and advantages discussed infra.
This invention is for a micro-extruder having these advantages and others, including: providing a continuous feed of plastic pellets to the printer head from a larger bulk supply; durability; ease of operation; and optimally sized for convenient mountability and easy interchangeability (namely, with this invention extruders can be interchanged for an optimal barrel and screw design to print a particular polymer resin). Further yet, another advantage includes more optimal control of the deposit rate of molten plastic with changes in the linear speed of the printer head. By way of example, as the printer head approaches a corner to turn, it must slow down, stop, turn and restart. Simultaneously, the deposit rate with this invention may also be slowed, stopped and restarted by controlling the screw's rotational speed. Using spools, it is difficult to stop the spool without overheating and breaking the filament at the printer head, to avoid excess plastic from being deposited during stops and starts.
Yet another advantage of this invention is its reduced cost of operation. To be clear, this invention replaces the spool with commercially available thermoplastic polymer resin pellets most often used in the extrusion industry. Pellet material is seen as superior to spool filament, since spool filament is typically extruded from standard pellets, and thereby exposed to one or more thermal cycles, which causes thermal degradation and molecular breakdown.
Although there are several different types of thermoplastic resins with each having different physical properties and characteristics, the standard industrial size plastic pellet is approximately 0.125″×0.125″. There is also a smaller pellet feedstock known as “micro-pellets” having a size between 0.020″×0.020″ to 0.050″×0.050″. Standard size plastic pellets and micro-pellets are illustrated side-by-side in
This invention, therefore, is designed to work primarily with standard pellets. However, even with all its disadvantages, using micro-pellets with this invention will work just as well and is still more cost attractive and reliable than spool-fed printers currently on the market.
The preferred embodiment of the instant invention includes a single screw micro-extruder mountable to a 3D printer to or near the printer head having a torque drive mechanism. The micro-extruder comprises, in this case, a feed chamber having a conically shaped feed surface converging downwardly at the printer head. The feed chamber has a port/opening for receiving solid plastic pellets. The extrusion barrel, having a length and a longitudinal axis, preferably extends downwardly from the feed chamber and has an inner conically shaped, concentric bore between input and output ends. The bore includes a mouth at the input end and an exit opening at the output end with a melt section in between. The diameter at the mouth is greater than the diameter of the exit opening, and an extrusion nozzle is mounted at the output end of the extrusion barrel.
The micro-extruder in this invention further includes a rotatable screw with a length extending along the longitudinal axis through the conical bore of the extrusion barrel. The screw, supported at a drive-shaft portion by a bearing-seal housing passing through the feed chamber, is rotatably driven by a torque drive mechanism at the printer head. Further yet, the screw includes a root or root core with a surface and a flight located on and projecting radially from the core. The flight has a lead length forming a channel with a helix angle and a helical path between the root core surface of the screw and an inner surface of the conically shaped bore of said extrusion barrel; and the helical path extends from the input end into the melt section of said extrusion barrel, toward the extrusion nozzle.
At the outermost surface of the flight is a land adjacent the inner surface of the conically shaped bore; thereby forming a conical angled profile substantially equal to the conical angle of the barrel, (from the input end through the melt section of the extrusion barrel) such that the flight works closely with the inner surface of the bore to engage and wedgingly urge pellets from said feed chamber downwardly through the extrusion barrel to the extrusion nozzle. The diameter of the root core of the screw (in the direction from the input end toward the output end of the extrusion barrel) is either constant or tapered (i.e., preferably constant, but it may be tapered by increasingly expanding; and in a few applications the root core diameter may decrease slightly), but in all cases it is important that the channel's root depth throughout the helical path decreases for compression of the plastic pellets between the root core surface and the inner surface of the bore for pressurizing melt in the melt section to exit the extrusion nozzle.
Other structural features of the micro-extruder of this invention may include, without limitation, the following additional components incorporated separately or in combination: a) an auger section having a pre-feed flight extending along the screw length in the feed chamber for pushing pellets from the feed chamber into the barrel; b) a shroud enclosure around the feed chamber (with or without inlet and outlet openings to provide flow of a cooling medium therebetween); c) a screw positioning adjustment mechanism for tuning the position of the screw to optimize the clearance between the screw flight and inner surface of the bore of the extrusion barrel; and d) a secondary-port opening (in addition to a top feed opening in the feed chamber) for the addition of an inert gas, liquid color or a secondary polymer to be melted and homogenized during the extrusion process.
As generally described above, the capabilities, advantages and features of this invention include, among others, the following:
The drawings are designed for the purpose of illustration only and not as a definition of the limits of the instant invention, for which reference should be made to the claims appended hereto. Other features, objects and advantages of this invention will become even clearer from the detailed description of the preferred embodiment infra made with reference to the drawings in which:
The particular embodiment illustrated in the Figures show dimensions. The dimensions are not included to limit the scope of the invention to those particular measurements. The dimensions are useful, however, for scaling the preferred embodiment described below.
With reference to
In the preferred embodiment, for example, the extrusion barrel 30 has an outside diameter of about 1.75 inches, a length 34 of about 10 inches (with the length of the melt section 36 being about 9 inches); the bore diameter 40 at the mouth of the barrel 30 (i.e., at the input end 32) is about 1 inch; and the diameter at the output end 38 is about 0.6 inches (to accommodate the nozzle tip threads 82 for nozzle 80).
A feed chamber 20 is preferably connected (via threads) to the outside of the input end 32 of the barrel 30, and includes a primary feed opening or fill-hole 22 at the top for receiving solid plastic pellets 16 (preferably via a feed tube or conduit 13 attached to a bulk supply of pellets) as seen in
The feed chamber is shaped with a conical surface 26 converging downwardly to flood feed the solid plastic pellets 16 to the mouth 31 of the extrusion barrel as shown in
Still further, small holes 27 through conical surface 26 of the feed chamber 20 may be used to provide a pathway for ambient air or pre-heated air to either cool or pre-heat the pellets 16 as the process may require (e.g., the cooling process will further assist in keeping the pellets from sticking together and the pre-heating process will assist in drying or adding additional energy to facilitate melting). In the alternative, a thermal resistant insert 21 (shown in
Also, the feed chamber 20 or 20′ can be enclosed with a feed chamber shroud 128 to enclose the feed chamber (as shown in
Further yet, the feed chamber (either 20 or 20′) may include a sleeve-shield 28 spaced from the drive-shaft portion 52 of a screw 50 (described infra) to shield the neck of the drive-shaft portion 52 from direct contact with pellets (i.e., again, to prevent pre-melting in the feed chamber caused by heat transferring up the screw during operation). Also, air can be circulated along the length, i.e. inside of the sleeve-shield 28 and the drive-shaft portion 52, for additional cooling or pre-heating as the case may be. The space therebetween is particularly important to prevent pre-melting when the extruder is rotated by the mounting arm 115 of the extruder mounting frame 100 from the off-vertical position during the 3D printing operation as shown in
Regarding the screw 50 in this invention, a single, rotatable screw 50, having an overall length 70, is positioned along the longitudinal axis through the conically shaped bore 35 of the barrel 30. The overall length 70 of the screw 50 is preferably about 15 inches when used with the preferred 10 inch barrel described supra. As depicted in alternative configurations shown in
To reduce the height of the overall system and eliminate the adapter 11a and rigid mechanical coupling 11b between the drive mechanism 14′ and screw 50 shown in
The screw 50 is easily attachable to the torque drive mechanism 14 using a drive set-screw and flat-face section 51 for a quick connect or disconnect at the drive-shaft portion 52 of the screw shown in
The drive-shaft portion 52 of the screw 50 passes through the feed chamber 20 or 20′ and is mounted for rotation through a bearing-seal housing 18 having an angular contact bearing 19 and a lip-seal 17 (i.e., contacting the screw's thrust load surface 73 and lip-seal surface 76, respectively) as best seen in
Other preferred features of the screw 50 include a root or root core 54 with a root core surface 55 having a flight 56 projecting radially from the core. In the preferred embodiment of this invention, the screw has a constant diameter 64 at the root core 54 (see,
An auger section 120, having a pre-feed flight 121 (shown in screw 50′ illustrated at
Once in the barrel 30, the outermost surface of the flight (i.e., the flight land 60) is aligned substantially adjacent to the inner surface of the bore 37 of the conically shaped bore 35, thereby forming a conical profile 62 of the screw having a conical angle “y”. As a result, the helix angle “θc” measured at the root core is different than the helix angle “θf” measured at the flight land 60. (See, pg. 39-41 of Engineering Principles of Plasticating Extrusion by Tadmor & Klein, published by Van Nostrand Reinhol (1970)). In the preferred embodiment of this invention, the helix angle “θc” measured at the core would be constant along the screw's flight length 72 since the root core diameter 64 is constant. However, since the conical profile 62 of the screw changes as the diameter tapers inward toward the axis when measured at the flight land 60, the helix angle “θf” varies along the screw's flight length 72.
In this case, with the exception of the pre-feed flight of the auger section 120, the helix angle “θc” at the root core 54 is preferably between about 20 to 30 degrees. The optimum angle helix “θc” is at about 25.5 degrees. Further, the helix angle “θf” measured at the mouth 31 of the input end 32 of extrusion barrel 30 is preferably between 12 to 15 degrees, with the optimum angle “θf” at about 13.5 degrees; and helix angle “θf” measured at the exit opening 39 of the output end 38 of extrusion barrel is preferably between 20 to 23 degrees, with the optimum angle “θf” at about 21.7 degrees. The average helix angle “θf” of the conical profile 62 of the screw is preferably between 16 to 19 degrees, with the optimum average “θf” at about 17.5 degrees.
It is important to note that the screw root core 54 inside the barrel in other embodiments can be tapered, in which case, if the tapered root core diameter 64 closely corresponds with the taper of the conical profile 62 discussed above, the helix angle “θc” will proportionally vary like that of the helix angle “θf” (i.e., in accordance with the changing circumference of the root core using the formula for the helix angle “θ” discussed supra).
With reference to
A screw extension adjustment 140 is preferably included with this invention for setting the position of the screw 50 along the longitudinal axis 33 of the extrusion barrel 30 for optimal clearance between the screw flight 56 and inner surface of the bore 37 of the barrel. In this case, a spacer, such as a shim 142 (best seen in
Further describing the screw 50, with either a constant or tapered diameter 64 of the screw's root core 54, the channel's root depth 66 is continually decreasing through the helical path 58 (i.e., in a direction from the input end 32 toward the output end 38 of the extrusion barrel). With reference to the channel root depth 66 (i.e., the depth of the helical valley 65, measured radially from the root core surface 55 to the inner surface of the bore 37 of the barrel 30), the decreasing channel root depth 66 in the helical path 58 creates compression of the plastic pellets 16 between the root core surface 55 and the inner surface of the bore 37 of the conically shaped bore 35 to pressurize the melt section 36 of said barrel 30 before the extrusion nozzle 80.
As used herein, the term “compression ratio” means the ratio of the volume of material held in the first channel at input end 32 to the volume of material held in the last channel at the output end 38 before exiting the extrusion nozzle 80. Preferably, in this invention the “compression ratio” is between about 3 to 7, with the optimum ratio at about 5. For example, using the dimension of the barrel 30 and screw 50 described above with reference to the preferred embodiment shown in
As best seen in
As shown in
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention. To the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
This application claims priority to U.S. Provisional Patent Application Nos. 62/320,768, filed Apr. 11, 2016, and 62/364,356, filed Jul. 20, 2016, both of which are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62320768 | Apr 2016 | US | |
62364356 | Jul 2016 | US |