The present invention relates to pulsed radar systems and methods, and more particularly to pulsed radar systems and methods having an improved resolution-to-bandwidth ratio.
Pulsed radar systems are well-known systems used for detecting the range and velocities of targets.
In a conventional pulsed radar system, a radio frequency (RF) carrier signal is modulated with a series of square, base-band pulses to produce an output signal having the carrier frequency and two sidebands produced by the modulation. The output signal is amplified using a power amplifier and the resultant high power, RF signal is transmitted via a transmitting antenna. A receiving antenna captures any of the transmitted signal that is reflected back off a target. The reflected signal is down-converted to a base-band pulse, and the time and phase difference between the transmitted pulse and the reflected pulse is determined. As the transmitting and receiving antenna are typically co-located, this time and phase difference can be used to determine the distance from the antenna to the target. Frequency shifts of the return pulse can be used to determine the velocity of the target relative to the antenna.
In a simple, pulsed radar system, the accuracy of the antenna-to-target distance measurement (also known as the target resolution) is inversely proportional to the width of the transmitted pulse. In turn, the bandwidth of the output signal is inversely proportional to the width of the transmitted pulse, so that the target resolution of a pulsed radar system is directly proportional to the bandwidth of the radar. In particular, the narrower the pulses used, the more accurately the antenna-to-target distance can be measured, i.e., the higher the target resolution of the radar. The tradeoff for the higher resolution is, however, that the signal bandwidth must be proportionally larger, i.e., a proportionally larger amount of frequency spectrum must be used.
Traditionally, radars have been developed for government agencies such as the military or the civilian air traffic control, both of which enjoy considerable latitude in use of the radio spectrum, both in terms of bandwidth and power use.
Recently, there has been a significant amount of interest in developing and deploying radar for civilian applications such as automobile radar. In these uses of radar, the constraints on bandwidth and power are much more restrictive, leading to radar developers having new and different design constraints. In particular, there is a need for high resolution radar systems, apparatus and methods that maximize the use of limited bandwidth, and use minimal power to avoid interference with electronic devices.
The present invention relates to radar methods and systems that operate by combining a radio frequency carrier signal with a base-band, pulse signal, to generate a non-constant envelope, single-sideband signal. The single-sideband signal may then be used in determining a distance to a target. In a preferred embodiment, the radar system includes circuits for generating the radio frequency carrier signal, the base-band, pulse signal and for combining them to produce the non-constant envelope, single-sideband signal, as well as a circuit for determining the distance to a target using the single-sideband signal.
These and other features of the invention will be more fully understood by references to the following drawings.
The present invention concerns systems, methods and apparatus for a radar system that makes efficient use of bandwidth and power by utilizing the technique of single sideband modulation. By using a single sideband signal, the radar of this invention has a target resolution that is twice the target resolution of a conventional radar operating with a signal having the same bandwidth.
In a preferred embodiment, the single-side band signal is produced by appropriate filtering of the carrier signal after mixing with the base band pulse signal. In particular, an appropriate base-band radar pulse signal is mixed with a radio frequency (RF) carrier signal, resulting in an amplitude modulated signal having the carrier frequency and a lower and an upper sideband signal. The lower sideband may then be suppressed to provide a single sideband signal that may be used in a radar application. In a preferred embodiment, the lower sideband is suppressed by an appropriate high-pass filter.
Because only one sideband is used in the single sideband radar pulse signal, a pulse of a given width only occupies half the bandwidth that an equivalent width pulse would occupy in a conventional pulsed radar application. For a given bandwidth use, the single sideband radar of this invention has, therefore, twice the target resolution of a conventional pulsed radar system.
The shape of the single sideband signal must, however, be preserved during any amplification to avoid reintroduction of the suppressed sideband. This requires that any power amplifiers used to boost the signal for transmission must be highly linear, or that the signal must be pre-distorted prior to amplification to compensate for any non-linearity in the power amplifiers.
These and other features of the invention will now be described in more detail with reference to the accompanying drawings in which, as far as possible, like numbers represent like elements.
The transmitter 12 is a suitably high power radio frequency (RF) transmitter modulated at the appropriate pulse width for the pulsed radar.
The receiver 20 is a suitably sensitive RF receiver that can receive the small return signal 30 reflected off target 26.
The duplexer 16 is a device that allows radiation from the transmitter to be fed to the antenna but not to the receiver, and similarly for radiation from the antenna to be fed to the receiver but not to the transmitter.
The pulsed radar system operates by the transmitter 12, under the control of the synchronizer 24, sending a pulse modulated signal via the duplexer 16 out from antenna 18 in the direction of the target 26. Although most of the signal reflected from the target 26 is directed into signals 32 that do not return to the transmitting antenna 18, a small portion of the transmitted signal 28 is returned to the antenna 18 as the return signal 30. The return signal 30 is detected by being fed via the duplexer 16 to the receiver 20 and on to the display 22. In the exemplary system of
The base-band pulse generator 36 produces a signal that is a series of essentially rectangular pulses. The single sideband up converter 38 mixes the base-band pulse signal with a sinusoidal RF carrier frequency signal from the carrier frequency generator 40 to produce a single sideband signal, as shown in
A signal from the base-band pulse generator is split into two, with one copy of the signal being fed through the Hilbert transform module 48 to a first mixer 44 while the other part of the signal is fed directly to the second mixer 44. The carrier signal from the carrier frequency generator 40 is similarly split in two with one copy fed to the first mixer 44 and the second copy phase shifted by 90 degrees before being fed to the second mixer 44. The first mixer 44 mixes the Hilbert transformed base-band pulse signal with a carrier signal, while the second mixer 44 mixes the base-band pulse signal with a 90 degree phase shifted carrier signal. The outputs of the two mixers 44 are summed to form a single side band signal which is fed to the linear power amplifier 42.
The Hilbert transform module may be, but is not limited to, any suitably programmed general purpose digital signal processing circuit, or a hardware implementation of the processing steps of such programming.
The Hilbert transform circuit of
Such a system can be thought of in terms of the double angled sine formula in reverse, i.e.,
sin A cos B+A sin B=(A+B)
where sinA represents the carrier frequency, cosA represents the carrier frequency phase shifted by 90 degrees, sinB represents one component of the pulse signal, and cosB represents that component phase shifted by 90 degrees. The single output, sin(A+B) represents the single side band, carrier suppressed output signal.
As the Hilbert transform of a real signal is a complex signal in which the real part is the original signal and the imaginary part is a 90 degree phase shifted version of the original signal, an alternative way to implement quadrature upconversion is to Hilbert transform both the base-band pulse generator signal and the carrier signal. The real part from one Hilbert transform is then mixed with the imaginary part of the other Hilbert transform, and vice versa, and the output of the two mixers summed, with the result being a single sideband output signal.
In a further embodiment of the invention, a power amplifier having some distortion may be used, so as to maximize the efficiency of the system. In this case, the single sideband signal is pre-distorted so that, after amplification by the non-linear amplifier, the signal maintains the single side band, and there is no re-growing of the spectral content of the waveform. This requires that the power amplifier has distortion characteristics that are complementary to the pre-distortion of the single sideband signal, so that the amplified signal has an amplitude shape that is congruent with the original, single sideband signal. The pre-distortion of the signal may be done by, but is not limited to, a suitably programmed general purpose digital signal processing circuit, or a hardware implementation of the processing steps of such programming.
Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed invention