1. Technical Field of the Invention
This invention relates generally to transducers such as audio speakers, and more specifically to an array of transducers which operate as a Bessel array in higher frequencies and as a conventional array in lower frequencies.
2. Background Art
It is well known to organize two or more transducers together into a variety of array configurations. One popular configuration is the line array.
As compared to a single transducer, a line array composed of multiple units of that same transducer offers the advantage of increased maximum sound pressure (sometimes referred to as loudness or volume), due simply to there being more transducers moving air, and also offers the advantage of higher efficiency, due to mutual air coupling between the transducers leading to improved impedance matching. However, line arrays can suffer from undesirable effects, such as interference patterns, which are observed at off-axis listening positions. In this context, “off-axis” refers to positions which are removed in a direction parallel to the “line” of the line array; for example, in
U.S. Pat. No. 4,399,328 to Franssen teaches the known but little-used Bessell array of speakers, which was designed to address exactly this problem. Its principles will be explained with reference to
The advantage offered by a Bessel array is control of constructive and destructive interference patterns in listening positions which are off-axis in the direction of the line array—vertically in the example of
One method of providing the “−1” signal is simply to reverse the connections at the + and − terminals of the second driver. One method of providing the “+½” signals is to connect the first and fifth drivers in series with each other, and that series combination in parallel with each of the other drivers, as taught by Franssen. In other embodiments, the Bessel circuit may be e.g. a digital logic device.
In some embodiments, a single amplifier's output is used to drive all of the transducers in the Bessel array. In other embodiments, each transducer may be driven by its own, dedicated amplifier; in such embodiments, each amplifier's output may be adjusted such that its output corresponds to the required Bessel coefficient for that particular driver. In that case, the amplifier settings themselves function as the Bessel circuit.
A Bessel array sacrifices maximum sound pressure and efficiency versus a line array configuration of the same drivers, to gain improved off-axis sound performance. In low frequencies, a five-driver Bessel array uses five speaker drivers to generate the same sound pressure level that would be generated by two speaker drivers in a conventional line array.
Furthermore, it is also seen that the conventional Bessel array performs the same interference pattern reduction, and loss of sound pressure, across the entire frequency range, whereas the interference pattern is really only a problem in the higher frequencies. At lower frequencies, the wavelengths are sufficiently long to swamp the distance difference between the off-axis listener and the respective speaker drivers.
What is desirable, then, is a Bessel array which performs its interference pattern reduction function more in higher frequencies than in lower frequencies and which has less overall reduction in sound pressure and efficiency than a conventional Bessel array.
The invention will be understood more fully from the detailed description given below and from the accompanying drawings of embodiments of the invention which, however, should not be taken to limit the invention to the specific embodiments described, but are for explanation and understanding only.
The improvement lies in the Bessel circuit 32 which conditions the amplifier output to apply the required Bessel coefficients to the signals supplied to each of the respective drivers. In the five-driver Bessel array shown, the first driver 12-1 and fifth driver 12-5 each receives an in-phase, half-strength (“+½”) signal whose strength is reduced by a conventional voltage divider 24 or other suitable means (such as being coupled in series); the second driver 12-2 receives its signal (“+/−1”) from an inverting all-pass filter 34 or other such circuit which performs the desired function; and the third driver 12-3 and fourth driver 12-4 each receives a simple pass-through of the amplifier signal (“+1”).
The inverting all-pass filter inverts the phase of high-frequency signals, but does not invert the phase of low-frequency signals; thus, the signal is identified as “+/−1” suggesting that it is “+1” in lower frequencies and “−1” in higher frequencies. The designer can select the phase-inverting cross-over point to be at any frequency, based on driver spacing and desired off-axis response control.
Thus, the improved Bessel array is a “single-sided” Bessel array, in that it behaves like a Bessel array on one side (the high-frequency side) of its frequency range, but more like a conventional line array on the other side (the low-frequency side). It may also be thought of as being single-sided in that, in some embodiments, it will exhibit better performance in one off-axis direction than in the other.
Comparing
The amplifier output is provided to a main Bessel circuit 22-0. Each output of the main Bessel circuit is provided as an input to a respective secondary or column Bessel circuit 22-1 through 22-5. Each of the secondary Bessel circuits drives a corresponding Bessel array of drivers arranged in a column. The first column Bessel circuit 22-1 drives a first Bessel array of drivers 44, the second column Bessel circuit 22-2 drives a second Bessel array of drivers 46, and so forth. Each secondary Bessel circuit applies the Bessel function to whatever input signal it receives from its respective output of the main Bessel circuit. Thus, the signal provided to any given speaker driver is the product of its main and column Bessel signal values.
The five drivers 44 in the first column are driven in Bessel array fashion, with the first driver 44-1 and the fifth driver 44-5 each receives a quarter-strength, in-phase signal “+¼”; the second driver 44-2 receives a half-strength, opposite-phase signal “−½”; and the third driver 44-3 and the fourth driver 44-4 each receives a half-strength, in-phase signal “+½”. The five drivers 52 in the fifth column are driven the same as those in the first column.
The five drivers 46 in the second column are driven collectively by the “−1” of the main Bessel, which is fed through the second column Bessel circuit 22-2. The first driver 46-1 and the fifth driver 46-5 each receives a half-strength, opposite-phase signal “−½”; the second driver 46-2 receives a full-strength, in-phase signal “+1” (a double negative); and the third driver 46-3 and the fourth driver 46-4 each receives a full-strength, opposite-phase signal “−1”.
The third column Bessel circuit 22-3 receives a “+1” signal from the main Bessel circuit. The first driver 48-1 and the fifth driver 48-5 each receives a half-strength, in-phase signal “+½”; the second driver 48-2 receives a full-strength, opposite-phase signal “−1”; and the third driver 48-3 and the fourth driver 48-4 each receives a full-strength, in-phase signal “+1”. The five drivers 50 in the fourth column are driven the same as those in the third column.
The first, third, fourth, and fifth columns' drivers receive the same signals as in the conventional Bessel square array of
The operation of the second column is slightly more complex than in the conventional Bessel square array, because according to this invention it receives a single-sided all-pass filter phase shifted signal “+/−1” from the second output of the primary Bessel circuit.
In the low frequencies, the primary Bessel circuit is outputting a “+1” signal at its second output, and the second column Bessel circuit 22-2 provides a “+½” signal (main “+1” times column “+½”) to the first driver 46-1 and to the fifth driver 46-5; a “−1” (main “+1” times column “−1”) signal to the second driver 46-2; and a “+1” (main “+1” times column “+1”) signal to each of the third driver 46-3 and the fourth driver 46-4.
In the high frequencies, the primary Bessel circuit is outputting a “−1” signal at its second output, and the second column Bessel circuit 22-2 provides a “−½” signal (main “−1” times column “+½”) to the first driver 46-1 and to the fifth driver 46-5; a “+1” (main “−1” times column “−1”) signal to the second driver 46-2; and a “−1” (main “−1” times column “+1”) signal to each of the third driver 46-3 and the fourth driver 46-4.
The advantage gained over the embodiment of
In low frequencies, the frequency-dependent voltage divider does not perform any significant voltage division, and the first and fifth transducers receive full-strength, in-phase “+1” signals; the inverting all-pass filter does not perform phase inversion, and the second transducer receives a full-strength, in-phase “+1” signal; and, as always, the third and fourth transducers receive full-strength, in-phase “+1” signals. Thus, in low frequencies, the improved Bessel array performs substantially like a conventional line array, offering maximum sound pressure and efficiency.
In high frequencies, the frequency-dependent voltage divider performs voltage division, such that the first and fifth transducers receive half-strength, in-phase “+½” signals; the inverting all-pass filter provides a full-strength, opposite-phase “−1” signal to the second transducer; and the third and fourth transducers continue to receive full-strength, in-phase “+1” signals. Thus, in high frequencies, the improved Bessel array performs substantially like a conventional Bessel array, reducing interference patterns in off-axis listening positions.
This frequency-dependent voltage divider improvement can, of course, be applied to a Bessel square array, as well.
The skilled reader will appreciate that the drawings are for illustrative purposes only, and are not scale models of optimized transducer systems.
While the invention has been described with reference to embodiments in which it is configured as an audio speaker, in other embodiments it may be configured as a microphone, or other such apparatus which may be characterized as an electromagnetic transducer.
The term “square” should not be interpreted to limit the invention to e.g. 5×5 Bessel arrays, but should be interpreted to also cover e.g. 5×7 or 9×7 Bessel arrays or what have you.
Transducers need not be coupled to a common enclosure in order to function as a Bessel array. Indeed, low frequency performance will in many cases be improved if various ones of the transducers occupy separate enclosure volume(s) than other transducers. For example, it may generally not be ideal to have two “+1” transducers sharing an enclosure volume with a “−1” transducer, nor even with a “+½” transducer.
When one component is said to be “adjacent” another component, it should not be interpreted to mean that there is absolutely nothing between the two components, only that they are in the order indicated. The various features illustrated in the figures may be combined in many ways, and should not be interpreted as though limited to the specific embodiments in which they were explained and shown. Those skilled in the art having the benefit of this disclosure will appreciate that many other variations from the foregoing description and drawings may be made within the scope of the present invention. Indeed, the invention is not limited to the details described above. Rather, it is the following claims including any amendments thereto that define the scope of the invention.