The invention generally relates to surgical instruments, and more specifically to the actuation of surgical instruments.
Minimally invasive surgery is performed through small incisions in the body, into which trocar ports may or may not be placed. One or more surgical instruments are inserted through each incision in order to perform the surgical procedure. In order to effectuate one of the objectives of minimally invasive surgery, which is the minimization of incisions to the body to reduce healing time and scarring, it is desirable to minimize the number of incisions made in the body. The number of incisions and their placement are determined by the particular surgical procedure to be performed and the configuration of the instruments used to carry out that procedure.
One problem encountered during the performance of surgical stapling in a minimally-invasive procedure, or even an open surgical procedure, is the need for different triggers on a surgical stapler for clamping and for staple deployment. The use of multiple triggers increases the complexity of use of, the part count of, and the size of a surgical stapler.
The use of the same reference symbols in different figures indicates similar or identical items.
U.S. Patent Application Publication No. 2009/0065552, published on Mar. 12, 2009 (the “Endocutter Document”), is hereby incorporated by reference herein in its entirety.
Referring to
The handle 12 may be attached to the proximal end of the shaft 10, or any other suitable portion of the shaft 10. The shaft 10 may be fabricated integrally with the handle 12. Alternately, the shaft 10 and the handle 12 may be two separate items that are connected together in any suitable manner. The handle 12 may include any mechanism, mechanisms, structure or structures that are suitably configured to actuate the end effector 4. The handle 12 may be actuated purely by hand, meaning that the handle 12 mechanically converts force applied thereto by hand to force utilized to actuate the end effector 4. As another example, the handle 12 may include a source of stored energy for actuating the end effector 4. The source of stored energy may be mechanical (such as a spring), electrical (such as a battery), pneumatic (such as a cylinder of pressurized gas) or any other suitable source of stored energy. The source of stored energy, its regulation, and its use in actuating the end effector 4 may be as described in commonly-assigned U.S. Pat. No. 7,682,368, issued on Mar. 23, 2010, which is herein incorporated by reference in its entirety. The handle 12 may instead, or also, include a connector or connectors suitable for receiving stored energy from an external source, such as a hose connected to a hospital utility source of pressurized gas or of vacuum, or an electrical cord connectable to a power source.
The handle 12 may include a trigger 14 and a mode button 16. Advantageously, the handle 12 includes a single trigger 14. The single trigger 14 both clamps the end effector 4 and deploys staples from the staple holder 8, as described in greater detail below. The handle 12 may include a palm grip 18 located proximal to the trigger 14. The palm grip 18 and trigger 14 may be configured such that a user can hold the palm grip 18 against his or her hand, and grasp a distal surface of the trigger 14 with one or more fingers of that hand. Alternately, the handle 12 and trigger 14 may be arranged in any other suitable manner.
Referring also to
Referring also to
Referring also to
Referring also to
As seen most clearly in
As the trigger arm or arms 38 continue to advance distally, they may react a distal location at which further distal motion is not possible. However, the trigger 14 may continue to be depressed, and the trigger arm or arms 38 may continue to advance distally. Referring to
After the clamp structure has rocked about the axle 60 such that the proximal end of the clamp structure 34 has moved downward, the hook 32 that extends from the proximal end of the clamp structure 34 has moved downward as well. As a result, referring to
After clamping, the user may release the trigger 14, which then returns to its original position. However, the end effector 4 remains clamped. Referring also to
When the user is ready to deploy staples 90, the user presses the mode button 16 from either side of the handle 12. The mode button 16 may be depressed from either the left side of the handle 12 in the right direction, or from the right side of the handle 12 in the left direction. As a result of this lateral motion of the mode button, the tooth 24 is moved out of engagement with the rocker tooth 26, referring also to
The user may then actuate the trigger 14 again to deploy staples 90. The rocker axle 30 may be fixed to the trigger 14. Thus, as the trigger 14 rotates about the mode button 16, the rocker axle 30 rotates about the mode button 16 as well. Consequently, the rocker axle 30 urges the rocker 28 about the mode button 16, which in turn urges the deployment gear 54 into rotation about the mode button 16. As the deployment gear 54 rotates about the mode button 16, it causes deployment of staples from the staple holder 8 in any suitable manner. As one example, the deployment gear 54 transmits motion to gearing 70 that in turn actuates a rod or other structure that extends along the shaft 10 to the end effector 4 to move distally and deploy staples. That rod or other structure may be connected to a wedge that first deforms, then shears, staples 90 from the feeder belt 92. Such a rod or other structure for transmitting force from the handle 12 to the end effector 4 for staple deployment may be as set forth in the Endocutter Document, or in U.S. patent application Ser. No. 13/090,214, filed on Apr. 16, 2011, which is herein incorporated by reference in its entirety.
The end effector 4 is then unclamped. Unclamping may occur automatically at the end of staple deployment, or may occur upon manual input from the user. As one example, referring to
After the portion of the clamp structure 34 proximal to the axle 60 rocks upward, the hook 32 moves back into engagement with the rocker 28, pushing the rocker 28 out of engagement with the deployment gear 54. The spring 22 wrapped around the mode button 16 can then urge the mode button 16 back to its initial position, in which the tooth 24 and rocker tooth 26 once again hold off the rocker 28 from the deployment gear 54. The feeder belt 90 may be advanced to move fresh staples 92 in place for another deployment. The handle 12 is then ready for another clamping and staple deployment. The switch between clamping mode to stapling mode, and back to clamping mode, has been performed completely mechanically, as described above. However, the switch between clamping mode to stapling mode, and/or from stapling mode to clamping mode, may be made electromechanically or in any other suitable manner.
The operation of the surgical stapler 2 may be carried out in the course of testing at a factory or other location. If so, the user that possesses the surgical stapler 2 may be a technician, machine or text fixture that exercises the surgical stapler 2 in the course of testing. The term “tissue,” in the context of testing the surgical stapler 2 only, includes any substance or material used as a substitute for tissue in the course of testing.
While the invention has been described in detail, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention. It is to be understood that the invention is not limited to the details of construction, the arrangements of components, and/or the method set forth in the above description or illustrated in the drawings. The use of terms such as “upward” and “downward” in this document refers to the orientation of parts on the page for descriptive clarity, and in no way limits the orientation of the device in use. Statements in the abstract of this document, and any summary statements in this document, are merely exemplary; they are not, and cannot be interpreted as, limiting the scope of the claims. Further, the figures are merely exemplary and not limiting. Topical headings and subheadings are for the convenience of the reader only. They should not and cannot be construed to have any substantive significance, meaning or interpretation, and should not and cannot be deemed to indicate that all of the information relating to any particular topic is to be found under or limited to any particular heading or subheading. Therefore, the invention is not to be restricted or limited except in accordance with the following claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2127665 | Leslie | Aug 1938 | A |
3581551 | Wilkinson | Jun 1971 | A |
3650453 | Smith, Jr. | Mar 1972 | A |
3675688 | Bryan et al. | Jul 1972 | A |
3717294 | Green | Feb 1973 | A |
3837555 | Green | Sep 1974 | A |
3899914 | Akiyama | Aug 1975 | A |
3955581 | Spasiano et al. | May 1976 | A |
4043504 | Hueil et al. | Aug 1977 | A |
4086926 | Green et al. | May 1978 | A |
4127227 | Green | Nov 1978 | A |
4228895 | Larkin | Oct 1980 | A |
4275813 | Noiles et al. | Jun 1981 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4523707 | Blake, III et al. | Jun 1985 | A |
4556058 | Green | Dec 1985 | A |
4589416 | Green | May 1986 | A |
4633861 | Chow et al. | Jan 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4762260 | Richards et al. | Aug 1988 | A |
4969591 | Richards et al. | Nov 1990 | A |
4978049 | Green | Dec 1990 | A |
5156315 | Green et al. | Oct 1992 | A |
5170925 | Madden et al. | Dec 1992 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5269792 | Kovac et al. | Dec 1993 | A |
5307976 | Olson et al. | May 1994 | A |
5413272 | Green et al. | May 1995 | A |
5415334 | Williamson, IV et al. | May 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5476206 | Green | Dec 1995 | A |
5507776 | Hempel | Apr 1996 | A |
5527319 | Green et al. | Jun 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5547474 | Kloeckl et al. | Aug 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5620289 | Curry | Apr 1997 | A |
5626585 | Mittelstadt et al. | May 1997 | A |
5630541 | Williamson, IV et al. | May 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5816471 | Plyley et al. | Oct 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5875538 | Kish et al. | Mar 1999 | A |
5894979 | Powell | Apr 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
6264087 | Whitman | Jul 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6391038 | Vargas et al. | May 2002 | B2 |
6419682 | Appleby et al. | Jul 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6478804 | Vargas et al. | Nov 2002 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6817508 | Racenet | Nov 2004 | B1 |
6843403 | Whitman | Jan 2005 | B2 |
7025747 | Smith | Apr 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7111768 | Cummins et al. | Sep 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7225963 | Scirica | Jun 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7238195 | Viola | Jul 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7401720 | Durrani | Jul 2008 | B1 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7497865 | Willis et al. | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7517356 | Heinrich | Apr 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7635073 | Heinrich | Dec 2009 | B2 |
7635373 | Ortiz | Dec 2009 | B2 |
7641432 | Lat et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
20030120284 | Palacios et al. | Jun 2003 | A1 |
20030236551 | Peterson | Dec 2003 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050184121 | Heinrich | Aug 2005 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060041273 | Ortiz et al. | Feb 2006 | A1 |
20060151567 | Roy | Jul 2006 | A1 |
20060241660 | Bombard et al. | Oct 2006 | A1 |
20060253143 | Edoga | Nov 2006 | A1 |
20070027472 | Hiles et al. | Feb 2007 | A1 |
20070034668 | Holsten et al. | Feb 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070083234 | Shelton, IV et al. | Apr 2007 | A1 |
20070118163 | Boudreaux et al. | May 2007 | A1 |
20070125828 | Rethy et al. | Jun 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20080078807 | Hess et al. | Apr 2008 | A1 |
20080272175 | Holsten et al. | Nov 2008 | A1 |
20080296345 | Shelton et al. | Dec 2008 | A1 |
20090065552 | Knodel et al. | Mar 2009 | A1 |
20090145947 | Scirica et al. | Jun 2009 | A1 |
20100179559 | Walker | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
1238634 | Sep 1994 | EP |
1464287 | Oct 2004 | EP |
1736104 | Mar 2009 | EP |
2005160933 | Jun 2005 | JP |
2080833 | Jun 1997 | RU |
WO-8101953 | Jul 1981 | WO |
WO-8501427 | Apr 1985 | WO |
Entry |
---|
Gong, Shao W., “Perfectly flexible mechanism and integrated mechanism system design”, Mechanism and Machine Theory 39 (2004), (Nov. 2004), 1155-1174. |
Lim, Jonas J., et al., “A review of mechanism used in laparascopic surgical instruments”, Mechanism and Machine Theory 38, (2003),1133-1147. |
Lim, Jyue B., “Type Synthesis of a Complex Surgical Device”, Masters Thesis, (Feb. 21, 2001). |
Lim, Jonas J., et al., “Application of Type Synthesis Theory to the Redesign of a Complex Surgical Instrument”, Journal of Biomechanical Engineering (124), (Jun. 2004), 265-272. |
Kolios, Efrossini et al., “Microlaparoscopy”, J. Endourology 18(9), (Nov. 2004),811-817. |
Steichen, Felicien M., et al., “Mechanical Sutures in Surgery”, Brit. J. Surg. 60(3), (Mar. 1973),191-197. |
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority”, PCT/US2008/075449, (Apr. 29, 2009). |
“International Search Report”, PCT/US2008/075449, (Apr. 29, 2009). |
“Written Opinion of the International Searching Authority”, PCT/US2008/075449, (Apr. 29, 2009). |
“Cardica Microcutter Implant Delivery Device 510(k), Cover Sheet, Table 10.1, “Substantial Equivalence Comparison,” and Section 12, “Substantial Equivalence Discussion””. |