The present disclosure relates generally to an isolation assembly used in an open-hole section of a wellbore, and specifically, to a single-trip, open-hole isolation assembly.
Often, an open-hole well may be temporarily or permanently abandoned for a variety of reasons. Generally, when a portion of an open-hole well is abandoned, a first hydraulic seal, such as concrete, is provided between the portion of the open-hole well to be abandoned and the wellhead, or the surface of the well. Then, a mechanical seal, such as a valve and a bridge plug, is provided between the first hydraulic seal and the surface of the well. Finally, a second hydraulic seal is then provided between the surface of the well and the mechanical seal. The process of providing the first and second hydraulic seals and the mechanical seal includes multiple trips downhole. That is, a first trip is generally required to set the first hydraulic seal and a second trip is required to set the mechanical seal and the second hydraulic seal. Considering the wellbore may be miles long, this may take days to complete, which requires the use of rig equipment and increases the operation cost of the well.
Various embodiments of the present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the disclosure. In the drawings, like reference numbers may indicate identical or functionally similar elements.
Illustrative embodiments and related methods of the present disclosure are described below as they might be employed in a single-trip, open-hole isolation assembly and method of operating the same. In the interest of clarity, not all features of an actual implementation or method are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. Further aspects and advantages of the various embodiments and related methods of the disclosure will become apparent from consideration of the following description and drawings.
The foregoing disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” “uphole,” “downhole,” “upstream,” “downstream,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the apparatus in use or operation in addition to the orientation depicted in the figures. For example, if the apparatus in the figures is turned over, elements described as being “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” may encompass both an orientation of above and below. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Referring still to the offshore oil and gas platform example of
As in the present example embodiment of
The liner 95 may be a liner of any size and has an inner surface that forms a fluid flow passage 95a for moving fluids in a direction from the surface of the well into an annulus 120 that is formed between the assembly 90 and the wellbore 80.
The valve 100 may form a portion of the fluid flow passage 95a and is adapted to allow the flow of fluids from the surface of the well, through the fluid flow passage 95a, and into the annulus 120 when in an open position and is adapted to prevent the flow of fluids through the valve 100 and through the fluid flow passage 95a when in a closed position. The valve 100 may be a ball valve or any other type of valve that is capable of preventing flow of a fluid through the valve in both an uphole direction indicated by numeral 122 in
The liner stabilizer 105 may be hydraulic, mechanical, and/or expandable. In one or more exemplary embodiments, the liner stabilizer 105 includes any one or more of an expandable liner hanger, a modified liner hanger, heavy weight packer, etc. so that the liner stabilizer provides a bi-directional annulus seal between a first section 120a of the annulus 120 and a second section 120b of the annulus 120 and generally suspends the liner 95 in the wellbore 80. Thus, the liner stabilizer 105 is a bi-directional annulus seal hanger. In some embodiments, the liner stabilizer 105 includes both a liner hanger assembly and a packer assembly. However, in other embodiments, the liner stabilizer 105 omits the packer assembly and includes a liner hanger assembly that also provides a bi-directional annulus seal between the first section 120a of the annulus 120 and the second section 120b of the annulus 120. Additionally, in other embodiments, the liner stabilizer 105 omits the liner hanger assembly and includes a packer assembly that also suspends the liner 95 in the wellbore 80. The liner stabilizer 105 is generally positioned within the casing 85 and above the open-hole and cased-hole interface.
The working string 75 extends from the surface of the well and forms a flow passage 75a. The working string 75 may include the running tool 113 and the shifting tool 115 that is sized to shift the valve 100 from an open position to a closed position and/or from a closed position to an open position. The working string 75 is removable from the assembly 90. When attached to the assembly 90, the flow passage 75a is in fluid communication with the flow passage 95a. When detached from the assembly 90, the flow passage 75a is in fluid communication with the wellbore 80.
Referring to
Referring to
At the step 165, the second hydraulic seal is set. The step 165 may include the substeps of covering the liner stabilizer 105 and the valve 100 with hardenable fluid to create a second cement plug at substep 165a and hardening the hardenable fluid to set the second cement plug at substep 165b. At the substep 165a, hardenable fluid such as cement flows downhole through the flow passage 75a of the working string and into the wellbore 80. The hardenable fluid flows into the second portion 120b of the annulus 120 and the second portion 95a b of the flow path 95a. The hardenable fluid covers the liner stabilizer 105 and the valve 100 to form a second cement plug 180. At the substep 165b, the hardenable fluid is hardened to set the second cement plug 180. The second cement plug 180 hardens, or sets, to form a second hydraulic seal. The second hydraulic seal fluidically isolates the valve 100, the liner stabilizer 105, and the open-hole portion of the wellbore 80. That is, the second hydraulic seal fluidically isolates the first hydraulic seal and the mechanical barrier from the surface of the well.
In an exemplary embodiment, the method 150 is completed in one “trip” downhole. That is, the running tool 113 remains downhole during and between the steps 155 and 160 and between the steps 160 and 165. Thus, the method 150 results in a dual barrier above a hydrocarbon zone, which is often required in an open-hole plug and abandonment operation. Thus, the method 150 and the apparatus 90 results in a one-trip dual barrier. Considering the wellbore may be miles long, completing a trip downhole may take days to complete. Thus, using the method 150 and/or the use of the assembly 90 reduces the amount of time needed to install a dual barrier in an abandoned well, resulting in reduced operation costs.
In an exemplary embodiment, the method 150 may also include the steps of pressure testing each of the first hydraulic seal, the mechanical barrier, and the second hydraulic seal for integrity of the barrier. Additionally, the method 150 may also include a step of retrieving the working string 75 and the running tool 113 from the wellbore after the substep 165a.
In several exemplary embodiments, while different steps, processes, and procedures are described as appearing as distinct acts, one or more of the steps, one or more of the processes, and/or one or more of the procedures may also be performed in different orders, simultaneously and/or sequentially. In several exemplary embodiments, the steps, processes and/or procedures may be merged into one or more steps, processes and/or procedures. In several exemplary embodiments, one or more of the operational steps in each embodiment may be omitted. Moreover, in some instances, some features of the present disclosure may be employed without a corresponding use of the other features. Moreover, one or more of the above-described embodiments and/or variations may be combined in whole or in part with any one or more of the other above-described embodiments and/or variations.
Thus, a method of isolating an open-hole section of a wellbore has been described. Embodiments of the method may generally include extending a liner that is attached to a working string into the open-hole section of the wellbore, the liner having an interior flow passage; injecting a first hardenable fluid into the working string so that the first hardenable fluid: flows through a valve that separates a first portion of the interior flow passage from a second portion of the interior flow passage; and fills a first annulus formed between the liner and the open-hole section of the wellbore to plug the open-hole section of the wellbore; and closing the valve to fluidically isolate the first portion of the interior flow passage from the second portion of the interior flow passage. For any of the foregoing embodiments, the method may include any one of the following elements, alone or in combination with each other:
At least one of the first hardenable material and the second hardenable material is cement.
Thus, a method of isolating an open-hole section of a wellbore has been described. Embodiments of the apparatus may generally include extending a liner within a wellbore and adjacent an interface between the open-hole section of the wellbore and a cased section of the wellbore; injecting a first hardenable fluid through a fluid passage formed in the liner and into an annulus formed between the liner and the open-hole section of the wellbore to form a first cement plug; mechanically isolating the first cement plug from a surface of the well, including: closing a bi-directional valve that is coupled to the liner and that forms a portion of the fluid passage; and setting a bi-directional annulus seal liner stabilizer that is coupled to the liner; and covering the bi-directional annulus seal liner stabilizer and the bi-directional valve with a second hardenable fluid to form a second cement plug. For any of the foregoing embodiments, the apparatus may include any one of the following elements, alone or in combination with each other:
Thus, a single-trip isolation assembly for use in a wellbore has been described. Embodiments of the apparatus may generally include a liner that forms an interior fluid flow passage; a liner stabilizer attached to the liner; and a valve forming a portion of the interior fluid flow passage and positioned between a first portion of the interior fluid flow passage and a second portion of the interior fluid flow passage; wherein the wellbore is plugged in a single trip using the single-trip isolation assembly. For any of the foregoing embodiments, the apparatus may include any one of the following elements, alone or in combination with each other:
The foregoing description and figures are not drawn to scale, but rather are illustrated to describe various embodiments of the present disclosure in simplistic form. Although various embodiments and methods have been shown and described, the disclosure is not limited to such embodiments and methods and will be understood to include all modifications and variations as would be apparent to one skilled in the art. Therefore, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Accordingly, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/748,930, filed Jan. 30, 2018, which is a National Stage Entry claiming the benefit of the filing date of, and priority to, International Patent Application No. PCT/US2015/053744, filed Oct. 2, 2015, the entire disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5950733 | Patel | Sep 1999 | A |
8327933 | Lynde | Dec 2012 | B2 |
20080251253 | Lumbye | Oct 2008 | A1 |
20120080190 | Rytlewski | Apr 2012 | A1 |
20120175113 | Bullock et al. | Jul 2012 | A1 |
20130000899 | Broussard | Jan 2013 | A1 |
20130118752 | Hannegan et al. | May 2013 | A1 |
20140124220 | Stautzenberger | May 2014 | A1 |
20140216746 | Ballew et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
WO-2014-137314 | Sep 2014 | WO |
WO2014137314 | Sep 2014 | WO |
Entry |
---|
International Search Report and Written Opinion, PCT/US2015/053744, ISA/KR, dated Jun. 21, 2016, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20190338618 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15748930 | US | |
Child | 16513852 | US |