The present invention relates to computerized and automated processing of products, preferably food products, within a single-use-container.
Various types of devices for computerized processing of products, including food products are known.
The present invention seeks to provide an improved product preparation container assembly which is suitable for being processed by an intelligent driving device. The product preparation container assembly and the intelligent driving device together define a product preparation system which is particularly suitable for use with food products but is not limited to use therewith.
There is thus provided in accordance with a preferred embodiment of the present invention a container including a cup body and a cup closure configured for operative engagement with the cup body, the cup closure including a reuse inhibiting portion having a first operative orientation, prior to the operative engagement thereof with the cup body, a second operative orientation, different from the first operative orientation, when in the operative engagement with the cup body, and a third operative orientation, different from the second operative orientation, subsequent to disengagement thereof from the cup body.
Preferably, the third operative orientation is different from the first operative orientation. Additionally or alternatively, the third operative orientation provides at least a human sensible indication of the cup closure having previously been in the second operative orientation, notwithstanding re-engagement thereof with the cup body subsequent to the disengagement thereof from the cup body. Additionally or alternatively, the third operative orientation provides at least a machine sensible indication of the cup closure having previously been in the second operative orientation, notwithstanding re-engagement thereof with the cup body subsequent to the disengagement thereof from the cup body.
In accordance with a preferred embodiment of the present invention the reuse inhibiting portion has a fourth operative orientation following processing engagement thereof with the container contents processor and subsequent disengagement thereof from the container contents processor, the fourth operative orientation being different from at least the first operative orientation and preventing subsequent processing engagement thereof with the container contents processor. Additionally, the fourth operative orientation is different form at least two of the first, second and third operative orientations.
Preferably, the reuse inhibiting portion is manipulable by a filler in a user non-realizable manner to prevent it from assuming the third operative orientation.
There is also provided in accordance with another preferred embodiment of the present invention a container suitable for machine processing of contents thereof in an upside-down orientation by a container contents processor, the container including a cup body and a cup closure configured for operative engagement with the cup body, the cup closure including a container contents processor drivable, rotatable blade configured to be located within the cup body, a seal cooperating with the container contents processor drivable, rotatable blade, the seal having a first static sealing operative orientation, when the rotatable blade is not in rotation, and a second dynamic sealing operative orientation, different from the first static sealing operative orientation, when the rotatable blade is in rotation.
In accordance with a preferred embodiment of the present invention the cup closure is configured for operative engagement therewith by the container contents processor. Additionally or alternatively, the seal is in the first static sealing operative orientation, when the rotatable blade in a first axial operative orientation, and the seal is in the second dynamic sealing operative orientation, when the rotatable blade is in a second axial operative orientation, different from the first axial operative orientation.
In accordance with a preferred embodiment of the present invention the cup closure includes a single-use cover seal and externally rotatably drivable rotary engagement assembly (SUCSERDREA), the SUCSERDREA including a cover, a lid, fixedly connected to the cover, and a blade arranged for rotation with respect to the cover, the blade including a rotatable static sealing portion. Preferably, the blade includes a drive shaft engaging wall, a generally cylindrical wall, surrounding the drive shaft engaging wall and radially outwardly spaced therefrom, and a flexible radially outwardly and downwardly extending sealing skirt. Additionally, when the blade is lockingly but rotatably engaged with the lid, the sealing skirt sealingly engages an annular sealing surface of the lid. Preferably, when the blade is rotated relative to the lid, the sealing skirt is slightly spaced from the annular sealing surface by centrifugal force of rotation of the blade.
In accordance with a preferred embodiment of the present invention the cup closure includes a reuse inhibiting portion having a first operative orientation, prior to the operative engagement thereof with the cup body, a second operative orientation, different from the first operative orientation, when in the operative engagement with the cup body, and a third operative orientation, different from the second operative orientation, subsequent to disengagement thereof from the cup body. Preferably, the third operative orientation is different from the first operative orientation.
In accordance with a preferred embodiment of the present invention the third operative orientation provides at least a human sensible indication of the cup closure having previously been in the second operative orientation, notwithstanding re-engagement thereof with the cup body subsequent to the disengagement thereof from the cup body. Additionally or alternatively, the third operative orientation provides at least a machine sensible indication of the cup closure having previously been in the second operative orientation, notwithstanding re-engagement thereof with the cup body subsequent to the disengagement thereof from the cup body.
In accordance with a preferred embodiment of the present invention the cup body is prefilled with consumer usable contents prior to initial engagement of the cup closure therewith.
Preferably, the container is configured for use with a container contents processor operative to engage the cup closure and process the consumer usable contents thereof.
Preferably, the reuse inhibiting portion has a fourth operative orientation, following processing engagement thereof with the container contents processor and subsequent disengagement thereof from the container contents processor, the fourth operative orientation being different from at least the first operative orientation and preventing subsequent processing engagement thereof with the container contents processor. Additionally, the fourth operative orientation is different form at least two of the first, second and third operative orientations.
In accordance with a preferred embodiment of the present invention the reuse inhibiting portion is manipulable by a filler in a user non-realizable manner to prevent it from assuming the third operative orientation.
In accordance with a preferred embodiment of the present invention the cup closure includes a single-use cover seal and externally rotatably drivable rotary engagement assembly (SUCSERDREA) providing both human and machine sensible tamper-evident and re-use preventing fluid sealing engagement with the cup body, the SUCSERDREA including the reuse inhibiting portion.
Preferably, the SUCSERDREA includes a cover, a lid, fixedly connected to the cover, and a blade arranged for rotation with respect to the cover. Additionally, the SUCSERDREA also includes a machine-readable information source. Alternatively, the SUCSERDREA also includes an encrypted machine-readable information source.
In accordance with a preferred embodiment of the present invention the reuse inhibiting portion includes a multifunctional tamper indicating and re-use prevention element (MTIRPE) integrally formed with the cover. Additionally, the reuse inhibiting portion includes a MTIRPE receiving portion (MTIRPERP) for interacting with the MTIRPE.
Preferably, the MTIRPERP includes an inner circumferential edge portion and an outer circumferential edge portion, which is generally radially spaced from the inner circumferential edge portion. Additionally, the outer circumferential edge portion is formed with at least one engagement window.
Preferably, when the reuse inhibiting portion is in the first operative orientation, the at least one engagement window is blocked. In accordance with a preferred embodiment of the present invention when the reuse inhibiting portion is in the second operative orientation, the at least one engagement window is open. In accordance with a preferred embodiment of the present invention when the reuse inhibiting portion is in the third operative orientation, the at least one engagement window is blocked.
Preferably, the cup closure is configured for operative engagement with the cup body, the cup closure including a container contents processor drivable, rotatable blade configured to be located within the cup body, the blade including a drive shaft engagement portion adapted for axial initial engagement with a drive shaft of the container contents processor and subsequent tightened rotational engagement with the drive shaft upon driven rotation of the drive shaft in engagement with the blade.
There is further provided in accordance with a preferred embodiment of the present invention a container suitable for machine processing of contents thereof in an upside-down orientation by a container contents processor, the container including a cup body and a cup closure configured for operative engagement with the cup body, the cup closure including a container contents processor drivable, rotatable blade configured to be located within the cup body, the blade including a drive shaft engagement portion adapted for axial initial engagement with a drive shaft of the container contents processor and subsequent tightened rotational engagement with the drive shaft upon driven rotation of the drive shaft in engagement with the blade.
Preferably, the cup body is prefilled with consumer usable contents prior to initial engagement of the cup closure therewith.
In accordance with a preferred embodiment of the present invention the cup closure is configured for operative engagement therewith by the container contents processor.
Preferably, the drive shaft engagement portion is formed with curved splines. Alternatively, the drive shaft engagement portion is formed with axial splines formed of a material which is softer than a material forming portions of the drive shaft which axially and rotatably engage the splines.
In accordance with a preferred embodiment of the present invention the cup closure includes a rotatable blade for processing of the contents of the container and a blade receiving recess for receiving the blade when the blade is not in use.
There is yet further provided in accordance with yet another preferred embodiment of the present invention a container suitable for machine processing of contents thereof in an upside-down orientation by a container contents processor, the container including a cup body and a cup closure configured for operative engagement with the cup body, the cup closure including a rotatable blade for processing of the contents of the container and a blade receiving recess for receiving the blade when the blade is not in use.
In accordance with a preferred embodiment of the present invention the blade receiving recess is configured for receiving the blade when the blade is in one of only two azimuthal orientations, which are mutually separated by 180 degrees.
Preferably, the cup body includes a window which enables a product contained therein to be seen. Additionally, the cup body includes marking indicating minimum and maximum fill levels.
In accordance with a preferred embodiment of the present invention the SUCSERDREA includes a cover, a lid, fixedly connected to the cover, a blade arranged for rotation with respect to the cover, a machine-readable information source and a human visible tamper-evident mechanism and re-use prevention is provided by at least one of reading and writing to the machine-readable information source.
There is also provided in accordance with still another preferred embodiment of the present invention a container and container contents processing system including a container, including a blade arranged for rotation with respect to the container and a container contents processor including a container support configured for supporting the container in an upside-down orientation and an electric motor including a drive shaft, the container support and the electric motor having a first operative orientation, wherein the drive shaft is axially retracted with respect to the container support and does not operatively engage the blade, and a second operative orientation, wherein the drive shaft is axially extended with respect to the container support and operatively engages the blade.
In accordance with a preferred embodiment of the present invention the container and container contents processing system also includes a container clamping assembly cooperating with the container support for selectably clamping the container onto the container support.
Preferably, the container support includes a spillage channel. Additionally or alternatively, the container support includes a container azimuthal locator for engagement with a container and locating it in a desired azimuthal orientation relative to the container support. Additionally or alternatively, the container support includes a plurality of clamp accommodating pockets for accommodating clamps forming part of the container clamping assembly.
In accordance with a preferred embodiment of the present invention the container and container contents processing system also includes a base assembly including a base housing, a vertically displacing rotary drive motor assembly and electrical circuitry which operates the container contents processing system.
Preferably, the vertically displacing rotary drive motor assembly includes a rotary drive motor axially raising and lowering the electric motor, the rotary drive motor having first and second operative orientations, corresponding to respective raised and lowered positions of the electric motor relative to the container support.
Preferably, rotation of the drive shaft, by operation of the electric motor, produces centrifugal forces which result in enhanced radially outward displacement of at least one portion of the drive shaft, thereby enhancing the mutual engagement of the drive shaft and the blade.
In accordance with a preferred embodiment of the present invention the drive shaft includes a blade engagement element and a grip element and the grip element may be rotatably driven inside the blade ahead of the blade engagement element, enabling the grip element to insinuate itself into enhanced engagement with the blade, thereby enhancing resistance to linear disengagement between the blade and the drive shaft during motor driven rotation thereof.
In accordance with a preferred embodiment of the present invention the drive shaft includes at least one curved blade engagement portion arranged for engagement with a corresponding curved portion of the blade and wherein motor driven rotation of the drive shaft causes enhanced engagement of the at least one curved blade engagement portion with the corresponding curved portion of the blade, thereby enhancing resistance to linear disengagement between the blade and the drive shaft during motor driven rotation thereof.
Preferably, the container support is static and the drive shaft is adapted to be axially displaced relative to the container support between the first and second operative orientations.
In accordance with a preferred embodiment of the present invention the electric motor is supported on a motor support bracket which is selectably vertically positioned by a motor lifting element. Additionally or alternatively, the drive shaft of the electric motor is associated with a linearly displaceable ventilating element positioning hub operative to azimuthally position the blade in at least one azimuthal orientation permitting seating of the blade in a blade receiving recess of the cup closure prior to disengagement with the drive shaft therefrom.
In accordance with a preferred embodiment of the present invention the electric motor is axially static and the container support is adapted to be axially displaced relative to the drive shaft between the first and second operative orientations.
Preferably, the container and container contents processing system also includes a base assembly supporting the electric motor, the base assembly including a vertically displaceable base housing supporting the container support and a user operable clamping and base housing raising assembly operable for selectably upwardly vertically displacing the vertically displaceable housing. In accordance with a preferred embodiment of the present invention the user operable clamping and base housing raising assembly includes clamp elements, which are pivotably mounted onto a pivotable clamp mounting element and spring biased with respect thereto, a pivotable lever-operated element, pivotably mounted with respect to the pivotable clamp mounting element and pivotably mounted onto the base assembly, a lever connecting element pivotably mounted onto the pivotable lever-operated element, a bottom lever element pivotably mounted onto the lever connecting element and a top lever element, slidably connected to the bottom lever element.
In accordance with a preferred embodiment of the present invention the container contents processor also includes a user operable lever operative, upon engagement therewith by a user, to cause the container to be clamped to the container support and the electric motor to be relatively axially displaced from the first operative orientation to the second operative orientation and operative, upon disengagement therefrom by a user, to cause rotation of the drive shaft in engagement with the blade such that the blade is in azimuthal alignment with a blade receiving recess of the container.
Preferably, the user operable lever is configured such that the user engagement thereof by application thereto of only vertical forces cause the container to be clamped to the container support and the electric motor to be relatively axially displaced from the first operative orientation to the second operative orientation and operative upon disengagement therefrom by a user to cause rotation of the drive shaft in engagement with the blade such that the blade is in azimuthal alignment with the blade receiving recess. Additionally or alternatively, the user operable lever is configured such that the user engagement thereof by application thereto of only downward vertical forces cause the container to be clamped to the container support and the electric motor to be relatively axially displaced from the first operative orientation to the second operative orientation and operative upon disengagement therefrom by a user to cause rotation of the drive shaft in engagement with the blade such that the blade is in azimuthal alignment with the blade receiving recess.
In accordance with a preferred embodiment of the present invention the user operable lever is configured such that the user engagement thereof producing a single downward stroke of the lever causes the container to be clamped to the container support and the electric motor to be relatively axially displaced from the first operative orientation to the second operative orientation. Additionally or alternatively, the user operable lever is configured such that the user engagement thereof producing a single downward stroke of the lever following completion of processing of the contents is operative to cause the container to be unclamped from the container support, to cause rotation of the drive shaft in engagement with the rotatable blade such that the blade is in azimuthal alignment with the blade receiving recess and subsequently to cause the electric motor to be relatively axially displaced from the second operative orientation to the first operative orientation.
In accordance with a preferred embodiment of the present invention the blade receiving recess is configured for receiving the blade when the blade is in one of only two azimuthal orientations, which are mutually separated by 180 degrees.
In accordance with a preferred embodiment of the present invention the electric motor is axially static and the container support is adapted to be axially displaced relative to the drive shaft between the first and second operative orientations.
Preferably, the user-operable lever governs the operation of a base assembly supporting the electric motor, the base assembly including a vertically displaceable base housing supporting the container support and a user operable clamping and base housing raising assembly operable for selectably upwardly vertically displacing the vertically displaceable housing.
Preferably, the user operable clamping and base housing raising assembly includes clamp elements, which are pivotably mounted onto a pivotable clamp mounting element and spring biased with respect thereto, a pivotable lever-operated element, pivotably mounted with respect to the pivotable clamp mounting element and pivotably mounted onto the base assembly, a lever connecting element pivotably mounted onto the pivotable lever-operated element, a bottom lever element pivotably mounted onto the lever connecting element and a top lever element, slidably connected to the bottom lever element.
Preferably, the base assembly also includes an azimuthal alignment assembly. In accordance with a preferred embodiment of the present invention the azimuthal alignment assembly includes at least two hinge clamp elements which define a rotational axis, a rotationally displacing element rotatable about the rotational axis and an azimuthal alignment activation element, which rotates about the rotational axis and is rotatably held in place by the hinge clamp elements, the azimuthal alignment activation element defining a rotation and translation pathway for the rotationally displacing element.
Preferably, the azimuthal alignment assembly also includes a multifunctional bracket element, a lever locking element and an azimuthal alignment activation driving element. Additionally, the azimuthal alignment activation driving element is pivotably mounted onto the azimuthal alignment activation element and is spring biased.
In accordance with a preferred embodiment of the present invention linear displacement of the azimuthal alignment activation driving element beyond a given extent produces corresponding linear displacement of the lever locking element and linear displacement of the azimuthal alignment activation driving element produces rotation of the rotational displacing element, and of the azimuthal alignment activation element, about the rotational axis. Additionally or alternatively, lever locking element includes a plurality of sliding shoe portions having mutually coplanar bottom surfaces.
Preferably, the container and container contents processing system also includes a rotating ventilating element, which is driven for rotation by the drive shaft, a sensor for sensing rotational velocity of the ventilating element and at least one load cell for sensing weight applied to the container support.
Preferably, engagement and disengagement of the drive shaft and the blade is provided by an axially displacing motor assembly, the container support which is static, a rotary drive motor, a gear and spindle assembly operative to translate rotation into vertical displacement and an electronic control operative to govern operation of the axially displacing motor assembly and the rotary drive motor for providing clamping and unclamping of the container onto the container support and engagement and disengagement of the drive shaft and the blade.
In accordance with a preferred embodiment of the present invention engagement and disengagement of the drive shaft and the blade is provided by a static motor assembly, the container support which is vertically displaceable and a manual control operative to govern clamping and unclamping of a container onto the container support and engagement and disengagement of the drive shaft and the blade.
In accordance with a preferred embodiment of the present invention engagement and disengagement of the drive shaft and the blade is provided by an axially displacing motor assembly, the container support which is static and a manual control operative to govern axial displacement of the motor assembly, clamping and unclamping of a container onto the container support and engagement and disengagement of the drive shaft and the blade.
Preferably, the container contents processor also includes a motor controller operative to control operation of the electric motor in accordance with pre-programmed instructions which are keyed to contents of the container and in accordance with sensed parameters which are sensed during operation of the electric motor. Preferably, the sensed parameters include motor operation parameters. Additionally or alternatively, the sensed parameters include environmental parameters. In accordance with a preferred embodiment of the present invention the motor controller is operative to terminate processing based on sensed motor operation parameters which indicate completion of processing.
In accordance with a preferred embodiment of the present invention the container contents processor also includes a motor controller operative to control operation of the electric motor in accordance with pre-programmed instructions which are linked to contents of the container and in accordance with sensed parameters which are sensed during operation of the electric motor. Additionally, the container and container contents processing system also includes an Internet communications link enabling automatic download of the pre-programmed instructions to the motor controller from a remote site.
There is further provided in accordance with another preferred embodiment of the present invention, for use with a container suitable for machine processing of contents thereof in an upside-down orientation, the container including a cup body and a cup closure, the cup closure being configured for operative engagement with the cup body, the cup closure including a rotatable blade and a blade receiving recess, a container contents processing system including a container support configured for supporting the container in the upside-down orientation, an electric motor including a drive shaft and a motor controller operative to control operation of the electric motor in accordance with pre-programmed instructions which are keyed to contents of the container and in accordance with sensed parameters which are sensed during operation of the electric motor.
Preferably, the sensed parameters include motor operation parameters including environmental parameters. In accordance with a preferred embodiment of the present invention the motor controller is operative to terminate processing based on sensed motor operation parameters which indicate completion of processing.
There is even further provided in accordance with still another preferred embodiment of the present invention, for use with a container suitable for machine processing of contents thereof in an upside-down orientation, the container including a cup body and a cup closure, the cup closure being configured for operative engagement with the cup body, the cup closure including a rotatable blade and a blade receiving recess, a container contents processing system including a container support configured for supporting the container in the upside-down orientation, an electric motor including a drive shaft and a motor controller operative to control operation of the electric motor in accordance with pre-programmed instructions which are linked to contents of the container and in accordance with sensed parameters which are sensed during operation of the electric motor.
Preferably, the container contents processing system also includes an Internet communications link enabling automatic download of the pre-programmed instructions to the motor controller from a remote site.
There is still further provided in accordance with yet another preferred embodiment of the present invention, for use with a container suitable for machine processing of contents thereof in an upside-down orientation the container including a cup body and a cup closure, the cup closure being configured for operative engagement with the cup body, the cup closure including a rotatable blade, a container contents processor including a container support configured for supporting the container in the upside-down orientation and an electric motor including a drive shaft, the container support and the electric motor having a first operative orientation, wherein the drive shaft is axially retracted with respect to the container support and does not operatively engage the blade, and a second operative orientation, wherein the drive shaft is axially extended with respect to the container support and operatively engages the blade.
In accordance with a preferred embodiment of the present invention the container contents processor also includes a container clamping assembly cooperating with the container support for selectably clamping the container onto the container support.
Preferably, the container support includes a spillage channel. Additionally or alternatively, the container support includes a container azimuthal locator for engagement with a container and locating it in a desired azimuthal orientation relative to the container support. Additionally or alternatively, the container support includes a plurality of clamp accommodating pockets for accommodating clamps forming part of the container clamping assembly.
In accordance with a preferred embodiment of the present invention the container contents processor also includes a base assembly including a base housing, a vertically displacing rotary drive motor assembly and electrical circuitry which operates the container contents processor.
Preferably, the vertically displacing rotary drive motor assembly includes a rotary drive motor axially raising and lowering the electric motor, the rotary drive motor having first and second operative orientations corresponding to respective raised and lowered positions of the electric motor relative to the container support. Additionally, rotation of the drive shaft, by operation of the electric motor, produces centrifugal forces which result in enhanced radially outward displacement of at least one portion of the drive shaft, thereby enhancing the mutual engagement of the drive shaft and the blade.
Preferably, the drive shaft includes a blade engagement element and a grip element and the grip element may be rotatably driven inside the blade ahead of the blade engagement element, enabling the grip element to insinuate itself into enhanced engagement with the blade, thereby enhancing resistance to linear disengagement between the blade and the drive shaft during motor driven rotation thereof. Alternatively, the drive shaft includes at least one curved blade engagement portion arranged for engagement with a corresponding curved portion of the blade and wherein motor driven rotation of the drive shaft causes enhanced engagement of the at least one curved blade engagement portion with the corresponding curved portion of the blade, thereby enhancing resistance to linear disengagement between the blade and the drive shaft during motor driven rotation thereof.
In accordance with a preferred embodiment of the present invention the container support is static and the drive shaft is adapted to be axially displaced relative to the container support between the first and second operative orientations. Additionally, the electric motor is supported on a motor support bracket which is selectably vertically positioned by a motor lifting element. Preferably, the drive shaft of the electric motor is associated with a linearly displaceable ventilating element positioning hub operative to azimuthally position the blade in at least one azimuthal orientations permitting seating of the blade in a blade receiving recess of the cup closure prior to disengagement with the drive shaft therefrom.
In accordance with a preferred embodiment of the present invention the electric motor is axially static and the container support is adapted to be axially displaced relative to the drive shaft between the first and second operative orientations. Preferably, the container contents processor also includes a base assembly supporting the electric motor, the base assembly including a vertically displaceable base housing supporting the container support and a user operable clamping and base housing raising assembly operable for selectably upwardly vertically displacing the vertically displaceable housing.
In accordance with a preferred embodiment of the present invention the user operable clamping and base housing raising assembly includes clamp elements, which are pivotably mounted onto a pivotable clamp mounting element and spring biased with respect thereto, a pivotable lever-operated element, pivotably mounted with respect to the pivotable clamp mounting element and pivotably mounted onto the base assembly, a lever connecting element pivotably mounted onto the pivotable lever-operated element, a bottom lever element pivotably mounted onto the lever connecting element and a top lever element, slidably connected to the bottom lever element.
Preferably, the base assembly also includes an azimuthal alignment assembly. In accordance with a preferred embodiment of the present invention the azimuthal alignment assembly includes at least two hinge clamp elements which define a rotational axis, a rotationally displacing element rotatable about the rotational axis and an azimuthal alignment activation element, which rotates about the rotational axis and is rotatably held in place by the hinge clamp elements, the azimuthal alignment activation element defining a rotation and translation pathway for the rotationally displacing element.
Preferably, the azimuthal alignment assembly also includes a multifunctional bracket element, a lever locking element and an azimuthal alignment activation driving element. Additionally, the azimuthal alignment activation driving element is pivotably mounted onto the azimuthal alignment activation element and is spring biased.
There is also provided in accordance with still another preferred embodiment of the present invention, for use with a container suitable for machine processing of contents thereof in an upside-down orientation, the container including a cup body and a cup closure, the cup closure being configured for operative engagement with the cup body, the cup closure including a rotatable blade and a blade receiving recess, a container contents processor including a container support configured for supporting the container in the upside-down orientation, an electric motor including a drive shaft and a user operable lever operative, upon engagement therewith by a user, to cause the container to be clamped to the container support and the drive shaft to be relatively axially displaced from a first operative orientation, wherein the drive shaft does not operatively engage the blade, to a second operative orientation, wherein the drive shaft operatively engages the blade, and operative, upon disengagement therefrom by a user, to cause rotation of the drive shaft in engagement with the rotatable blade such that the rotatable blade is in azimuthal alignment with the blade receiving recess.
Preferably, the user operable lever is configured such that the user engagement thereof, by application thereto of only vertical forces, causes the container to be clamped to the container support and the drive shaft to be relatively axially displaced from the first operative orientation to the second operative orientation and operative, upon disengagement therefrom by a user, to cause rotation of the drive shaft in engagement with the rotatable blade such that the blade is in azimuthal alignment with the blade receiving recess. Additionally or alternatively, the user operable lever is configured such that the user engagement thereof, by application thereto of only downward vertical forces, causes the container to be clamped to the container support and the drive shaft to be relatively axially displaced from the first operative orientation to the second operative orientation and operative, upon disengagement therefrom by a user, to cause rotation of the drive shaft in engagement with the rotatable blade such that the blade is in azimuthal alignment with the blade receiving recess.
Preferably, the user operable lever is configured such that the user engagement thereof producing a single downward stroke of the lever causes the container to be clamped to the container support and the drive shaft to be relatively axially displaced from the first operative orientation to the second operative orientation. Additionally or alternatively, the user operable lever is configured such that the user engagement thereof, by producing a single downward stroke of the lever following completion of processing of the contents, is operative to cause the container to be unclamped from the container support, to cause rotation of the drive shaft in engagement with the rotatable blade such that the blade is in azimuthal alignment with the blade receiving recess and subsequently to cause the drive shaft to be relatively axially displaced from the second operative orientation to the first operative orientation.
In accordance with a preferred embodiment of the present invention the blade receiving recess is configured for receiving the blade when the blade is in one of only two azimuthal orientations, which are mutually separated by 180 degrees.
Preferably, the electric motor is axially static and the container support is adapted to be axially displaced relative to the drive shaft between the first and second operative orientations.
Preferably, the user-operable lever governs the operation of a base assembly supporting the electric motor, the base assembly including a vertically displaceable base housing supporting the container support and a user operable clamping and base housing raising assembly operable for selectably upwardly vertically displacing the vertically displaceable housing.
In accordance with a preferred embodiment of the present invention the user operable clamping and base housing raising assembly includes clamp elements, which are pivotably mounted onto a pivotable clamp mounting element and spring biased with respect thereto, a pivotable lever-operated element, pivotably mounted with respect to the pivotable clamp mounting element and pivotably mounted onto the base assembly, a lever connecting element pivotably mounted onto the pivotable lever-operated element, a bottom lever element pivotably mounted onto the lever connecting element and a top lever element, slidably connected to the bottom lever element.
Preferably, the base assembly also includes an azimuthal alignment assembly. Additionally, the azimuthal alignment assembly includes at least two hinge clamp elements which define a rotational axis, a rotationally displacing element rotatable about the rotational axis and an azimuthal alignment activation element, which rotates about the rotational axis and is rotatably held in place by the hinge clamp elements, the azimuthal alignment activation element defining a rotation and translation pathway for the rotationally displacing element. Preferably, the azimuthal alignment assembly also includes a multifunctional bracket element, a lever locking element and an azimuthal alignment activation driving element. Additionally, the azimuthal alignment activation driving element is pivotably mounted onto the azimuthal alignment activation element and is spring biased.
In accordance with a preferred embodiment of the present invention linear displacement of the azimuthal alignment activation driving element beyond a given extent produces corresponding linear displacement of the lever locking element and linear displacement of the azimuthal alignment activation driving element produces rotation of the rotational displacing element and of the azimuthal alignment activation element about the rotational axis.
Preferably, the lever locking element includes a plurality of sliding shoe portions having mutually coplanar bottom surfaces
Preferably, the container contents processor also includes a rotating ventilating element, which is driven for rotation by the drive shaft, a sensor for sensing rotational velocity of the ventilating element and at least one load cell for sensing weight applied to the container support.
Preferably, engagement and disengagement of the drive shaft and the blade is provided by an axially displacing motor assembly, the container support which is static, a rotary drive motor, a gear and spindle assembly operative to translate rotation into vertical displacement and an electronic control operative to govern operation of the axially displacing motor assembly and the rotary drive motor for providing clamping and unclamping of a container onto the container support and engagement and disengagement of the drive shaft and the blade. Alternatively, engagement and disengagement of the drive shaft and the blade is provided by a static motor assembly, the container support which is vertically displaceable and a manual control operative to govern clamping and unclamping of a container onto the container support and engagement and disengagement of the drive shaft and the blade. Alternatively, engagement and disengagement of the drive shaft and the blade is provided by an axially displacing motor assembly, the container support which is static and a manual control operative to govern axial displacement of the motor assembly, clamping and unclamping of a container onto the container support and engagement and disengagement of the drive shaft and the blade.
There is also provided in accordance with another preferred embodiment of the present invention a method of processing contents of a container, the method including providing a container, the container including a cup body and a cup closure, the cup closure including a blade, and a container contents processor, the container contents processor including a container support, a motor and a drive shaft, filling the container with contents to be processed by the container contents processor, placing the container in an upside-down orientation on the container support of the container contents processor, clamping the container in the upside down orientation onto the container support, processing the contents to be processed by the container contents processor, disengaging the container from the container contents processor following the processing and unclamping the container from the container support.
In accordance with a preferred embodiment of the present invention the method includes, following the filling, employing a tool to configure a reuse inhibiting portion of the cup closure from a first operative orientation to a second operative orientation, different from the first operative orientation, and sealingly engaging the cup closure, when in the second operative orientation, to the cup.
Preferably, the method includes, following the filling, adding liquid to the contents via a resealable opening in the cup closure.
In accordance with a preferred embodiment of the present invention following the clamping, the reuse inhibiting portion of the cup closure is in a third operative orientation. Preferably, following the clamping, the reuse inhibiting portion of the cup closure is in the third operative orientation and automatically assumes a fourth operative orientation upon disengagement of the container from the container contents processor.
Preferably, during the processing the drive shaft is fully engaged with the blade. Additionally or alternatively, following the processing and prior to the unclamping the blade is initially rotated to overlie a blade receiving recess in the cup closure and is subsequently located in the blade receiving recess.
Preferably, following the unclamping, the drive shaft is disengaged from the blade.
In accordance with a preferred embodiment of the present invention fully seated engagement between the drive shaft and the blade is achieved by relative axial displacement therebetween. Alternatively, fully seated engagement between the drive shaft and the blade is achieved by relative axial displacement therebetween and by rotational displacement of the drive shaft.
In accordance with a preferred embodiment of the present invention the axial displacement is produced by lowering of the container support relative to the drive shaft, which drive shaft is axially static. Alternatively, the axial displacement is produced by raising of the drive shaft relative to the blade.
In accordance with a preferred embodiment of the present invention the container contents processor also includes a base assembly supporting a rotary drive motor and including a bottom assembly, a vertically displaceable base housing supporting the container support and a user operable clamping and base housing raising assembly operable for selectably upwardly vertically displacing the vertically displaceable housing and prior to placing the container in an upside-down orientation on a container support of the container contents processor, the container contents processor is in an operative orientation wherein the vertically displaceable base housing and the container support are upwardly spring biased but retained in a lowered position by a user operable clamping and base housing raising assembly operable for selectably upwardly vertically displacing the vertically displaceable base housing.
Preferably, at the time of placement of the container in an upside-down orientation on a container support of the container contents processor, clamp elements, which are pivotably mounted onto a pivotable clamp mounting element and spring biased with respect thereto are outside of engagement with the container. Additionally, following placement of the container in an upside-down orientation on a container support of the container contents processor, user application of a downward force on a lever element produces touching engagement of the clamp elements with the container.
In accordance with a preferred embodiment of the present invention the clamping is produced by further application of a downward force on the lever element, which causes the vertically displaceable base housing to be lowered relative to the bottom assembly and causes engagement of the drive shaft with the blade.
In accordance with a preferred embodiment of the present invention following the clamping and termination of application of the downward force on the lever element the drive shaft and the blade are disengaged with from an azimuthal alignment assembly, allowing free rotation of the drive shaft and the blade.
Preferably, the processing takes place upon user actuation of an actuation control.
In accordance with a preferred embodiment of the present invention following the processing and prior to the unclamping, actuation of an azimuthal alignment assembly for azimuthal alignment of the blade with a blade receiving recess on the cup closure takes place upon application of a downward force on the lever element by a user. Additionally, the azimuthal alignment assembly is operative to properly align the blade such that it is aligned with the blade receiving recess irrespective of an azimuthal orientation of the blade upon termination of the processing.
Preferably, the disengaging takes place automatically following the actuation of the azimuthal alignment assembly. Additionally, the unclamping take place automatically following the disengaging.
In accordance with a preferred embodiment of the present invention the axial displacement prior to the processing of the contents causes the blade to shift from an initial statically sealed operative orientation to a dynamically sealed operative orientation. Additionally, the axial displacement following the processing of the contents causes the blade to shift from the dynamically sealed operative orientation to a further staticly sealed operative orientation. Additionally, the further staticly sealed operative orientation is at least similar to the initial staticly sealed operative orientation.
There is further provided in accordance with yet another preferred embodiment of the present invention a method for processing a food product in a processing container, the method including receiving a processing recipe for processing the food product, the recipe including at least one of processing time and processing speed, weighing the food product to ascertain the weight of the food product, modifying the processing recipe in accordance with the weight of the food product to provide a modified processing recipe and processing the food product in accordance with the modified processing recipe.
Preferably, the receiving includes reading the processing recipe from an information source.
In accordance with a preferred embodiment of the present invention the processing recipe includes a designation of an amount of liquid to be added to the food product. Additionally, the weighing includes weighing the food product together with the amount of liquid.
In accordance with a preferred embodiment of the present invention the modifying includes modifying the processing recipe in accordance with the weight of the food product to provide a modified processing recipe in which at least one of processing time and processing speed are modified. Alternatively, the modifying includes modifying the processing recipe in accordance with the weight of the food product to provide a modified processing recipe in which both processing time and processing speed are modified.
In accordance with a preferred embodiment of the present invention the method for processing a food product also includes generating an alert to a user. Preferably, the alert to the user includes at least one of the following alerts to a user: too little liquid, too much liquid, previously used processing container and unauthorized processing container.
Preferably, the method for processing a food product also includes the step of preventing processing. Alternatively, the method for processing a food product also includes the step of terminating processing.
In accordance with a preferred embodiment of the present invention the receiving includes reading a unique identification which provides a link to the processing recipe via an internet connection to a lookup system.
There is yet further provided in accordance with still another preferred embodiment of the present invention a method for processing a food product in a processing container, the method including receiving a processing recipe for processing the food product, the recipe including at least one of processing time and processing speed, processing the food product, while sensing at least one of speed and power consumption and governing the processing based on the at least one of speed and power consumption.
Preferably, the governing includes at least one of modifying the processing recipe and terminating the processing.
There is also provided in accordance with yet another preferred embodiment of the present invention a method for processing a food product in a processing container, the method including receiving a processing recipe for processing the food product, the recipe including at least one of processing time and processing speed, employing a processing machine having at least one machine performance sensor for processing the food product, while sensing at least one machine operation parameter and governing the processing based on the at least one of speed and power consumption.
In accordance with a preferred embodiment of the present invention the governing includes at least one of modifying the processing recipe and terminating the processing.
Preferably, the at least one sensor includes at least one sensor sensing at least one of speed, power consumption, vibration, temperature, weight, photo image, liquid sensing and motion.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
As seen in
In accordance with a preferred embodiment of the invention, there is also provided a cup closure, such as a single-use cover seal and externally rotatably drivable rotary engagement assembly (SUCSERDREA) 120, for both human and machine sensible tamper-evident and re-use preventing fluid sealing engagement with the single-use container body 102.
SUCSERDREA 120 is preferably used for food products but is not limited for use therewith unless explicitly stated hereinbelow.
It is a particular feature of the present invention that the same SUCSERDREA 120 may be used for container bodies 102 having different sizes and configurations, provided that their circumferential rim 108 is uniform.
A preferred embodiment of SUCSERDREA 120 is illustrated in
SUCSERDREA 120 preferably includes a machine-readable information source 162, preferably an RFID tag, but alternatively a bar-coded label or any other suitable machine-readable information source. Preferably, the information contained on the machine-readable information source 162 is encrypted. Information source 162 may contain some or all of the relevant information and/or may provide a reference, such as a link to information available on the internet.
Reference is now additionally made to
Formed in generally circular planar portion 170 is an integrally hinged pivotably openable straw ingress opening cover 184, including an integral hinge portion 186 and a pair of human visually sensible tamper-evident frangible portions 188, which are normally necessarily broken when opening straw ingress opening cover 184. A finger engagement portion 190 is defined as an extension of straw ingress opening cover 184. Integrally hinged pivotably openable straw ingress opening cover 184 is preferably formed with an outer peripheral sealing surface 191, which removably sealably engages a corresponding straw ingress opening of lid 140 (
Also formed in generally circular planar portion 170 is an integrally hinged liquid ingress cover 193 including an integral hinge 194 and a pair of human visually sensible tamper-evident frangible portions 195, which are normally necessarily broken when opening cover 193. A finger engagement portion 196 is defined as a radially outwardly extension of cover 193 and also serves for rotational orientation of SUPCA 100 onto a container contents processor, such as a multiple motion intelligent driving device (MMIDD) (
Integrally hinged pivotably openable liquid ingress opening cover 193 is preferably formed with an outer peripheral sealing surface 197 which terminates in a recessed, generally planar, downwardly-facing in the sense of
Reference is now made to
As seen in
Prior to tamper and use, as seen in enlargement A of
The arrangement of tabs 214 and openings 215 is such that following use or tampering, as seen in enlargement B of
It is a particular feature of this embodiment of the present invention that generally circumferential edge surface 210 is preferably formed with a plurality of cut outs 224, best seen in
It is also a particular feature of this embodiment of the present invention that, as seen best in
Inwardly of generally circumferential edge surface 210 is a generally planar annular surface 230, which lies slightly below a top edge 232 of edge surface 210. A generally circular protrusion 234 extends upwardly, in the sense of
Extending downwardly, in the sense of
An additional wall 250 is spaced from wall 248 and defines therewith a volume 252 which partially accommodates integral hinge 194 of cover 130.
Extending from wall 250 in a direction opposite to liquid ingress opening 242 are a pair of curved mutually separated walls 254 and 256, which may provide structural support to cover 130, when welded to lid 140, and which may define one or more sealed leaked fluid reservoir volumes 260.
A straw communication aperture 262 is preferably provided adjacent leaked fluid reservoir volumes 260.
Located generally at the center of lid 140 is a rotary drive aperture 270, which is surrounded by a multiple walled sealing structure 280, preferably having a plurality of leaked fluid egress apertures 282, which communicate with one or more sealed leaked fluid reservoir volumes 260. Apertures 282 are distributed along a generally annular planar inner surface 284 which surrounds aperture 270. Surrounding surface 284 and generally downwardly stepped with respected thereto is a generally annular planar surface 286.
Cover 130 is preferably welded to lid 140 at the intersections respectively of an inner edge of annular surface 284, annular surface 230, and protrusion 234 with corresponding surfaces of downwardly-facing protrusions 177, 178, and 180 of cover 130.
An upwardly-facing partially tapered and partially flat annular surface 288 is defined interiorly of aperture 270.
Turning now particularly to
A downwardly-facing blade receiving recess 310 is defined in a downwardly facing, generally planar surface 312 of lid 140.
A truncated conical recess 316 is preferably defined with respect to surface 312 about straw communication aperture 262.
Generally coextensive with radially inwardly circumferential surface 240 and extending downwardly from generally planar surface 312 is a circumferential wall 320 having an outer surface 322 which preferably sealingly engages an interior surface of wall 106 of container body 102 when SUCSERDREA 120 is fully engaged with the single-use container body 102.
It is appreciated that walls 294, 296 and 298 also define dynamic sealing surfaces as described hereinbelow:
Wall 294 defines a dynamic radially outwardly facing circumferential sealing surface 330 which is joined by a circumferential tapered junction surface 332 to static sealing surface 309.
Wall 296 defines a dynamic radially inwardly facing circumferential sealing surface 334 which faces surfaces 309, 330 and 332.
Wall 296 also defines a dynamic radially outwardly facing circumferential sealing surface 336.
Wall 298 defines a dynamic radially inwardly facing circumferential sealing surface 338.
Reference is now made to
As seen in
Blade portions 402 each define a top-facing surface in the sense of
A bottom-facing surface 450 of blade 160 preferably includes a generally planar surface 452, which extends over central driving and sealing portion 400 and most of blade portions 402. Generally planar surface 452 may have a slightly downwardly-extending central dome 454. Also formed on bottom-facing surface 450 are one or two downwardly and circumferentially tapered portions 456 alongside trailing edge 438 of blade portions 402, which underlie tapered portions 436. Formed on planar surface 452 are preferably a central protrusion 460 and a plurality of mutually spaced radially distributed protrusions 462.
It is appreciated that walls 414, 406 and 404 define dynamic sealing surfaces as described hereinbelow:
Wall 414 defines a dynamic radially outwardly facing circumferential sealing surface 470.
Wall 406 defines a dynamic radially inwardly facing circumferential sealing surface 472 which faces surface 470.
Wall 406 also defines a dynamic radially outwardly facing circumferential sealing surface 474.
Wall 404 defines a dynamic radially inwardly facing circumferential sealing surface 476.
It is appreciated that an inner disposed portion 480 of surface 472 also defines a static sealing surface.
Reference is now made to
As seen in
Blade portion 502 defines a top-facing surface, in the sense of
Blade portion 503 defines a top-facing surface in the sense of
A bottom-facing surface 550 preferably includes a generally planar surface 552, which extends over central driving and sealing portion 500 and most of blade portions 502 and 503. Generally planar surface 552 may have a slightly downwardly-extending central dome 554. Also formed on bottom-facing surface 550 is one downwardly and circumferentially tapered portion 556 alongside trailing edge 538 of blade portion 502, which underlies tapered portion 536 thereof. Formed on planar surface 552 are preferably a central protrusion 560 and a plurality of mutually spaced radially distributed protrusions 562.
Reference is now made to
As seen in
Blade portions 602 each define a top-facing surface in the sense of
A bottom-facing surface 650 preferably includes a generally planar surface 652, which extends over central driving and sealing portion 600 and most of blade portions 602. Generally planar surface 652 may have a slightly downwardly-extending central dome 654. Also formed on bottom-facing surface 650 are a row of mutually spaced downwardly-facing protrusions 656, each of which preferably has a downwardly curved tapered leading edge 658 and a downwardly extending trailing edge 660.
Reference is now made to
Circumferential wall 742 defines a circumferential radially outwardly-facing wall surface 746 and a circumferential radially inwardly-facing wall surface 748, preferably having a pair of mutually facing undercut recesses 750 for removable engagement with a container contents processor, such as a drive shaft of a multiple motion intelligent driving device (MMIDD) (
A plurality of downwardly extending, in the sense of
Reference is now made to
It is a particular feature of an embodiment of the present invention that functionality for both human and machine sensible tamper-evident and re-use prevention may be actuated both by removal of the SUCSERDREA 120 from the single-use container body 102 and by clamping of the SUPCA to the MMIDD and subsequent unclamping and disengagement of the SUPCA from the MMIDD.
As seen in
Reference is now made to
As seen in
Semicylindrical upstanding wall portion 1062 preferably terminates, at an upward end thereof, at a generally circular top portion 1068, which is formed with an upwardly-facing circumferential recess 1070 for receiving a low friction bearing ring 1072, which in turn rotatably supports the rotatable door assembly 1050. A top cover 1074 is mounted onto generally circular top element 1068.
The rotatable door assembly 1050 includes a semicylindrical upstanding wall portion 1080 which is integrally formed with a cylindrical top ring 1082. A generally vertical user hand engageable door grip 1084 is mounted onto semicylindrical upstanding wall portion 1080.
As seen with particular clarity in sectional enlargement A in
Reference is now made to
Reference is now made to
A cam engagement protrusion 1136 extends radially inwardly at a bottom portion of front surface 1126. A support element pivotable and slidable engagement protrusion 1138 is formed on radially outward-facing surface 1124 at a location generally opposite protrusion 1136.
Extending circumferentially to one side of clamping portion 1130 is a tab engagement protrusion 1140, which operatively engages tab 214 of lid 140 in response to clamping operation of clamp element 1120 and causes irreversible radially outward displacement of tab 214, thereby providing single-use functionality for SUPCA 100.
Reference is now made to
Disposed centrally of generally circular planar surface 1200 is a drive shaft accommodating aperture 1230, which is surrounded by an upstanding circumferential rim 1232, thereby to help prevent leaking of spillage located on generally circular planar surface 1200 into the remainder of the MMIDD 1000 lying below support element 1100.
Annular planar container support surface 1210 is preferably surrounded by a tapered wall 1240 which is preferably formed with a multiplicity of circumferentially distributed indents 1242, arranged to accommodate a plurality of generally vertical radially outwardly extending elongate protrusions 212 distributed along circumferential edge surface 210 of lid 140 of SUPCA 100. Wall 1240 terminates in a circumferential planar annular top and radially outwardly extending wall 1244 having a top-facing surface 1246.
Extending circumferentially to both sides of channel 1214 is a SUPCA azimuthal locating channel 1250, which extends radially outwardly of wall 1240 and communicates with channel 1214. SUPCA azimuthal locating channel 1250 accommodates finger engagement portion 196 of SUPCA 100.
Walls 1240 and 1244 are formed with a plurality of clamp accommodating pockets 1260, typically three in number. Each of pockets 1260 preferably includes an opening 1262, which extends from wall 1240 at a height just below that of wall 1244 radially outwardly along wall 1244. Each of pockets 1260 includes a radially outwardly extending wall 1264 and side walls 1266. Radially outwardly extending wall 1264 includes a radially inward lower portion 1268 and a radially outward upper portion 1270 joined by a concave curved surface 1272. Preferably, a magnet 1274 is seated behind radially inward lower portion 1268. Extending radially inwardly from radially inward outer portion 1268 adjacent each of side walls 1266 and underlying opening 1262 are a pair of protrusions 1276.
Preferably, a depending circumferential wall 1280 extends along nearly one half of the circumference of wall 1244 at an outer edge thereof.
Underlying surface 1200 is a corresponding circular planar surface 1290 which is formed with a convex curved circumferential wall 1292 surrounding aperture 1230. Surrounding wall 1292 there is formed a generally circular recess 1294, which is preferably configured to have a radially outwardly extending rectangular notch 1296.
Reference is now made to
As seen in
Cam element 1110 preferably includes a generally circular disk 1300 having a generally planar top surface 1302 and a generally planar bottom surface 1304 and is formed with a central aperture 1306 having a radially outwardly extending generally rectangular notch 1308. A circumferential wall 1310 surrounds disk 1300.
Aperture 1306 is surrounded on generally planar top surface 1302 by a generally circular rotational engagement surface 1312 and is surrounded on generally planar bottom surface 1304 by a generally circular ledge surface 1314. Generally circular ledge surface 1314 is surrounded adjacent generally planar bottom surface 1304 by a generally circular wall 1316 that is formed with a plurality of radially outwardly extending notches 1318. A plurality of mutually equally spaced ribs 1320 preferably extend from circular wall 1316 to circumferential wall 1310 and are joined to planar bottom surface 1304.
Formed on a radially outer surface of circumferential wall 1310 are a plurality of cam channels 1330, preferably three in number, each arranged to operate and selectably position a clamp element 1120, located in a pocket 1260 of support element 1100, as will be described hereinbelow with reference to
It is a particular feature of this embodiment of the present invention that the operation of the cam element 1110 in causing clamp elements 1120 to assume a clamping operative orientation is produced both by the downward orientation of the cam channel 1330 from the first location 1334 to the second location 1336 and by varying the radial extent of a circumferential wall 1332 relative to circumferential wall 1310 along the cam channels 1330. Thus it will be seen that at first location 1334, the radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is at a maximum, forcing the clamp element 1120 located in the cam channel 1330 at the first location 1334 radially outwardly and as the cam channel 1330 rotates relative to the clamp element 1120 in pocket 1260, the radial extent of the upper circumferential wall 1332 decreases, allowing the clamp element 1120 to be biased radially inwardly by engagement of engagement surface 1138 of the radially outwardly facing surface 1124 of the clamp element 1120 with lower surface 1268 of pocket 1260.
This operation is enhanced by construction of the cam channels 1330 to have a maximum width between adjacent circumferential walls 1332 at the first location 1334 along each cam channel 1330 so as to accommodate radial outward biasing of the clamp element 1120 within the cam channel 1330 thereat.
It is appreciated that the cam channels 1330 are each constructed to have a somewhat flexible stopper portion 1340 downstream of entry location 1338 and upstream of the first location 1334 thereof to permit assembly of the device with each clamp element 1120 located within a cam channel 1330 and to prevent inadvertent disengagement of the clamp element 1120 from the cam channel 1330. Each cam channel 1330 is blocked at the second location 1336, thus preventing disengagement of the clamp element 1120 from the cam channel 1330 at the second location 1336.
It is a particular feature of this embodiment of the present invention that a generally planar annular wall surface 1350 extends radially outwardly of circumferential wall 1310 below generally planar bottom surface 1304 and is formed with a downwardly facing circumferential leakage directing protrusion 1352, which is operative to direct liquids away from the interior of MMIDD 1000.
It is also a particular feature of this embodiment of the present invention that a radially outwardly directed edge 1354 of generally planar annular wall surface 1350 is formed with a plurality of locating notches 1356, which are configured to engage protrusions 1276 associated with each pocket 1260, thereby ensuring proper azimuthal alignment between the cam element 1110 and the support element 1100.
Reference is now made to
Disposed within base housing 1400 are a vertically displacing rotary drive motor assembly 1430 and a printed circuit board 1440, which preferably contains control electronics which manage operation of the MMIDD 1000.
Reference is now made to
Generally cylindrical top portion 1452 is preferably formed with a plurality of, typically three, radially outwardly extending protrusions 1458 distributed along an outer periphery of a first generally semicircular wall portion 1460 thereof. Protrusions 1458 are inserted into radially inward-facing bayonet receiving recesses 1066 to provide locking of semicylindrical upstanding wall portion 1062 of static housing assembly 1060 to base housing 1400. Generally cylindrical top portion 1452 also includes a second generally semicircular wall portion 1462 which is concentric with first generally semicircular wall portion 1460 but has a smaller outer radius. An aperture 1464 is provided on a front wall 1466 of cubic main portion 1450.
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
A plurality of, preferably four, load cells 1560 are preferably located in corner recesses 1562 in bottom element 1550 and are secured by screws (not shown) to corresponding support pads 1564 underlying bottom element 1550 via load cell supports 1566, which overlie bottom element 1550. Support pads 1564 extend through corresponding apertures 1568 (
Reference is now made to
At its base, circumferential wall 1602 is surrounded by a nearly planar but slightly conical top surface 1612, which terminates in a depending circumferential wall 1614. Circumferential wall 1614 terminates in an annular circumferential surface 1616, which terminates in a further depending circumferential wall 1618 having formed on an outer circumferential surface thereof a radially outwardly directed circumferentially extending gear train 1620.
Wall 1618 has a bottom edge 1622 and an inner circumferential surface 1624. A radially inwardly directed circumferentially extending gear train 1630 is formed on inner circumferential surface 1624. Preferably gear trains 1620 and 1630 have an identical pitch and are slightly out of phase. Bottom edge 1622 exhibits edges of both gear trains 1620 and 1630.
Interiorly and upwardly of inner circumferential surface 1624 there is provided a curved circumferential surface 1632, which underlies annular circumferential surface 1616 and extends to an inner circumferential surface 1634 which lies inwardly of circumferential wall 1614. An inner nearly planar but slightly conical surface 1636 underlies nearly planar but slightly conical top surface 1612.
Surrounding aperture 1600 at the interior of rotary drive gear 1500 is a downwardly extending annular protrusion 1640 having a plurality of slightly radially inwardly protrusions 1642 formed thereon. Extending upwardly from annular protrusion 1640 is an inner circumferential surface 1644, which terminates in an annular surface 1646 and defines therewith a shoulder 1648. An upper inner circumferential surface 1649 extends upwardly from annular surface 1646.
Reference is now made to
Reference is now made to
As seen in
Annular generally planar wall surface 1704 terminates radially inwardly in an upstanding circumferential wall surface 1706 having a top planar annular edge surface 1708, which is formed with a radially outwardly extending protrusion 1710, which corresponds to notch 1610 of rotary drive gear 1500 and which corresponds to notch 1308 of cam element 1110.
Peripherally of planar wall portion 1700 are a plurality of mutually spaced depending wall portions 1720, all of which terminate in a generally planar, generally annular wall 1730, which lies parallel to planar wall portion 1700. Wall portions 1720, together with wall portion 1700 and wall 1730, define an array of ventilation apertures 1732. An extension 1752 of wall 1730 supports auxiliary rotary drive motor 1520.
As seen particularly in
A plurality of guiding pins 1780, preferably three in number, extend downwardly from underside surface 1760 for guiding axially displaceable rotary drive assembly 1530 in its vertical displacement relative to motor housing and support assembly 1510. A plurality of mutually circumferentially arranged downwardly extending protrusions 1782 are formed on wall 1730. A plurality of, preferably four, snap-engagement cut outs 1784 are formed at edges of wall 1730. A pair of recesses 1786 and 1788 and an aperture 1790 are provided in wall 1730 and its extension 1752 for accommodating linear displacement spindles (not shown).
Reference is now made to
As seen in
Cylindrical wall 1800 also defines a plurality of mounting screw accommodating channels 1810 which receive mounting screws (not shown) which serve to fixedly attach the bottom element 1660 to the base housing 1400. Formed along a top edge 1812 of cylindrical wall 1800 are a plurality of, preferably four, snap engagement portions 1814 which are configured for snap engagement with top element 1650 at snap-engagement cut outs 1784 of top element 1650.
Preferably extending upwardly from top edge 1812 is a sensor mounting protrusion 1820 for mounting of an optional sensor (not shown) for sensing a rotational position of rotary drive gear 1500.
The bottom of cylindrical wall 1800 is preferably formed with a first widened region 1822 for facilitating air flow therefrom and a second widened region 1823 for accommodating electronic circuitry (not shown).
A plurality of threaded screw bosses 1824 are preferably provided at a bottom edge 1826 of cylindrical wall 1800 for accommodating screws (not shown) which attach bottom element 1660 to bottom assembly 1410 at screw mounting apertures 1554.
A plurality of threaded screw bosses 1828 are preferably provided at top edge 1812 of cylindrical wall 1800 for accommodating screws (not shown) which attach bottom element 1660 to top element 1650.
Reference is now made to
Reference is now made to
In addition to the elements described hereinabove with reference to
Bottom element 1550 also preferably includes a plurality of, preferably three, apertures 1952 for accommodating spindles 1906.
Bottom element 1550 preferably defines a partially interrupted circumferential wall 1954 for locating bottom element 1660 of motor housing and support assembly 1510 thereon and for separating warm and ambient air flows through the bottom element 1660.
Bottom element 1550 preferably also defines a drive shaft engageable socket 1956 on a top-facing planar surface 1958 thereof.
Reference is now made to
As seen in
Reference is now made to
Reference is now made to
A vertically splined top generally cylindrical portion 2022 extends upwardly from cylindrical portion 2018 and is configured for engagement with a correspondingly configured drive shaft engaging wall 414 of blade 160.
A throughgoing transverse bore 2024 is formed in cylindrical lower portion 2012 above base 2010 and a throughgoing slot 2026 is formed in an upper portion of cylindrical lower portion 2012, tapered portion 2014, intermediate cylindrical portion 2016 and upper cylindrical portion 2018. Slot 2026 is configured to accommodate outer drive shaft locking engagement element 2002.
Reference is now made to
Element 2002 preferably includes a central bridge portion 2030 including a cross beam portion 2032 and a pair of upstanding side portions 2034. The bottoms of upstanding side portions 2034 each extend through a curved bent portion 2036 to a slightly outwardly tapered upwardly extending portion 2038. Portions 2038 each extend via an inwardly tapered section 2040 to an upstanding top portion 2042 having, at a top edge 2044 thereof, an outwardly extending protrusion portion 2046.
Reference is now made to
As seen in
A raised annular wall surface 2110 surrounds central aperture 2108. Surrounding raised annular wall surface 2110 is a slightly lower raised annular wall surface 2112, which defines a circumferential shoulder 2114 therewith. Wall surface 2112 terminates at a radially outward edge thereof in a depending circumferential wall 2116, which in turn extends to a recessed annular surface 2118, which lies in a plane below that of top surface 2106.
Recessed annular surface 2118 is delimited at its radial outward extent by a circumferential wall 2120, which extends to top surface 2106 and is concentric with circumferential wall 2116 and defines therewith an annular recess 2122. Annular sealing ring 2102 is seated in annular recess 2122 and is preferably positioned in touching engagement with circumferential wall 2120 and is spaced from circumferential wall 2116. Annular sealing ring 2102 preferably extends slightly above top surface 2106 but lies below raised annular wall surface 2110.
A plurality of bolt mounting holes 2130 are preferably formed in wall 2104 for accommodating motor mounting bolts (not shown), which bolt electric motor 1904 to motor support bracket assembly 1902.
A plurality, preferably three, of pin receiving shaft portions 2140 are preferably arranged about top wall 2104 and are arranged for slidably receiving pins 1780 of top element 1650.
Extending downwardly from top planar generally circular wall 2104 in a generally circular cylindrical arrangement are a plurality of depending wall sections 2150, some of which preferably surround pin receiving shafts 2140.
Depending wall sections 2150 preferably all terminate at a generally circumferential planar wall surface 2170, from which depends in turn, a generally cylindrical wall portion 2180. Wall sections 2150, together with top planar circular wall 2104 and generally circumferential planar wall surface 2170, define an array of ventilation apertures 2184. The array of ventilation apertures 2184 is generally mutually aligned with the array of ventilation apertures 1732 formed in top element 1650 of motor housing and support assembly 1510.
Protruding from generally cylindrical wall portion 2180 are a plurality of spindle guiding shaft portions 2190, which extend below a bottom edge 2192 of cylindrical wall portion 2180. Each of spindle guiding shaft portions 2190 preferably defines a vertical bore 2194, each of which terminates adjacent a lower edge 2196 of the spindle guiding shaft portion 2190 in a widened spring seat 2198 for accommodating a coil spring 1908.
Interiorly of cylindrical wall portion 2180 there are provided two pairs of mutually perpendicular planar upstanding wall surfaces 2200, which are configured to receive corresponding side surfaces of electric motor 1904.
Reference is now made to
As seen in
As seen in
Reference is now made to
As seen in
Reference is now made to
As seen in
Ventilating element positioning hub 2310 is preferably configured to have a planar wall 2312, which is integrally formed with inner portions of radial reinforcement ribs 2306. Extending downwardly from planar wall 2312 is an outer circumferential wall 2314, interiorly of which is an inner circumferential wall 2316 having a pair of outer facing vertical elongate side slots 2318 for receiving a corresponding pair of interior ribs of linear to rotary converting adaptor 1912 thereby to lock linear to rotary converting adaptor 1912 against rotation relative to motor lifting element 1910.
Inner circumferential wall 2316 terminates at a downward facing edge 2320 adjacent which is provided a pair of protrusions 2322. Inwardly of edge 2320 is a circumferential wall 2330 having a bottom edge 2332 defining a pair of symmetric downward facing teeth 2334, each of which has a pair of inclined tooth surfaces 2336 which meet at a point 2338. It is also noted that protrusions 2322 also serve to lock linear to rotary converting adaptor 1912 against linear disengagement from to motor lifting element 1910.
Reference is now made to
As seen in
Outer cylindrical wall 2350 defines a shoulder 2362 adjacent a bottom edge thereof, which shoulder, together with inner cylindrical ring 2352 provides a spring seat for accommodating spring 1914.
Reference is now made to
As seen in
Inner edges of vanes 2402 are joined to an inner cylindrical wall 2406, which terminates at a downward-facing edge thereof in a planar, generally circular wall 2408 having formed at a center thereof a socket 2410, which is configured to lockably receive bottom end 2220 of drive shaft 2202.
Surrounding socket is an inner circular cylindrical wall 2420 defining an outer cylindrical wall surface 2422. Extending outwardly from cylindrical wall surface 2422 are a pair of protrusions 2424, each of which has an inclined upward surface 2426, presenting a progressively higher surface portion from a leading edge 2428 to a trailing edge 2430 thereof. Protrusions 2424 interact with end surfaces 2356 of interior ribs 2354 of linear to rotary converting adaptor 1912.
Interiorly of cylindrical wall surface 2422 is a circumferential wall 2440 having a top edge 2442 defining a pair of symmetric upward facing teeth 2444, each of which has a pair of inclined tooth surfaces 2446 which meet at a point 2448. Teeth 2444 interact with teeth 2334 of motor lifting element 1910.
Reference is now made to
In the leftmost portion of
It is seen that linear to rotary converting adaptor 1912 is in its highest vertical position, relative to motor lifting element 1910, against the urging of spring 1914.
For purposes of reference, the top surface of generally cylindrical top portion 1452 of base housing 1400 is indicated to lie in a plane designated A. The top surface of vertically splined top generally cylindrical portion 2022 of drive shaft assembly 1900 is indicated to lie in a plane designated B, parallel to plane A. The bottom surface of generally planar annular wall 2302 of motor lifting element 1910 is indicated to lie in a plane designated C, parallel to planes A and B. The bottom surface of planar, generally circular wall 2408 of linearly driven rotating ventilating element 1916 is indicated to lie in a plane designated D, parallel to planes A, B and C.
In the next to leftmost portion of
It is seen that linear to rotary converting adaptor 1912 remains in its highest vertical position, relative to motor lifting element 1910, against the urging of spring 1914.
Raising of the motor lifting element 1910 provides corresponding raising of motor support bracket assembly 1902 under the urging of coil springs 1908. Inasmuch as electric motor 1904 is fixedly attached to motor support bracket assembly 1902, the electric motor 1904 is corresponding raised such that the top surface of vertically splined top generally cylindrical portion 2022 of drive shaft assembly 1900, plane B, is raised relative to plane A as indicated by an arrow 2510. It is appreciated that the bottom surface of generally planar annular wall 2302 of motor lifting element 1910 in plane C and the bottom surface of planar, generally circular wall 2408 of linearly driven rotating ventilating element 1916 in plane D are also raised relative to plane A as indicated by arrows 2512 and 2514, respectively, to a vertical extent generally identical to the raising of plane B relative to plane A.
In the next to rightmost portion of
It is seen that linear to rotary converting adaptor 1912 remains in its highest vertical position, relative to motor lifting element 1910, against the urging of spring 1914.
Inasmuch as electric motor 1904 is fixedly attached to motor support bracket assembly 1902, the electric motor 1904 is corresponding raised such that the top surface of vertically splined top generally cylindrical portion 2022 of drive shaft assembly 1900, plane B, is raised to its highest position relative to plane A, as indicated by an arrow 2520. Accordingly the linearly driven rotating ventilating element 1916 is in its highest position, while teeth 2334 of the motor lifting element 1910 still operatively engage corresponding teeth 2444 of linearly driven rotating ventilating element 1916 such that inclined surfaces 2336 of teeth 2334 slidingly engage corresponding inclined surfaces 2446 of teeth 2444.
It is appreciated that in the operative orientation shown at III, planes B, C and D have been raised further upwardly relative to plane A and relative to their positions indicated at II. Specifically, the top surface of vertically splined top generally cylindrical portion 2022 of drive shaft assembly 1900, plane B, is shifted at its maximum vertical position relative to plane A and the bottom surface of planar, generally circular wall 2408 of linearly driven rotating ventilating element 1916 in plane D is also shifted to its maximum vertical position relative to plane A as indicated by an arrow 2522. Plane C is upwardly shifted relative to plane A, as indicated by an arrow 2524, but is not at its maximum vertical position relative to plane A.
In the right most portion of
It is seen that linear to rotary converting adaptor 1912 is lowered relative to motor lifting element 1910, under the urging of spring 1914.
The top surface of vertically splined top generally cylindrical portion 2022 of drive shaft assembly 1900, plane B, remains at its highest position relative to plane A. The linearly driven rotating ventilating element 1916 remains in its highest position, however, the raising of the motor lifting element 1910 relative thereto causes disengagement of teeth 2334 of the motor lifting element 1910 from corresponding teeth 2444 of linearly driven rotating ventilating element 1916, allowing rotation of the linearly driven rotating ventilating element 1916 relative to the motor lifting element 1910.
It is appreciated that in the operative orientation shown at IV, plane C has been raised further upwardly relative to plane A, as indicated by an arrow 2530, and relative to its position indicated at III. Specifically, the bottom surface of generally planar annular wall 2302 of motor lifting element 1910 in plane C is upwardly shifted relative to plane A as indicated by arrow 2530 to its maximum vertical position relative to plane A.
Reference is now made to
Reference is now made to
Reference is now made to
As seen in
It is a particular feature of the present invention that normally, the SUPCA 100 is received by the user with SUCSERDREA 120 attached thereto and intact, such that tabs 214 are in the relatively radially inward orientation seen in enlargement A of
Reference is now made to
As seen in
Reference is now made to
As seen in
Reference is now made to
Reference is now made to
As seen particularly clearly in an enlargement B in
As seen particularly clearly in an enlargement A in
As seen in enlargement A of
It is noted that when SUCSERDREA 120 is properly seated on support surface 1210 within tapered wall 1240 of support element 1100, as seen in enlargement A of
Reference is now made to
As seen in
It is seen that the vertically splined top generally cylindrical portion 2022 of outer drive shaft assembly 1900 is partially seated in a drive shaft seating recess 420 of blade 160, as seen in enlargement B of
As seen in an enlargement of
Reference is now made to
It is seen in an enlargement B of
Reference is now made to
As seen in
Reference is now made to
Reference is now made to
It is seen in enlargement B of
It is appreciated that a transition between operative orientations IV and I shown in
Reference is now made to
This completes a general description of the operation of the MMIDD 1000 in accordance with a preferred embodiment of the invention.
It is a particular feature of the above-described embodiment of the present invention that leakage of liquids from the SUPCA 100 when it is in an upside-down state in engagement with MMIDD 1000 is prevented. This leakage prevention is preferably provided by a static/dynamic sealing produced by the interaction of blade 160 and lid 140, whose structures have been described hereinabove with reference to
Reference is now made to
Turning initially to
Turning now to
It is appreciated that in this operative orientation, blade 160 is no longer mechanically locked to cover 130 against linear mutual displacement therebetween by engagement of downward and inwardly facing hook protrusions 182 of cover 130 with surface 752 of hub 150. The unlocking results from the axial force provided by raising of the outer drive shaft assembly 1900. It is noted that, as seen in
During rotational operation of blade 160, the configuration shown in
Preferably following completion of rotational operation of blade 160, the SUCSERDREA 120 returns to the operative orientation shown in
It is appreciated that any liquid leaking from the SUPCA 100 via the SUCSERDREA 120 is preferably channeled via leak fluid egress apertures 282 into sealed leaked fluid reservoir volumes 260 of lid 140.
Reference is now made to
As seen in
Electrical power is supplied to the MMIDD 1000, as by user operation of a power switch (not shown). The MMIDD 1000 performs an automated, computerized self-check and initialization process.
The user adds any required liquid to the filled single-use preparation container assembly (SUPCA) 100 of
After resealing liquid ingress opening 242 by fully lowering cover 193, the user turns the filled SUPCA 100 of
The user closes the door assembly 1050 and presses the push button element 1420.
The MMIDD 1000 reads and decrypts information contained in or referenced by machine readable information source 162 of the filled SUPCA 100 of
A process recipe for processing of the contents of filled SUPCA 100, including, inter alia, time sequencing of rotation of the blade 160 including intended rpm, rpm threshold levels and timing;
Reference weight of the filled SUPCA 100 (RWF);
Reference weight of the liquid (RWL) to be added by the user to the filled SUPCA 100 prior to processing by the MMIDD 1000;
Type of filled SUPCA 100 specific ID;
Unique individual filled SUPCA 100 specific ID; and
Internet links to information of possible interest.
The MMIDD 1000 weighs the filled SUPCA 100 by means of load cells 1560, including any additional user added liquid and generates a Measured Weight Output (MWO).
Based on some or all of the above information, MMIDD 1000 confirms that an acceptable filled SUPCA 100 has been inserted into operative engagement therewith.
If the MWO of an otherwise acceptable filled SUPCA 100 is within a predetermined range of the sum of the RWO and RWL, the MMIDD 1000 processes the filled SUPCA 100 in accordance with the process recipe.
If the MWO of an otherwise acceptable filled SUPCA 100 exceeds the sum of the RWO and RWL or is below the sum of the RWO and RWL within a predetermined range, the MMIDD 1000 modifies the process recipe accordingly and then processes the filled SUPCA 100 in accordance with the modified process recipe.
If the MWO of an otherwise acceptable filled SUPCA 100 is below the sum of the RWO and RWL or is below the sum of the RWO and RWL beyond the predetermined range, the MMIDD 1000 requires addition of further liquid to the filled SUPCA 100 and prompts the user accordingly and only once this is done processes the filled SUPCA 100 in accordance with the process recipe or a suitably modified process recipe.
During operation of the MMIDD 1000, if the RPM falls substantially from a predetermined level as set forth in the appropriate process recipe, which indicates that MMIDD processing is nearly completed, MMIDD 1000 enters a processing completion phase as set forth in the appropriate process recipe and terminates rotation of the blade 160 and notifies the user that filled SUPCA 100 may be removed from MMIDD 1000 and consumed.
Reference is now made to
Turning to
Following performance of self-check 2704, the results of the self-check are ascertained, as seen at query ‘IS SELF CHECK OK?’ at a third step 2706. In the case that the results of the self-check are unacceptable, a user is preferably alerted to this, as seen at a fourth step 2708 and the operation of the MMIDD is halted. Such an alert may be by way of illumination of one or more LEDs incorporated in buttons and/or icons on the body of MMIDD 1000. In the case that the results of the self-check are acceptable, a user of MMIDD may proceed to insert the inverted, sealed pre-filled SUPCA 100 of
Following insertion of SUPCA 100, MMIDD 1000 preferably detects the presence of SUPCA 100 at a sixth step 2712, weighs SUPCA 100 at a seventh step 2714 and modifies a process recipe based on the outcome of the seventh weighing step 2714, at an eighth step 2716. Further details of sixth detection step 2712, seventh weighing step 2714 and eighth recipe modification step 2716 are provided hereinbelow with reference to
Following successful completion of sixth-eighth steps 2712-2716, MMIDD 1000 preferably indicates readiness for performing processing, as seen at a ninth step 2718. Indication of readiness for performing processing may be, for example, by way of illumination of push button element 1420 or other buttons and/or icons on the body of MMIDD 1000. Ninth step 2718 preferably additionally includes MMIDD 1000 checking that rotatable door assembly 1050 is in a closed position prior to indicating readiness for operation.
Responsive to an indication of readiness for performing processing at ninth step 2718, the user preferably presses the push button element 1420 to initiate operation of MMIDD 1000, as seen at a tenth step 2720. As seen at an eleventh step 2722, entry of MMIDD 1000 into an operative processing state may be indicated to a user by way of a change in the illumination of push button element 1420 or other buttons or icons on the body of MMIDD 1000, including, for example a change in color or pattern of illumination.
Upon the user initiating the performance of processing by MMIDD 1000 at tenth step 2720, MMIDD 1000 preferably processes contents of SUPCA 100 at a twelfth processing step 2724. MMIDD 1000 preferably processes contents of SUPCA 100 in accordance with the process recipe, as suitably modified at eighth step 2716. Further details of twelfth processing step 2724 are provided hereinbelow with reference to
Upon completion of twelfth step 2724, MMIDD 1000 preferably indicates that SUPCA 100 has been processed and may be removed by the user, at a thirteenth step 2726. Indication of completion of processing and readiness for removal of SUPCA 100 from MMIDD 1000 may be, for example, by way of illumination of push button element 1420 or other buttons and/or icons on the body of MMIDD 1000. The user may then open rotatable door assembly 1050 and disengage and remove SUPCA 100 from MMIDD 1000, as seen at a fourteenth step 2728. MMIDD 1000 may then enter a sleep mode until subsequent reactivation thereof for further use, as seen at a fifteenth and preferably final step 2730. A sleep state of MMIDD 1000 may be indicated by appropriate illumination of buttons and/or icons on the body of MMIDD.
Reference is now made to
As seen in
If the reader module is not providing a suitable signal and thus not properly functioning, MMIDD 1000 preferably alerts the user of this, as seen at second self-check sub-step 2704b.
If the reader module is providing a suitable signal, MMIDD 1000 preferably proceeds to check if a previous SUPCA 100 is still in MMIDD 1000, as seen at a third self-check sub-step 2704c. If a SUPCA 100 is still in MMIDD 1000, MMIDD 1000 preferably alerts the user of this and prompts the user to remove the SUPCA 100, as seen at a fourth self-check sub-step 2704d. If a SUPCA 100 is not in MMIDD 1000, MMIDD 1000 preferably proceeds to check if load cells 1560 are properly functioning, for example by way of checking if a load sensor associated with load cells 1560 is providing a suitable signal, as seen at a fifth self-check sub-step 2704e. If the load sensor is not providing a suitable signal and thus not properly functioning, MMIDD 1000 preferably alerts the user of this, as seen at sixth self-check sub-step 2704f.
If the load sensor is providing a suitable signal, MMIDD 1000 preferably proceeds to perform a self-check on printed circuit board (PCB) 1440 at a seventh self-check sub-step 2704g. Printed circuit board 1440 preferably contains control electronics managing operation of the MMIDD 1000 and seventh self-check sub-step 2704g preferably includes checking if voltages and resistances of elements on printed circuit board 1440 are within predetermined acceptable ranges. If the parameters of the printed circuit board 1440 are not within acceptable ranges, MMIDD 1000 preferably alerts the user to this, as seen at an eighth self-check sub-step 2704h.
Turning now to
If vertically displacing rotary drive motor assembly 1430 including auxiliary rotary drive motor 1520 thereof is in a rest position, MMIDD 1000 preferably zeros load cells 1560 at a tenth self-check sub-step 2704j.
If vertically displacing rotary drive motor assembly 1430 including auxiliary rotary drive motor 1520 is not in the rest position, MMIDD 1000 checks at an eleventh self-check sub-step 2704k if rotatable door assembly 1050 is in a closed position. If rotatable door assembly 1050 is not in a closed position the user is preferably alerted of this and prompted to close rotatable door assembly 1050, as seen at twelfth self-check sub-step 27041. The user may be alerted by way of appropriate illumination of at least one button and/or icon incorporated in MMIDD 1000.
If rotatable door assembly 1050 is in a closed position, MMIDD 1000 preferably powers auxiliary rotary drive motor 1520 so as to move vertically displacing rotary drive motor assembly 1430 to the rest position thereof, as seen at a thirteenth self-check sub-step 2704m. By way of example, thirteenth self-check sub-step 2704m may involve rotating auxiliary rotary drive motor 1520 in a clock-wise direction. MMIDD 1000 preferably subsequently ascertains at a fourteenth self-check sub-step 2704n whether auxiliary rotary drive motor 1520 and hence vertically displacing rotary drive motor assembly 1430 has assumed the required position and returns to self-check sub-step 2704m in the case that auxiliary rotary drive motor 1520 has not yet assumed the required position.
In parallel to the performance of thirteenth and fourteenth self-check sub-steps 2704m and 2704n, MMIDD 1000 preferably continuously checks the current of auxiliary rotary drive motor 1520, as seen at fifteenth self-check sub-step 2704o, in order to detect the presence of a possible blockage. If the measured current is above a predetermined threshold, as seen to be checked at a sixteenth self-check sub-step 2704p, MMIDD 1000 preferably stops auxiliary rotary drive motor 1520 and alerts a user of a malfunction, for example by way of appropriate illumination of one or more icons and/or buttons incorporated in MMIDD 1000, as seen at seventeenth self-check sub-step 2704q.
Reference is now made to
As seen in
If the information contained in or referenced by machine-readable information source 162 has been read, MMIDD 1000 preferably decrypts the information at a fourth SUPCA detection sub-step 2712d. Particularly preferably, MMIDD 1000 preferably converts at least a portion of the information to a process recipe for processing the contents of the filled SUPCA 100. Such a process recipe preferably includes information relating to time sequencing of rotation of the blade element 160, including intended rpm, rpm threshold levels and timing.
An exemplary set of instruction steps, structured as a 48 byte structure and suitable for inclusion in or to be referenced by machine-readable information source 162 is set forth in Table 1 below. Additional look-up tables relating to various steps outlined in Table 1 are presented in Tables 2 and 3.
MMIDD 1000 preferably checks that the information has been successfully converted to a process recipe at a fifth SUPCA detection sub-step 2712e. If the information has not been successfully converted to a process recipe, MMIDD 1000 may repeat fourth SUPCA detection sub-step 2712d, preferably up to an additional two times.
If the information has been successfully converted to a process recipe, MMIDD 1000 preferably proceeds to store the obtained process recipe in a memory device of MMIDD 1000, such as an RAM memory, as seen at a sixth SUPCA detection sub-step 2712f. MMIDD 1000 preferably additionally stores the reference weight of the filled SUPCA 100 (RWF) and the reference weight of the liquid (RWL) to be added by the user to the filled SUPCA 100 prior to processing by the MMIDD 1000, which RWF and RWL values are preferably included in machine-readable information source 162.
Reference is now made to
As seen in
Following the generation of a stable MWO, MMIDD 1000 preferably calculates the weight of the liquid added by the user (CWL), as seen at a fourth SUPCA weighing sub-step 2714d. The CWL is preferably calculated based on subtracting the RWF stored in the memory of the MMIDD 1000 from the MWO. MMIDD 1000 preferably then stores the CWL value obtained, as seen at a fifth SUPCA weighing sub-step 2714e.
Reference is now made to
As seen in
If the CWL lies within acceptable limits, as found at first recipe modification sub-step 2716a, MMIDD 1000 proceeds to derive a liquid weight offset percentage (LWOP), defined as ((CWL−RWL)/RWL)*100, as seen at a third recipe modification sub-step 2716c. It is understood that the LWOP expresses the deviation of the actual weight of the liquid added from the intended weight of the liquid to be added, which intended weight of the liquid to be added is preferably contained in the machine-readable information source 162.
MMIDD 1000 preferably modifies the processing recipe as necessary based on the derived LWOP. By way of example only, as illustrated at third recipe modification sub-step 2716c, if the LWOP lies between 0-5% the process recipe may not require modification; if the LWOP lies between 5-10% then the rpm may be reduced to 80% of the intended rpm included in the processing recipe and the processing time may be reduced to 90% of the intended processing time; if the LWOP lies between 10-15% then the rpm may be reduced to 70% of the intended rpm and the processing time may be reduced to 85% of the intended processing time; if the LWOP lies between 15-20% then the rpm may be reduced to 60% of the intended rpm and the processing time may be reduced to 85% of the intended processing time; if the LWOP is greater than 20%, then the rpm may be reduced to 60% of the intended rpm and the processing time may be reduced to 60% of the intended processing time; if the LWOP lies between 0-−5% then the process recipe may not require modification; if the LWOP lies between −5%-−10% then the rpm may unmodified and the processing time may be increased to 120% of the intended processing time; and if the LWOP is less than −10% then more liquid may be required. It is appreciated that these ranges applicable to the LWOP are exemplary only and may be modified in accordance with the contents and processing requirements of SUPCA 100.
The MMIDD 1000 preferably stores the process recipe, including any modifications thereto, in a memory thereof, as seen at a fourth recipe modification sub-step 2716d.
Reference is now made to
As seen in
Following the stopping of power to auxiliary rotary drive motor 1520 at third processing sub-step 2724c, power is provided to AC motor 1904 at a fourth processing sub-step 2724d. AC motor 1904 preferably drives blade element 160 in rotational motion for processing the contents of SUPCA 100, in accordance with the modified process recipe generated and stored at recipe modification step 2716.
As seen at a fifth processing sub-step 2724e, during operation of AC motor 1904 MMIDD 1000 compares the actual rpm (ARPM) delivered by AC motor 1904 to the set rpm (SRPM) according to the process recipe, as modified at recipe modification step 2716, and derives a rpm offset percentage (RPMOP) based thereon for each stage in the process recipe. RPMOP may be defined as ((SRPM−ARPM)/SRPM)*100. If the RPMOP lies within a first predetermined range, such as between 0%-30%, MMIDD 1000 continues to operate in accordance with the processing recipe. If the RPMOP reaches a second predetermined range, such as between 30%-70%, indicating that processing is nearly complete, MMIDD 1000 enters a processing completion phase as set forth in the appropriate process recipe and as seen at sixth processing sub-step 2724f. AC motor 1904 is then powered off at a seventh processing sub-step 2724g and auxiliary rotary drive motor 1520 repowered at an eighth operation sub-step 2724h in order to return vertically displacing rotary drive motor assembly 1430 to the rest position thereof.
During operation of AC motor 1904 the current draw thereof is also preferably continuously checked in order to ascertain that overloading of AC motor 1904 has not occurred. Should the current be found to exceed a predetermined threshold, thus indicating the possibility of overloading, AC motor 1904 is preferably powered off.
As seen at a ninth processing sub-step 2724i, one or more sensors preferably check whether vertically displacing rotary drive motor assembly 1430 has assumed the required position. By way of example only, ninth processing sub-step 2724i may involve checking by optical sensors or the use of micro switches. If the sensors confirm that vertically displacing rotary drive motor assembly 1430 has returned to its rest position, power is stopped to auxiliary rotary drive motor 1520 at a tenth processing sub-step 2724j.
Turning now to
It is understood that the various steps and sub-steps detailed hereinabove with reference to control operation of the MMIDD 1000 are not necessarily performed in the order listed. Furthermore, depending on the particular configuration of the MMIDD and SUPCA employed, various ones of the steps and/or sub-steps may be obviated or may be replaced by alternative appropriate steps. In particular, it is appreciated that the control operation described hereinabove may be relevant to the embodiment of MMIDD 1000 described hereinabove with reference to
It is understood that the above described operation of the MMIDD 1000 may be applicable, with appropriate modifications, to alternative versions of the MMIDD described hereinbelow.
Reference is now made to
As seen in
As seen in
In the section which follows and refers to
SUPCA 3100 preferably comprises a cup body, such as a single-use container body 3102, for containing a food product prior to, during and following food preparation. Single-use container body 3102 may be any suitable container body 3102 and is preferably a truncated conical shaped container, preferably formed of polypropylene, having a bottom wall 3104, a truncated conical side wall 3106 and a circumferential rim 3108. It is appreciated that SUPCA 3100 may include any suitable one or more of the features described hereinabove with reference to a SUPCA.
In accordance with a preferred embodiment of the invention, there is also provided a cup closure, such as a single-use cover seal and externally rotatably drivable rotary engagement assembly (SUCSERDREA) 3120, for both human and machine sensible tamper-evident and re-use preventing fluid sealing engagement with the single-use container body 3102.
SUCSERDREA 3120 is preferably used for food products but is not limited for use therewith unless explicitly stated hereinbelow.
It is a particular feature of this embodiment of the present invention that the same SUCSERDREA 3120 may be used for container bodies 3102 having different sizes and configurations, provided that their circumferential rim 3108 is uniform.
Reference is now made to
Reference is now also made to
The structure of the SUCSERDREA 3120 will now be described in detail with reference to
As seen in
Preferably, blade 3160 is substantially identical or similar to blade 160 described hereinabove with reference to
SUCSERDREA 3120 preferably includes a machine-readable information source 3162, preferably an RFID tag, but alternatively a bar-coded label or any other suitable machine-readable information source. Preferably, the information contained on the machine-readable information source 3162 is encrypted. Information source 3162 may contain some or all of the relevant information and/or may provide a reference, such as a link to information available on the internet.
Reference is now additionally made to
A central aperture 3175 is formed in generally circular planar portion 3170. An upwardly facing, in the sense of
Formed in generally circular planar portion 3170 is an integrally hinged pivotably openable straw ingress opening cover 3184, including an integral hinge portion 3186 and a pair of human visually sensible tamper-evident frangible portions 3188, which are normally necessarily broken when opening straw ingress opening cover 3184. A finger engagement portion 3190 is defined as an extension of straw ingress opening cover 3184. Integrally hinged pivotably openable straw ingress opening cover 3184 is preferably formed with an outer peripheral sealing surface 3191, which removably sealably engages a corresponding straw ingress opening of lid 3140 (
Also formed in generally circular planar portion 3170 is an integrally hinged liquid ingress cover 3193 including an integral hinge 3194 and a pair of human visually sensible tamper-evident frangible portions 3195, which are normally necessarily broken when opening cover 3193. A finger engagement portion 3196 is defined as a radially outward extension of cover 3193 and also serves for rotational orientation of SUPCA 3100 onto a container contents processor, such as a multiple motion intelligent driving device (MMIDD) (
It is a particular feature of an embodiment of the present invention that functionality for both human and machine sensible tamper-evident and re-use prevention may be actuated both by removal of the SUCSERDREA 3120 from the single-use container body 3102 and by clamping of the SUPCA 3100 to the MMIDD (
Integrally hinged pivotably openable liquid ingress opening cover 3193 is preferably formed with an outer peripheral surface 3197 which terminates in a recessed, generally planar, downwardly-facing, in the sense of
In accordance with a preferred embodiment of the present invention, cover 3130 is provided with a partially circumferential depending multifunctional tamper indicating and re-use prevention element (MTIRPE) 3200. Preferably, MTIRPE 3200 is integrally formed with cover 3130 by injection molding of plastic.
As seen particularly in the enlargement forming part of
Arms 3202 each terminate in an elbow portion 3206. A circumferentially inwardly directed spring arm portion 3208 extends from each elbow 3206 and terminates in an upwardly extending portion 3210. A cantilevered generally elongate locking portion 3220 is supported on upwardly extending portions 3210, which are mutually circumferentially spaced. A central lid engagement portion 3230 is supported on cantilevered generally elongate locking portion 3220 and by lateral support portions 3232 which extend on either side thereof to upwardly extending portions 3210. Central lid engagement portion 3230 includes a tapered lid locking portion 3233, which defines a locking surface 3234. Central lid engagement portion 3230 also includes a bottom surface 3235, which joins a planar surface 3236 at a corner edge 3237. Planar surface 3236 joins an inclined surface 3238 at an edge 3239.
Cantilevered generally elongate locking portion 3220 includes a pair of symmetric locking arms 3240, which extend outwardly from central lid engagement portion 3230 in mutually opposite directions. Each of symmetric locking arms 3240 includes an engagement window occluding end portion 3242 which includes a planar engagement window locking portion 3244, which lies in a plane which is angled in two dimensions with respect to the remainder of engagement window occluding end portion 3242 and defines an engagement window locking surface 3246.
It is a particular feature of this embodiment of the present invention that the symmetric locking arms 3240 of cantilevered generally elongate locking portion 3220 are resilient in two mutually perpendicular directions, here indicated by respective arrows 3248 and 3250.
It is a further particular feature of this embodiment of the present invention that arms 3202, elbow portions 3206 and arm portions 3208 are together resilient in two mutually perpendicular directions, here indicated by respective arrows 3252 and 3254.
Reference is now made to
As seen in
As seen in
The outer circumferential edge portion 3324 protrudes somewhat from the generally circumferential edge surface 3310 and is preferably somewhat tapered in opposite circumferential directions. As seen particularly in the enlargement forming part of
As seen particularly in the enlargement forming part of
As seen particularly in the enlargement forming part of
Inwardly of generally circumferential edge surface 3310 is a generally planar annular surface 3430, which lies slightly below a top edge 3432 of edge surface 3310. A generally circular protrusion 3434 extends upwardly, in the sense of
Extending downwardly, in the sense of
An additional wall 3450 is spaced from wall 3448 and defines therewith a volume 3452 which partially accommodates integral hinge 3194 of cover 3130.
Extending from wall 3450 in a direction opposite to liquid ingress opening 3442 are a pair of curved mutually separated walls 3454 and 3456, which may provide structural support to cover 3130, when welded to lid 3140, and which may define one or more sealed leaked fluid reservoir volumes 3460.
A straw communication aperture 3462 is preferably provided adjacent leaked fluid reservoir volumes 3460.
Located generally at the center of lid 3140 is a rotary drive aperture 3470, which is surrounded by a multiple walled sealing structure 3480, preferably having a plurality of leaked fluid egress apertures 3482, which communicate with one or more sealed leaked fluid reservoir volumes 3460. Apertures 3482 are distributed along a generally annular planar inner surface 3484, which surrounds aperture 3470. Surrounding surface 3484 and generally downwardly stepped with respected thereto is a generally annular planar surface 3486.
Cover 3130 is preferably welded to lid 3140 at the intersections respectively of an inner edge of annular surface 3484, annular surface 3430, and protrusion 3434 with corresponding surfaces of cover 3130.
An upwardly-facing partially tapered and partially flat annular surface 3488 is defined interiorly of aperture 3470.
Turning now particularly to
Recesses 3490 and 3492 are defined by three mutually concentric walls 3494, 3496 and 3498, having respective downwardly facing annular edges 3500, 3502 and 3504, and by base surfaces 3506 and 3508 extending respectively between walls 3494 & 3496 and 3496 & 3498. Base surfaces 3506 and 3508 generally underlie respective annular surfaces 3484 and 3486. Wall 3494 preferably defines a radially outwardly facing internal circumferential static sealing surface 3509, which intersects base surface 3506.
A downwardly-facing blade receiving recess 3510 is defined in a downwardly facing, generally planar surface 3512 of lid 3140.
A truncated conical recess 3516 is preferably defined with respect to surface 3512 about straw communication aperture 3462.
Generally coextensive with radially inwardly circumferential surface 3440 and extending downwardly from generally planar surface 3512 is a circumferential wall 3520 having an outer surface 3522 which preferably sealingly engages an interior surface of wall 3106 of container body 3102 when SUCSERDREA 3120 is fully engaged with the single-use container body 3102.
It is appreciated that walls 3494, 3496 and 3498 also define dynamic sealing surfaces as described hereinbelow:
Wall 3494 defines a dynamic radially outwardly facing circumferential sealing surface 3530 which is joined by a circumferential tapered junction surface 3532 to static sealing surface 3509.
Wall 3496 defines a dynamic radially inwardly facing circumferential sealing surface 3534 which faces surfaces 3509, 3530 and 3532.
Wall 3496 also defines a dynamic radially outwardly facing circumferential sealing surface 3536.
Wall 3498 defines a dynamic radially inwardly facing circumferential sealing surface 3538.
Reference is now made to
As seen in
Blade portions 3602 each define a top-facing surface, in the sense of
A bottom-facing surface 3650 of blade 3550 preferably includes a generally planar surface 3652, which extends over central driving and sealing portion 3600 and most of blade portions 3602. Generally planar surface 3652 may have a slightly downwardly-extending central dome 3654. Also formed on bottom-facing surface 3650 are one or two downwardly and circumferentially tapered portions 3656 alongside trailing edges 3638 of blade portions 3602, which underlie tapered portions 3636. Formed on planar surface 3652 are preferably a central protrusion 3660 and a plurality of mutually spaced radially distributed protrusions 3662.
It is appreciated that walls 3614, 3606 and 3604 define dynamic sealing surfaces as described hereinbelow:
Wall 3614 defines a dynamic radially outwardly facing circumferential sealing surface 3670.
Wall 3606 defines a dynamic radially inwardly facing circumferential sealing surface 3672 which faces surface 3670.
Wall 3606 also defines a dynamic radially outwardly facing circumferential sealing surface 3674.
Wall 3604 defines a dynamic radially inwardly facing circumferential sealing surface 3676.
It is appreciated that an inner disposed portion 3680 of surface 3672 also defines a static sealing surface.
As seen particularly in
Reference is now made to
As seen in
In accordance with a preferred embodiment of the invention, there is also provided a cup closure, such as a single-use cover seal and externally rotatably drivable rotary engagement assembly (SUCSERDREA) 4120 for fluid sealing engagement with the single-use container body 4102. SUCSERDREA 4120 is preferably used for food products but is not limited for use therewith unless explicitly stated hereinbelow. SUCSERDREA 4120 may also be provided with tamper evidencing and re-use preventing functionality, such as, for example, of the type described hereinabove in various embodiments of the invention.
It is a particular feature of this embodiment of the present invention that the same SUCSERDREA 4120 may be used for container bodies 4102 having different sizes and configurations, provided that their circumferential rim 4108 is uniform.
As seen in
SUCSERDREA 4120 preferably includes a machine-readable information source 4160, preferably an RFID tag, but alternatively a bar-coded label or any other suitable machine-readable information source. Preferably, the information contained on the machine-readable information source 4160 is encrypted. Information source 4160 may contain some or all of the relevant information and/or may provide a reference, such as a link to information available on the internet.
As seen in
As seen in
As seen in
Blade 4150 includes a drive shaft engaging wall 4190, which is identical to drive shaft engaging wall 414 but preferably of increased length and includes an annular radially outwardly extending protrusion 4192.
Importantly, blade 4150 includes a rotatable static sealing portion 4194, which preferably includes a generally cylindrical wall 4196, surrounding drive shaft engaging wall 4190 and radially outwardly spaced therefrom, and a flexible radially outwardly and downwardly extending sealing skirt 4198.
As seen particularly in
Reference is now made to
As seen in
In accordance with a preferred embodiment of the invention, there is also provided a cup closure, such as a single-use cover seal and externally rotatably drivable rotary engagement assembly (SUCSERDREA) 4220, for fluid sealing engagement with the single-use container body 4202. SUCSERDREA 4220 is preferably used for food products but is not limited for use therewith unless explicitly stated hereinbelow. SUCSERDREA 4220 may also be provided with tamper evidencing and re-use preventing functionality, such as, for example, of the type described hereinabove in various embodiments of the invention.
It is a particular feature of this embodiment of the present invention that the same SUCSERDREA 4220 may be used for container bodies 4202 having different sizes and configurations, provided that their circumferential rim 4208 is uniform.
As seen in
SUCSERDREA 4220 preferably includes a machine-readable information source 4260, preferably an RFID tag, but alternatively a bar-coded label or any other suitable machine-readable information source. Preferably, the information contained on the machine-readable information source 4260 is encrypted. Information source 4260 may contain some or all of the relevant information and/or may provide a reference, such as a link to information available on the internet.
As seen in
As seen in
As seen in
Blade 4250 includes a drive shaft engaging wall 4290, which is identical to drive shaft engaging wall 3614, but preferably of increased length, and having, on a portion of a radially inwardly-facing surface 4291 thereof, an arrangement of curved splines 4292 and includes an annular radially outwardly extending protrusion 4293.
Importantly, blade 4250 includes a rotatable static sealing portion 4294, which preferably includes a generally cylindrical wall 4296 surrounding drive shaft engaging wall 4290 and radially outwardly spaced therefrom and which includes a flexible radially outwardly and downwardly extending sealing skirt 4298.
As seen particularly in
It is appreciated that any of the blade portions shown in the embodiments of the blades of
Reference is now made to
As seen in
The MMIDD 4300 is generally identical or similar to the MMIDD 1000 described hereinabove with reference to
Reference is now made to
Reference is now made to
Reference is now made to
A cam engagement protrusion 4466 extends radially inwardly at a bottom portion of radially inward-facing surface 4456. A support element pivotable and slidable engagement protrusion 4468 is formed on radially outward-facing surface 4454 at a location generally opposite protrusion 4466.
Reference is now made to
Disposed centrally of generally circular planar surface 4500 is a drive shaft accommodating aperture 4530, which is surrounded by an upstanding circumferential rim 4532, thereby to help prevent leaking of spillage located on generally circular planar surface 4500 into the remainder of the MMIDD 4300 lying below support element 4400.
Annular planar container support surface 4510 is preferably surrounded by a tapered wall 4540. Wall 4540 terminates in a circumferential planar annular top and radially outwardly extending wall 4544, having a top-facing surface 4546.
Extending circumferentially to both sides of channel 4514 is a SUPCA azimuthal locating channel 4550, which extends radially outwardly of wall 4540 and communicates with channel 4514. SUPCA azimuthal locating channel 4550 accommodates finger engagement portion 196 of SUPCA 100 and analogous finger engagement portions of other embodiments of SUPCAs described hereinabove.
A pair of cup engagement protrusions 4554 preferably extend radially inwardly from wall 4540.
Walls 4540 and 4544 are formed with a pair of clamp accommodating pockets 4560 and an additional clamp accommodating pocket 4561. Each of pockets 4560 and 4561 preferably includes an opening 4562, which extends from wall 4540 at a height just below that of wall 4544 radially outwardly along wall 4544. Each of pockets 4560 and 4561 includes a radially outwardly extending wall 4564 and side walls 4566. Radially outwardly extending wall 4564 includes a radially inward lower portion 4568 and a radially outward upper portion 4570 joined by a concave curved surface 4572. Preferably, a magnet 4574 is seated behind radially inward lower portion 4568. A pair of protrusions 4576 extend radially inwardly from radially inward outer portion 4568 adjacent each of side walls 4566 and underlying opening 4562 of pocket 4561. Extending radially inwardly from radially inward outer portion 4568 adjacent each of side walls 4566 and underlying opening 4562 of pockets 4560 is an elongate protrusion 4578.
Preferably, a depending circumferential wall 4580 extends along nearly one half of the circumference of wall 4544 at an outer edge thereof.
Underlying surface 4500 is a corresponding circular generally planar surface 4590, which is formed with a convex curved circumferential wall 4592 surrounding aperture 4530. Downwardly and outwardly of wall 4592 there is formed a centering wall 4593, which defines generally circular recess 4594, which is preferably configured to have a radially outwardly extending rectangular notch 4596. Wall 4593 preferably defines a plurality of circumferentially distributed radially inwardly-facing motor assembly engagement protrusions 4597.
Reference is now made additionally to
As seen in
Disposed within base housing 4600 are a vertically displacing rotary drive motor assembly 4630 and a printed circuit board 4635, which preferably contains control electronics which manage operation of the MMIDD 4300. Motor assembly 4630 includes an outer drive shaft assembly 4640, which may be identical to outer drive shaft assembly 1900, which is described hereinabove. Three alternative embodiments of outer drive shaft assemblies 4640, here respectively designated by reference numerals 4642, 4644 and 4646 are shown in enlargements in
Reference is now made to
Axially displaceable rotary drive assembly 4660 includes outer drive shaft assembly 4640, which, as noted above, forms part of motor assembly 4630. As further noted above, outer drive shaft assembly 4640 may be identical to outer drive shaft assembly 1900 or may alternatively comprise one of outer drive shaft assemblies 4642, 4644 and 4646.
Vertically displacing rotary drive motor assembly 4630 may be identical or similar to vertically displacing rotary drive motor assembly 1430, which is described hereinabove with reference to
Specific reference is now made additionally to
Top element 4654 may be identical or similar to the top element described hereinabove with reference to
Upstanding circumferential wall surface 1706 (
Radially outwardly extending protrusion 1710 (
Reference is now made to
As noted above, axially displaceable rotary drive assembly 4660 preferably includes outer drive shaft assembly 4640.
As seen in
Reference is now made to
As seen in
Disposed above semicircular lower wall 4724 is a lower intermediate generally solid section 4750, which defines a semiannular shoulder with respect to semicircular cylindrical outer surface 4728 having a semiannular downward facing surface 4752, which extends between semicircular cylindrical outer surface 4728 and a semicircular cylindrical outer surface 4754 of lower intermediate generally solid section 4750.
Disposed above lower intermediate generally solid section 4750 is a middle intermediate generally solid section 4760, which defines a tapered semiannular shoulder with respect to semicircular cylindrical outer surface 4754 having a semiannular tapered upward facing surface 4762, which extends between semicircular cylindrical outer surface 4754 and a semicircular cylindrical outer surface 4764 of middle intermediate generally solid section 4760.
Disposed above middle intermediate generally solid section 4760 is a upper intermediate generally solid section 4770, which defines a semiannular shoulder with respect to semicircular cylindrical outer surface 4764 having a semiannular upward facing surface 4772, which extends between semicircular cylindrical outer surface 4764 and a semicircular cylindrical outer surface 4774 of upper intermediate generally solid section 4770.
Disposed above upper intermediate generally solid section 4750 is a top generally solid section 4780, which defines a semiannular shoulder with respect to semicircular cylindrical outer surface 4774 having a semiannular upward facing surface 4782, which extends between semicircular cylindrical outer surface 4774 and a generally semicircular cylindrical outer surface 4784 of top generally solid section 4780.
Generally semicircular cylindrical outer surface 4784 is preferably a generally vertically splined cylindrical outer surface which terminates in a generally planar top surface 4786.
Returning to a description of the interior of the body half 4722, it is seen that a slot 4790, preferably of generally rectangular cross section, extends upwardly from downwardly facing planar surface 4738 into lower intermediate generally solid section 4750 to a downwardly facing planar interior surface 4792.
It is seen that most of lower, middle and upper intermediate and top generally solid sections, respectively designated by reference numerals 4750, 4760, 4770 and 4780, define a common planar surface 4795, which is slightly recessed from common coplanar edge surfaces, collectively designated by reference numeral 4796, of the body half 4722. A junction between respective surfaces 4795 and 4796 defines an elongate generally planar shoulder surface 4797, which serves as a support and guiding surface.
It is also seen that formed on opposite sides of common coplanar edge surfaces 4796 and a lower portion of lower intermediate generally solid section 4750 are an assembly pin 4798 and a corresponding assembly socket 4799.
Formed on common planar surface 4795 is a circular cylindrical pivotable mounting protrusion 4800, which extends to the plane of common coplanar edge surfaces 4796. Also formed on common planar surface 4795 are four mounting and guiding protrusions, respectively designated by reference numerals 4802, 4803, 4804 and 4805, each of which extends to the plane of common coplanar edge surfaces 4796. Junctions between some edges of protrusions 4802, 4803, 4804 and 4805 and common planar surface 4795 define respective planar shoulder surfaces 4806, 4807, 4808 and 4809, which serve as support and guiding surfaces.
An elongate coil spring accommodating recess 4810 is formed in common planar surface 4795.
Three additional assembly sockets, respectively designated by reference numerals 4812, 4814 and 4816 are formed on respective mounting and guiding protrusions, respectively designated by reference numerals 4803 and 4805, wherein sockets 4812 and 4814 are both formed on mounting and guiding protrusion 4803.
Three additional assembly pins, respectively designated by reference numerals 4822, 4824 and 4826, each corresponding to a respective one of the assembly sockets 4812, 4814 and 4816, are formed on respective mounting and guiding protrusions, respectively designated by reference numerals 4802, 4804 and 4805.
It is appreciated that the arrangement and configuration of the various assembly pins and assembly sockets described hereinabove is such that when the two identical halves 4722 are assembled, respective assembly pins of one half tightly seat into the assembly sockets of the other half and vice versa.
Disposed within body 4720 are a pair of coil springs 4828 as well as a pair of identical elbow elements 4830, which are shown in
As seen clearly in
As seen clearly in
Extending upwardly from straight edge 4892 of base portion 4882 is a concave curved edge 4894, which defines an engagement recess 4896, which is engaged by engagement portion 4864 of elbow element 4830. Above engagement recess 4896, curved edge 4894 terminates in a straight edge 4898, which extends into a tapered edge 4900, which in turn extends into a straight edge 4902, which extends to arm portion 4884.
At arm portion 4884, edge 4902 terminates at an inner corner 4904 and a straight edge 4906 of arm portion 4884 extends downwardly and outwardly with respect to straight edge 4902 to an arm portion end corner 4908, from where an additional straight edge 4910 of arm portion 4884 extends to a straight edge 4912, which is generally perpendicular to straight edge 4902. Above straight edge 4912 is a bent protrusion 4914, which is preferably bent at 90 degrees with respect to the remainder of the activator element 4840.
Above bent protrusion 4914 is a straight edge 4916 which terminates in a tapered edge 4918, which preferably is parallel to straight edge 4910 of arm portion 4884. Tapered edge 4918 terminates at a straight edge 4920, which is preferably parallel to edge 4892 and which meets straight edge 4886 at a corner 4922.
As seen clearly in
Inclined arm portion receiving socket 4940 is defined by generally parallel mutually spaced generally straight edges 4942 and 4944. Straight edge 4942 extends inwardly and downward from generally straight edge 4936 and meets straight edge 4944 at arm portion receiving socket end corner 4948, which receives arm portion end corner 4908 of activator element 4840. Straight edge 4944 extends outwardly and upwardly and terminates at a tapered shoulder 4950 where a straight edge 4952, parallel to straight edge 4944, extends to a straight edge 4954 at gripping portion 4932. Straight edge 4954 is preferably parallel to straight edge 4934 at the base of arm portion receiving socket portion 4930.
Extending downwardly from straight edge 4954 is a downwardly extending ratcheted edge 4956, which terminates in a generally straight edge 4958. Generally straight edge 4958 terminates in an outwardly and downwardly inclined straight edge 4960, which in turn terminates in a generally straight edge 4962, which joins straight edge 4934 at a corner 4964.
A bushing 4970 is provided for retaining the two halves 4722 of body 4720 together. Preferably, bushing 4970 includes a hollow generally circular cylindrical main portion 4972, having a pair of side apertures 4974 and an annular end flange 4976.
Turning now to the assembly of the outer drive shaft assembly 4642, it is appreciated that the outer drive shaft assembly 4642 is composed of two identical halves 4980 which are assembled in registration by means of the assembly pins and sockets described above and retained in registration by engagement thereof by bushing 4970. The assembly of one half 4980 is described hereinbelow:
A coil spring 4828 is seated in coil spring receiving recess 4810 of body half 4722. Activator element 4840 is mounted onto body half 4722 and slidably rests on common surface 4795 and is positioned such that bent protrusion 4914 extends into coil spring receiving recess 4810 adjacent the upper end of coil spring 4828 for selectable compression thereof, such that the coil spring 4828 normally urges the activator element 4840 upwardly.
The position of the activator element 4840 with respect to the body half 4722 is such that edge 4886 of the activator element 4840 is always in sliding engagement with a corresponding surface 4807 of the body half 4722.
When the outer drive shaft assembly 4642 is in a lowered position with respect to the base of the MMIDD, the position of the activator element 4840 with respect to the body half 4722 is such that, against the urging of spring 4828, edge 4892 of the activator element 4840 is adjacent to a corresponding surface 4797 of the body half 4722 and edge 4920 of the activator element 4840 is spaced from a corresponding surface 4809 of the body half 4722, as shown in
When the outer drive shaft assembly 4642 is in a raised position with respect to the base of the MMIDD, the position of the activator element 4840 with respect to the body half 4722 is such that, under the urging of spring 4828, edge 4892 of the activator element 4840 is spaced from corresponding surface 4797 of the body half 4722 and edge 4920 of the activator element 4840 is adjacent to corresponding surface 4809 of the body half 4722, as shown in
The elbow element 4830 is pivotably mounted onto pivot mounting protrusion 4800 of housing half 4722 and is positioned such that rounded tip edge 4864 of the elbow element 4830 is loosely seated in engagement recess 4896 of activator element 4840.
When the outer drive shaft assembly 4642 is in a lowered position with respect to the base of the MMIDD, the position of the elbow element 4830 with respect to the body half 4722 is such that edge 4868 of the elbow element 4830 is adjacent to protrusion 4802 of the body half 4722, as shown in
When the outer drive shaft assembly 4642 is in a raised position with respect to the base of the MMIDD, the position of the elbow element 4830 with respect to the body half 4722 is such that edge 4860 of the elbow element 4830 is adjacent to a corresponding surface 4797 of the body half 4722, as shown in
The grip element 4850 is mounted onto body half 4722 and slidably rests on common surface 4806 and is positioned such that edge 4934 of the grip element 4850 is always in sliding engagement with a corresponding surface 4806 of the body half 4722 and such that edge 4954 of the grip element 4850 is always in sliding engagement with a corresponding surface 4809 of the body half 4722. Additionally, the grip element 4850 is positioned such that arm portion 4884 of the activating element 4840 is slidably engaged with arm portion receiving socket portion 4930 of grip element 4850.
When the outer drive shaft assembly 4642 is in a lowered position with respect to the base of the MMIDD, the position of the grip element 4850 with respect to the body half 4722 is such that edge 4958 of the grip element 4850 is spaced from surface 4808 of the body half 4722, as shown in
When the outer drive shaft assembly 4642 is in a raised position with respect to the base of the MMIDD, the position of the grip element 4850 with respect to the body half 4722 is such that edge 4958 of the grip element 4850 is adjacent to surface 4808 of the body half 4722, as shown in
Turning now to the operation of the outer drive shaft assembly 4642, it is appreciated that when the outer drive shaft assembly 4642 is in its lowered position, as seen in
Once outer drive assembly 4642 is raised to its raised position by virtue of raising of axially displaceable rotary drive assembly 4660, outer drive assembly 4642 lies above circumferential wall 1772 and elbow element 4830 is no longer constrained by engagement with cylindrical surface 1774.
Accordingly, in the raised position of outer drive shaft assembly 4642, as seen in
The upward displacement of activator element 4840 additionally produces corresponding outward displacement of grip element 4850 by virtue of engagement of arm portion 4884 of activator element 4840 with arm portion receiving socket portion 4930 of grip element 4850. This outward displacement produces tight engagement with a blade. It is appreciated that a return of the outer drive shaft assembly 4642 to its lowered position automatically causes inward displacement of grip element 4850 and of arm portion 4852 of elbow element 4830.
It is a particular feature of this embodiment of the present invention that rotation of the outer drive shaft assembly 4642 produces centrifugal forces which result in enhanced outward displacement of arm portion 4852 of elbow element 4830 and consequent enhanced outward displacement of grip element 4850, thus increasing the force retaining the blade onto the outer drive shaft assembly 4642.
Reference is now made to
As seen in
Circular cylindrical outer surface 5006 is formed with a first generally annular flange 5016, at a base thereof, and a second generally annular flange 5018, at a top thereof.
Disposed above circular cylindrical lower wall 5002 is a lower intermediate generally solid section 5020, which defines an annular tapered shoulder 5022 with respect to flange 5018, which extends between a circumferential edge 5024 of flange 5018 and a circular cylindrical outer surface 5026 of lower intermediate generally solid section 5020.
Lower intermediate generally solid section 5020 defines a pair of generally planar top surfaces 5028 and is formed with side to side symmetric mutually spaced cut outs 5030, which extend from upward facing planar surfaces 5032 to generally planar top surface 5028. Cut outs 5030 each define a pair of nearly coplanar planar side surfaces 5034 and 5036, which meet along a line 5038. Each planar side surface 5034 has formed therein a circular cylindrical recess 5040.
Disposed above lower intermediate generally solid section 5020 is an upper intermediate section 5050, which extends upwardly from the pair of planar top surfaces 5028 and defines a circular cylindrical outer surface 5052.
Disposed above upper intermediate section 5050 is a truncated circular cylindrical top section 5060, which defines an annular shoulder with respect to circular cylindrical outer surface 5052. The annular shoulder defines an annular upward facing surface 5062, which extends between circular cylindrical outer surface 5052 and a truncated circular cylindrical outer surface 5064 of circular cylindrical top section 5060. Truncated circular cylindrical outer surface 5064 defines a planar surface portion 5065. Circular cylindrical top section 5060 defines a generally planar top surface 5066. A threaded circular cylindrical recess 5068 extends downwardly from top surface 5066 through top section 5060 and partially through upper intermediate section 5050.
A pair of coil springs 5070 are seated in respective circular cylindrical recesses 5040.
A blade engagement element 5080 is mounted onto body 5000 about top section 5060 and over upper intermediate section 5050 and partially over lower intermediate section 5020. A grip element 5090 is mounted over blade engagement element 5080 and secured to body 5000 by a screw 5091, which threadably engages threaded recess 5068. It is appreciated that this arrangement allows a limited degree of rotation (typically approximately 4 degrees) of blade engagement element 5080 about an axis defined along the center of recess 5068 relative to body 5000 and relative to grip element 5090.
Blade engagement element 5080 is a generally hollow, cylindrical element which includes a top portion 5092, which includes a plurality of circumferentially distributed splines 5094 and defines a top surface 5095. Below top portion 5092 is a bottom portion 5096, having a pair of depending engagement portions 5098, having bottom edges 5100 and mutually azimuthally oppositely directed side edges 5102 and 5104, which are configured to be seated in side to side symmetric mutually spaced cut outs 5030, such that bottom edges 5100 rotatably engage upward facing planar surfaces 5032 and azimuthally oppositely directed side edges 5102 and 5104 lie adjacent to or engage corresponding surfaces 5034 and 5036, depending on the rotation orientation of the blade engagement element 5080 relative to body 5000.
Grip element 5090 is a generally disk-like element having a downwardly-directed surface 5110 which is tightly engaged with corresponding annular upward facing surface 5062 of body 5000. Surface 5110 is generally annular and has a truncated circular inner edge 5112 including a planar portion 5114 which rests against planar surface portion 5065 of truncated circular cylindrical outer surface 5064 of body 5000.
Surrounding downwardly directed surface 5110 and recessed with respect thereto is a blade engaging portion 5120 of grip element 5090 which includes a plurality of toothed protrusions 5122, which correspond in number and mutual spacing to splines 5094 of blade engagement element 5080. Blade engaging portion 5120 includes a downwardly facing surface 5124, which is recessed with respect to surface 5110, which rotatably engages corresponding top surface 5095 of blade engaging element 5080.
Toothed protrusions 5122 are each preferably configured with a leading edge 5130 extending into a tapered upwardly facing wall 5132, which in turn extends into an upward facing wall 5134 and terminating in a flat trailing edge surface 5136.
It is appreciated that the above-described structure of the outer drive shaft assembly 4644 provides enhanced engagement between the outer drive shaft assembly 4644 and a blade, such as blade 160, having splines, such as splines 418, during driven rotation of the outer drive shaft assembly 4644 in engagement with the blade, by virtue of the fact that the protrusions 5122 of the grip element 5090 may be rotatably driven inside the blade by a limited amount (typically approximately 4 degrees) ahead of the blade engagement element 5080. This enables protrusions 5122, which are preferably formed of metal, to insinuate themselves into enhanced engagement with the splines, such as splines 418, of the blade, such as blade 160, which are typically formed of plastic, in a way that enhances resistance to linear disengagement between the blade and the outer drive shaft assembly 4644.
It is also appreciated that in the absence of rotation of the outer drive shaft assembly 4644, springs 5070 urge the blade engagement element 5080 to rotate in a direction opposite to the direction of driven rotation of the outer drive shaft assembly 4644 such that the splines 5094 of the blade engagement element 5080 become realigned with the protrusions 5122 of the grip element 5090.
Reference is now made to
Stepped inner bore 5208 includes a bottom-most circular cylindrical lower inner wall surface 5210, which terminates at a shoulder 5212. An intermediate circular cylindrical lower inner wall surface 5214 extends upwardly to a downwardly facing planar surface 5216. A slot 5218, preferably of generally rectangular cross section, extends upwardly from downwardly facing planar surface 5216.
Circular cylindrical outer surface 5206 is formed with a generally annular flange 5220 at a base thereof.
Disposed above circular cylindrical lower wall 5202 is a generally solid section 5222, which defines an annular tapered shoulder 5224 with respect to circular cylindrical outer surface 5206. Shoulder 5224 extends between a circumferential edge 5226 of circular cylindrical outer surface 5206 and a circular tapered outer surface 5228 of generally solid section 5222.
Circular tapered outer surface 5228 is preferably formed with a plurality of curved recesses 5230, which are configured and arranged to slidably and rotatably receive curved splines 3618 of blade 3550 (
Reference is now made to
As seen in
Top planar generally circular wall 5304 is preferably formed with an opening 5322, which permits liquid outflow therethrough. Aligned with opening 5322 is a radially outwardly extending protrusion 5324, which defines a liquid outflow channel 5326 which extends downwardly to a liquid outflow channel termination location 5328.
A plurality of bolt mounting holes 5330 are preferably formed in recessed annular top surface 5306 for accommodating motor mounting bolts (not shown), which bolt an electric motor, such as electric motor 4704, to motor support bracket 4702.
A plurality, preferably three, of pin receiving shaft portions 5340 are preferably arranged about recessed annular top surface 5306 and are arranged for slidably receiving pins of a top element which is described hereinbelow.
Extending downwardly from top planar generally circular wall 5304, in a generally circular cylindrical arrangement, are a plurality of depending wall sections 5350, some of which preferably surround pin receiving shafts 5340.
Depending wall sections 5350 preferably all terminate at a generally circumferential planar wall surface 5370, from which depends in turn, a generally cylindrical wall portion 5380. Wall sections 5350, together with top planar generally circular wall 5304 and generally circumferential planar wall surface 5370, define an array of ventilation apertures 5384. The array of ventilation apertures 5384 is generally mutually aligned within an array of ventilation apertures 1732 formed in the top element 4654 of motor housing and support assembly 4652. It is a particular feature of this embodiment of the invention that the ventilation apertures 5384 lie above liquid outflow channel termination location 5328.
Protruding from generally cylindrical wall portion 5380 are a plurality of spindle guiding shaft portions 5390, which extend below a bottom edge 5392 of cylindrical wall portion 5380. Each of spindle guiding shaft portions 5390 preferably defines a vertical bore 5394, each of which terminates adjacent a lower edge 5396 of the spindle guiding shaft portion 5390 in a widened spring seat 5398 for accommodating a coil spring, such as coil spring 4708.
Reference is now made to
As seen in
Ventilating element positioning hub 5410 is preferably configured to have a planar wall 5412. Extending downwardly from planar wall 5412 is an outer circumferential wall 5414, interiorly of which is an inner circumferential wall 5416 having a pair of outer facing vertical elongate side slots 5418 for receiving a corresponding pair of interior ribs of linear to rotary converting adaptor 4712, thereby to lock linear to rotary converting adaptor 4712 against rotation relative to motor lifting element 4710.
Inner circumferential wall 5416 terminates at a downward facing edge 5420 adjacent which is provided a pair of protrusions 5422. Inwardly of edge 5420 is a circumferential wall 5430 having a bottom edge 5432 defining a pair of symmetric downward facing teeth 5434, each of which has a pair of inclined tooth surfaces 5436 which meet at a point 5438. It is also noted that protrusions 5422 also serve to lock linear to rotary converting adaptor 4712 against linear disengagement from motor lifting element 4710.
As seen particularly clearly in
Reference is now made to
Reference is now made to
As seen in
Reference is now made to
As seen in
It is a particular feature of the present invention that normally, the SUPCA 3100 is received by the user with SUCSERDREA 3120 attached thereto and intact, such that SUCSERDREA 3120 is in its non-previously used indicating operative orientation, shown in
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
As seen in
Clamp elements 4420 and 4421 are in a retracted operative orientation, each clamp being arranged with respect to cam element 4410 whereby respective cam engagement protrusions 4436 and 4466 thereof lie at a first location 1334 of a corresponding cam channel 1330, whereby the outward radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is at a maximum, forcing the clamp elements 4420 and 4421 located in the cam channel 1330 at the first location 1134 radially outwardly in respective pockets 4560 and 4561. The enlargement shown in
It is also appreciated that in the operative orientation shown in
Reference is now made to
The various elements of the MMIDD 4300 are in orientations intermediate those shown in
As compared with the operative orientation shown in
It is seen that clamp elements 4420 and 4421 are no longer in a retracted operative orientation, each clamp being arranged with respect to cam element 4410 whereby respective cam engagement protrusions 4436 and 4466 thereof lie at an intermediate location between locations 1334 and 1336 of a corresponding cam channel 1330, whereby the outward radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is no longer at a maximum, no longer forcing the clamp elements 4420 and 4421 located in the cam channel 1330 radially outwardly in respective pockets 4560 and 4561. The axial orientation of the cam channel 1330 at the locations of the clamp elements 4420 and 4421 is such that it forces the clamp elements radially inwardly. Clamp element 4421 is shown in the enlargement of
As seen in the enlargement of
It is also appreciated that in the operative orientation shown in
Reference is now made to
The various elements of the MMIDD 4300 are in orientations intermediate those shown in
As compared with the operative orientation shown in
It is seen that clamp elements 4420 and 4421 are each arranged with respect to cam element 4410 whereby respective cam engagement protrusions 4436 and 4466 thereof lie at an intermediate location between locations 1334 and 1336 of a corresponding cam channel 1330, whereby the outward radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is no longer at a maximum, no longer forcing the clamp elements 4420 and 4421 located in the cam channel 1330 radially outwardly in respective pockets 4560 and 4561. The axial orientation of the cam channel 1330 at the locations of the clamp elements 4420 and 4421 is such that it forces the clamp elements axially downwardly, as indicated by an arrow 5510. Clamp element 4421 is shown in the enlargement of
As seen in the enlargement of
Reference is now made to
The various elements of the MMIDD 4300 are in orientations shown in
As compared with the operative orientation shown in
It is seen that clamp elements 4420 and 4421 are each arranged with respect to cam element 4410 whereby respective cam engagement protrusions 4436 and 4466 thereof lie at locations 1336 of corresponding cam channel 1330, whereby the outward radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is still no longer at a maximum, still no longer forcing the clamp elements 4420 and 4421 located in the cam channel 1330 radially outwardly in respective pockets 4560 and 4561. The axial orientation of the cam channel 1330 at the locations of the clamp elements 4420 and 4421 is still such that it forces the clamp elements axially downwardly, as indicated by arrow 5510. Clamp element 4421 is shown in the enlargement of
Reference is now made to
The various elements of the MMIDD 4300 are in orientations which are intermediate between the orientations shown in
As compared with the operative orientation shown in
It is seen that clamp elements 4420 and 4421 are each arranged with respect to cam element 4410 whereby respective cam engagement protrusions 4436 and 4466 thereof lie at locations 1336 of corresponding cam channel 1330, whereby the outward radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is still no longer at a maximum, still no longer forcing the clamp elements 4420 and 4421 located in the cam channel 1330 radially outwardly in respective pockets 4560 and 4561. The axial orientation of the cam channel 1330 at the locations of the clamp elements 4420 and 4421 is still such that it forces the clamp elements axially downwardly, as indicated by arrow 5510. Clamp element 4421 is shown in the enlargement of
Reference is now made to
The various elements of MMIDD 4300 are in orientations which are intermediate between the orientations shown in
As compared with the operative orientation shown in
It is seen that clamp elements 4420 and 4421 are each arranged with respect to cam element 4410 whereby respective cam engagement protrusions 4436 and 4466 thereof lie at locations 1336 of corresponding cam channel 1330, whereby the outward radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is not yet at a maximum, not yet forcing the clamp elements 4420 and 4421 located in the cam channel 1330 radially outwardly in respective pockets 4560 and 4561. The axial orientation of the cam channel 1330 at the locations of the clamp elements 4420 and 4421 is no longer such that it forces the clamp elements axially downwardly. Clamp element 4421 is shown in the enlargement of
It is appreciated that in the operative orientation of
Reference is now made to
The various elements of the MMIDD 4300 are in orientations which are shown in
As compared with the operative orientation shown in
It is seen that clamp elements 4420 and 4421 are each arranged with respect to cam element 4410 whereby respective cam engagement protrusions 4436 and 4466 thereof lie at locations 1334 of corresponding cam channel 1330, whereby the outward radial extent of the upper circumferential wall 1332 defining the cam channel 1330 is at a maximum, forcing the clamp elements 4420 and 4421 located in the cam channel 1330 radially outwardly in respective pockets 4560 and 4561. The axial orientation of the cam channel 1330 at the locations of the clamp elements 4420 and 4421 is no longer such that it forces the clamp elements axially downwardly. Clamp element 4421 is shown in the enlargement of
It is appreciated that in the operative orientation of
Reference is now made to
Reference is now made to
Reference is now made to
In the section that follows, which makes reference to
Reference is now made to
It is seen with particular clarity, in an enlargement of
Reference is now made to
As seen in
Reference is now made to
Reference is now made to
As seen in the enlargement of
As seen with particular clarity in the enlargement of
Reference is now made to
As seen with particular clarity in the enlargements of
Reference is now made to
It is seen with particular clarity in the enlargement of
It is also appreciated that following engagement and clamping of SUPCA 3100 with SUPCASCA 4330 and subsequent unclamping and disengagement of SUPCA 3100 from SUPCASCA 4330, SUPCA 3100 can no longer be processed by MMIDD 4300 because cup engagement protrusions 4554 of SUPCASCA 4330 cannot seatingly engage engagement windows 3334, due to the fact that engagement windows 3334 are irreversibly occluded by engagement window occluding end portion 3242, as seen clearly in the enlargement of
Reference is now made to
As seen particularly in the enlargements of
In the section that follows, which makes reference to
Reference is now made to
Reference is now made to
It is seen with particular clarity in the enlargement of
As seen with particular clarity in the enlargement of
As described above with reference to
Reference is now made to
Specifically, as seen in the enlargement of
Similarly to that described hereinabove with reference to
The following section, which makes reference to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
As seen in
Reference is now made additionally to
As seen in
Reference is now made to
Reference is now made to
Reference is now made to
Static housing element 6040 includes a semicylindrical wall portion 6130, having mutually facing edges 6132 and 6134, which extends slightly more than 180 degrees in azimuth about axis 6120. A depending semicylindrical ring portion 6140 joins mutually facing edges 6132 and 6134 and top portion 6092. An upstanding semicylindrical ring portion 6150 joins mutually facing edges 6132 and 6134 at a bottom edge 6152 of semicylindrical wall portion 6130. Semicylindrical ring portion 6150 is recessed slightly inwardly with respect to semicylindrical wall portion 6130 and extends slightly beyond mutually facing edges 6132 and 6134 to overlap locations 6154 and 6155, respectively, on an interior surface 6156 of semicylindrical wall portion 6130 adjacent to respective edges 6132 and 6134. Overlap locations 6154 and 6155 define respective shoulders 6157 and 6158 with respect to interior surface 6156.
Semicylindrical wall portion 6130 also includes a generally smooth outer surface 6162 having an inwardly-recessed bottom ring portion 6164 adjacent bottom edge 6152. A plurality of bayonet sockets 6170, preferably three in number, are distributed along inwardly-recessed bottom ring portion 6164. A plurality of inwardly extending recesses 6172, preferably three in number, are distributed along interior surface 6156 adjacent ring portion 6164 and arranged to each form an extension of a bayonet socket 6170.
Semicylindrical ring portion 6150 has a generally smooth outer facing surface 6180 and is preferably formed with a pair of generally rectangular curved recesses 6182.
Reference is now made to
As seen in
Outer facing depending portion 6204 has a circular outer surface 6206, which lies along inner facing surface 6200. Formed on inner facing annular portion 6202 of ring portion 6196 is a rotation limiting inwardly-directed protrusion 6208 which interacts with shoulders 6116 and 6118 of static housing element 6040 (
Extending outwardly from semicylindrical wall portion 6190 adjacent edge 6194 thereof is a handle mount protrusion 6210 having a pair of flexible snap connection portions 6212 at top and bottom edges thereof. Handle 6052 is preferably fixedly snapped onto handle mount protrusion 6210 and retained thereon by engagement of flexible snap connection portions 6212 with undercuts 6214 formed at the interior of handle 6052.
Semicylindrical wall portion 6190 is preferably formed with an inwardly facing recess 6216 adjacent a bottom edge 6218 thereof. A plurality of azimuthally distributed mounting protrusions 6220 extend inwardly at recess 6216.
Reference is now made to
Preferably, bearing ring 6054 has a generally smooth circular inner surface 6250 having an array of uniformly mutually spaced inner facing notches 6252 distributed along a hemispherical azimuthal extent thereof.
Reference is now made to
As seen in
Reference is now made to
Disposed centrally of generally circular planar surface 6400 is a drive shaft accommodating aperture 6430, which is surrounded by an upstanding circumferential rim 6432, thereby to help prevent leaking of spillage located on generally circular planar surface 6400 into the remainder of the MMIDD 6000 lying below SUPCAS 6030.
Annular planar support surface 6410 is preferably surrounded by a partially tapered wall 6440, which terminates in a circumferential planar annular top and radially outwardly extending wall 6444 having a top-facing surface 6446.
Extending circumferentially to both sides of channel 6414 is a SUPCA azimuthal locating channel 6450, which extends radially outwardly of wall 6440 and communicates with channel 6414. SUPCA azimuthal locating channel 6450 accommodates a finger engagement portion of a SUPCA, such as finger engagement portion 196 of SUPCA 100 (
Walls 6440 and 6444 are formed with a plurality of clamp accommodating pockets 6460, typically three in number. Each of pockets 6460 preferably includes an opening 6462, which extends from wall 6440, at a height just below that of wall 6444, radially outwardly along wall 6440. Each of pockets 6460 includes a radially outward wall 6464 and side walls 6466. Radially outward wall 6464 includes a radially inward lower portion 6468 and a radially outward upper portion 6470, joined by a concave curved surface 6472, which extends to a slightly inclined surface 6474. Preferably, a depending circumferential wall 6480 extends along nearly one half of the circumference of wall 6444 at an outer edge thereof.
Extending inwardly from radially outward upper portion 6470 and concave curved surface 6472 is a protrusion 6492, which has an inclined inwardly facing surface 6494, which defines a shoulder 6496 with respect to slightly inclined surface 6474.
Underlying surface 6400 is a corresponding circular planar surface 6498.
Reference is now made to
As seen in
Generally cylindrical top portion 6552 also includes a generally planar annular surface 6560, surrounding outer surface 6558 of raised rim 6556. Generally planar annular surface 6560 extends radially outwardly to a generally circularly cylindrical rim 6562 and includes a pair of generally rectangular slots 6564 and 6566 for accommodating struts (
It is noted that generally circularly cylindrical inner surface 6570 is preferably formed with shallow recesses 6576 and 6578, adjacent respective slots 6564 and 6566.
It is also noted that generally circularly cylindrical outer surface 6574 includes a first partially circularly cylindrical outer surface portion 6580, which extends over more than 180 degrees in azimuth, and a second partially circularly cylindrical outer surface portion 6582, which extends over less than 180 degrees in azimuth and extends radially outwardly of surface portion 6580. Surface portions 6580 and 6582 define shoulders 6584 and 6586 therebetween. Shoulders 6584 and 6586 limit the azimuthal rotation of top housing assembly 6010 by engaging respective shoulders 6157 and 6158 of static housing element 6040 (
Second partially circularly cylindrical outer surface portion 6582 is formed with a plurality of protrusions 6590, whose mutual spacing corresponds to that of bayonet sockets 6170, such that protrusions 6590 are seated in inwardly extending recesses 6172 extending from corresponding bayonet sockets 6170 by mutual rotation of the static housing element 6040 of top housing assembly 6010 and base assembly 6020.
A cut out 6600 is provided on a front wall 6602 of cubic main portion 6550 for accommodating a lever assembly, forming part of clamping and base housing raising assembly 6310, described hereinbelow. A pair of wedge-shaped protrusions 6604 are located on opposite inner facing side surfaces 6606 of side walls 6608 of cubic main portion 6550. A pair of mutually spaced upstanding protrusions 6610, having L shaped cross sections, are formed on an inner facing surface 6612 of front wall 6602 and together define a vertical lever displacement track 6616 for the lever assembly.
Reference is now made to
It is appreciated that, while in the illustrated embodiment of
Clamping and base housing raising assembly 6310 also includes a pivotable lever-operated element 6640, which is pivotably mounted with respect to pivotable clamp mounting element 6630 by means of struts 6634. Pivotable lever-operated element 6640 is, in turn, pivotably mounted onto bottom assembly 6340 (
A lever connecting element 6650 is pivotably mounted onto pivotable lever-operated element 6640. A bottom lever element 6660 is pivotably mounted onto lever connecting element 6650 for slidable displacement along track 6616 defined by protrusions 6610 of vertically displaceable base housing 6300. A top lever element 6670 is slidably connected to bottom lever element 6660. A linkage element 6680 is pivotably mounted onto bottom lever element 6660 by means of a pin 6682 and is biased by a spring 6684. An activation pin element 6690 is pivotably mounted onto linkage element 6680 by means of a pin 6692.
Reference is now made to
As seen in
A pivot mounting protrusion 6736 extends radially inwardly at a bottom portion of front surface 6726. Pivot mounting protrusion 6736 preferably has a U-shaped cross section defining a pair of mutually aligned pin mounting apertures 6737. A support element pivotable and slidable engagement protrusion 6738 is formed on radially outward-facing surface 6724 at a location generally opposite protrusion 6736 and includes a depending lip portion 6739.
A groove 6740 extends along radially outward-facing surface 6724 of clamp element 6620 from a top edge 6742 thereof to a location 6744 adjacent to but spaced from a bottom surface 6746 thereof. Bottom surface 6746 is defined both by a bottom edge lip portion 6739 and by a bottom surface of pivot mounting protrusion 6736 and includes a spring receiving recess 6748.
A generally U-shaped groove 6750 is formed on an outward-facing surface of support element pivotable and slidable engagement protrusion 6738 and defines a central internal shoulder 6752.
Reference is now made to
Pivotable clamp mounting element 6630 includes a central aperture 6780 and a pair of side strut mounting protrusions 6782, each having an integrally formed pivot pin portion 6783, and a plurality, preferably three, clamp mounting protrusions 6784, each having a pin receiving aperture 6786.
Bottom surface 6760 preferably includes a plurality, preferably three, of spring receiving elongate recesses 6788, each aligned with a spring end seating aperture 6789 and with a corresponding clamp mounting protrusion 6784.
Reference is now made to
As seen in
Ring 6800 has a pair of generally smooth side generally circularly outer surfaces 6806 which are joined to a forwardly-directed stepped outer surface 6810. Forwardly-directed stepped outer surface 6810 includes a relatively wide base portion 6812 having side surfaces 6814 and a forwardly-directed surface 6816 having formed therein an elongate recess 6818 for slidably receiving and pivotably mounting an end of lever connecting element 6650.
Extending forwardly from a portion of forwardly-directed surface 6816 is a relatively narrow intermediate forwardly-directed surface 6820. Extending forwardly from a portion of forwardly-directed surface 6820 is a wall 6822 having a forward-most forwardly-directed surface 6824. Wall 6822 includes a cantilevered portion 6826, which overlies part of elongate recess 6818 and includes, on an inwardly facing surface 6828 thereof, an elongate recess 6830, opposite to recess 6818 which, together with recess 6818 is configured for slidably receiving and pivotably mounting an end of lever connecting element 6650.
Generally smooth side generally circularly outer surfaces 6806 are also joined at a location opposite to forwardly-directed stepped outer surface 6810 by a rearwardly and downwardly-directed mounting portion 6840. Rearwardly and downwardly-directed mounting portion 6840 includes a partial ring defining portion 6842, which is generally coplanar with the reminder of ring 6800, and a pair of depending pivot mounting portions 6844, each of which includes a bifurcated mounting protrusion 6846, having a transverse pivot pin mounting aperture 6848 for receiving a pin 6642 (
Reference is now made to
Reference is now made to
Reference is now made to
As seen in
Reference is now made to
Generally planar portion 6920 defines a forward-facing generally planar surface 6932 and a backward-facing generally planar surface 6934, each of which is bordered on its sides by a slightly protruding border 6936. Generally planar portion 6920 includes a generally rectangular cut out 6938, at a first edge 6940 thereof, and a generally rectangular cut out 6941, at an opposite edge 6942, the remainder of which is generally coplanar with a bottom surface 6944 of base portion 6930.
Base portion 6930 is generally planar and includes a pair of apertures 6946 which are surrounded by cylindrical bosses 6948 extending upwardly from a top surface 6950 thereof. Base portion 6930 is partially delimited by a raised curved peripheral wall 6954, which extends forwardly of forward-facing generally planar surface 6932. Raised curved peripheral wall 6954 is formed with a rearward-facing recess 6960 which communicates with a recess 6962 formed in top surface 6950 and extending to a cut out 6964 in top surface 6950, which cut out 6964 extends to forward-facing generally planar surface 6932 and defines an edge 6965.
Extending rearwardly of backward-facing generally planar surface 6934 are a pair of pivot mounting fingers 6966, each of which is formed with a pivot mounting groove 6967. Rounded edges 6876 and 6878 of lever connecting element 6650 (
Linkage element 6680 is pivotably mounted onto base portion 6930 at rearward-facing recess 6960 and is pivotably retained therein by pin 6682, which is seated in a pin aperture 6968 formed in base portion 6930 and is biased by spring 6684. Activation pin element 6690 is pivotably mounted onto linkage element 6680 via pin 6692 which extends through a pin aperture in linkage element 6680 as described hereinbelow.
Reference is now made to
Reference is now made to
Reference is now made to
Azimuthal alignment assembly 6320 also includes a multifunctional bracket element 7040 which defines a spring seat for coil springs 7042 and 7044 and defines displacement pathways for a lever locking element 7050 and an azimuthal alignment activation driving element 7060.
Azimuthal alignment activation driving element 7060 is pivotably mounted on azimuthal alignment activation element 7030 and is biased by spring 7044. Linear displacement of azimuthal alignment activation driving element 7060 beyond a given extent, also produces corresponding linear displacement of lever locking element 7050. The linear displacement of azimuthal alignment activation driving element 7060 produces rotation of rotationally displacing element 7020, azimuthal alignment activation element 7030 and spring 7032 about axis 7010.
Spring 7042 biases lever locking element 7050.
Reference is now made to
Reference is now made to
As seen in
Wall portion 7124 is generally planar and has formed along a radially outward portion of a side edge 7132 thereof an elongate protrusion 7134. Elongate protrusion 7134 has a tapered inner facing edge 7136 and a tapered outer facing edge 7138. Side edge 7132 lies in a plane which is coplanar with tapered outer facing edge 7138 along the entire extent of wall portion 7124 from wall 7128 to rounded pivot edge 7120.
Wall portion 7126 includes a radially inward planar section 7140 and a radially outward planar section 7142, parallel to planar section 7140, which define a radially outwardly-directed shoulder 7144 therebetween and an edge 7145.
A wall portion 7146 joins respective edges 7132 and 7145 of wall portions 7124 and 7126 as well as an edge 7148 of outer wall 7128. Wall portion 7146 defines together with wall portions 7124 and 7126 an enclosure 7147, which accommodates spring 7032 (
Reference is now made to
As seen in
A curved wall portion 7180 joins wall portions 7150, 7154, 7156 and 7158 and defines a cam slot 7190 therein for slidingly accommodating cam protrusion 7130 of rotationally displacing element 7020. It is a particular feature of curved wall portion 7180 that it includes a curved cam path defining edge 7192, which assists in azimuthal alignment of the drive shaft, as will be described hereinbelow in detail.
Extending outwardly from the side walls 7154 and 7156 of alignment activation element 7030 at planar base surface 7152 thereof are a pair of pivot mounting pin portions 7194.
An interior-facing surface of side wall 7154 includes an interior facing spring seat protrusion 7196.
Reference is now made to
Central portion 7202 includes a generally planar outer facing surface 7208 having a relatively broad upper region 7210 and a relatively narrow lower region 7212. Central portion 7202 also includes a generally planar inner facing surface 7218 from which extend first and second mutually spaced spring seat protrusions 7220 and 7222, which seat respective springs 7042 and 7044.
Each of symmetric side portions 7204 includes a stepped wall portion 7230 including an outer wall portion 7232, extending from a side edge 7233 of relatively broad upper region 7210, and an inner wall portion 7234, extending from a side edge 7235 of relatively narrow lower region 7212. Extending downwardly from a bottom edge of inner wall portion 7234 is a displacement limiting protrusion 7238. Extending outwardly from an outwardly-facing surface 7240 of outer wall portion 7232 is a screw boss 7242 having a throughgoing aperture 7244.
Reference is now made to
Sliding shoe portions 7250 are joined by a generally planar bridge portion 7254 having a pair of side cut outs 7256. Extending upwardly from sliding shoe portions 7250 is a generally planar portion 7260 having a bottom cut out 7262 with a curved top edge 7264 and having a top side edge cut out 7266. Generally planar portion 7260 has mutually parallel planar surface 7270 and 7272. A spring seat protrusion 7274 extends outwardly from planar surface 7272 and seats spring 7042 (
Reference is now made to
As seen in
Formed at an end 7296 of actuator rod portion 7286 is a shoulder 7297 and a tapered edge 7298. A protrusion 7299 is formed on actuator rod portion 7286 adjacent end 7296 and supports a spring seating protrusion 7300, which seats spring 7044 (
Reference is now made to
Outer drive shaft assembly 7400 is normally partially surrounded by a motor housing 7410, which includes a plurality of spring seating sockets 7412, in which are seated springs 7414. Outer drive shaft assembly 7400 is driven for rotation about an axis 7416 by an electric motor 7420, which is preferably identical to electric motor 1904 (
Reference is now made to
Reference is now made to
Planar generally circular wall 7464 is preferably formed with an opening 7476, which permits liquid outflow therethrough. Aligned with opening 7476 is a radially outwardly extending protrusion 7478, defining a liquid outflow channel 7480, which extends downwardly to a liquid outflow channel termination location 7482.
A plurality of bolt mounting holes 7484 are preferably formed in annular top surface 7466 for accommodating motor mounting bolts (not shown), which bolt electric motor 7420 to the motor housing 7410.
Extending downwardly from top planar generally circular wall 7464 in a generally circular cylindrical arrangement are a plurality of depending wall sections 7490, some of which preferably at least partially surround spring seating sockets 7412.
Depending wall sections 7490 preferably all terminate at a generally circumferential planar wall surface 7500, from which depends in turn, a generally cylindrical wall portion 7510. Wall sections 7490, together with top planar circular wall 7464 and generally circumferential planar wall surface 7500, define an array of ventilation apertures 7520.
Bottom portion 7460 is generally cylindrical and has a cylindrical wall 7600. Cylindrical wall 7460 preferably defines a plurality of, preferably three, motor support bracket boss accommodating channels 7602.
Cylindrical wall 7600 also defines a plurality of mounting screw accommodating channels 7610, which receive mounting screws (not shown), which screws serve to fixedly attach the bottom portion 7460 to the bottom assembly 6340. A top edge surface 7612 of cylindrical wall 7600 joins top portion 7450 to bottom portion 7460.
The bottom of cylindrical wall 7600 is preferably formed with a first widened region 7622 for facilitating air flow therefrom. Formed over widened region 7622 is a mounting plate 7623 for accommodating electronic circuitry (not shown).
Reference is now made to
As seen in
Drive shaft bottom end 7628 is configured to have a bottommost portion 7650, having a generally uniform cross section characterized in that it includes a flat side surface 7652 and a circular cylindrical surface 7654.
Reference is now made to
Generally coplanar with flange 7662 is a generally rectangular bridge portion 7666 which spans generally circular wall 7660 and defines a generally central aperture 7670 for accommodating a bottom portion of motor 7420 and drive shaft bottom end 7628 thereof. Bridge portion 7666 is also preferably formed with a plurality of screw mounting apertures 7672 for accommodating screws (not shown) which join motor support bracket 7430 to motor 7420.
Reference is now made
As seen in
Inner edges of vanes 7702 are joined to an inner cylindrical wall 7706, which terminates at a downward-facing edge thereof in a planar, generally circular wall 7708, having formed at a center thereof a socket 7710, which is configured to lockably receive bottom end 7628 of drive shaft 7624 (
Socket 7710 is formed with an inner generally circular cylindrical wall 7720 having a flat portion 7722, which receives flat surface 7652 of bottom end 7628 of drive shaft 7624. Socket 7710 is joined to wall 7706 by an array of radially directed ribs 7725.
Extending downwardly from planar, generally circular wall 7708 are a pair of mutually spaced wedge shaped protrusions 7726 which engage curved cam path defining edge 7192 of azimuthal alignment activation element 7030 (
Reference is now made to
As seen in
Bottom assembly 6340 preferably defines a central recess 7770 for accommodating rotating ventilating element 7440 (
Reference is now made to
Reference is now made to
As seen in
Bottom element 7750 preferably defines a partially interrupted circumferential wall 7854 for locating motor housing 7410 thereon and for separating warm and ambient air flows through the bottom element 7750.
Bottom element 7750 defines forward and rearward outer walls 7860 and 7870 as well as a pair of side walls 7880 and 7890. Forward wall 7860 is preferably formed with a central recessed wall portion 7892 delimited by side walls 7894 and 7896 and having formed therein a cut out 7898.
Bottom element 7750 preferably also defines a top-facing recessed generally circular planar surface 7900. Top-facing recessed generally circular planar surface 7900 defines two pairs 7910 of mounting apertures for mounting of hinge clamp elements 7000 (
A channel 7950 communicates between cut out 7898 and an interior volume of the bottom element 7750 overlying generally circular planar surface 7900. A pair of mutually aligned apertures 7960 are formed alongside channel 7950 for screw mounting of multifunctional bracket 7040 onto bottom element 7750.
Interiorly of rear wall 7870 are formed a pair of upstanding walls 7970, which extend upwardly of rear wall 7870 and towards central recessed wall portion 7892. Each of rear walls 7870 is formed with an aperture 7972 at a location thereof lying above rear wall 7870. Apertures 7972 receive pins 6642 (
Side walls 7880 and 7890 are preferably formed with mutually oppositely facing slots, respectively designated by reference numerals 7980 and 7982, which slots terminate at respective top walls 7984 and 7986. Each of slots 7980 and 7982 is engaged by a wedge-shaped protrusion 6604 of vertically displaceable base housing 6300.
The following section includes a simplified description of the operation of the embodiment of
Reference is now made to
As seen in
The top of outer drive shaft assembly 7400 lies just above the plane of upstanding circumferential rim 6432 of SUPCAS 6030.
Pivotable lever-operated element 6640 is in an extreme upwardly rotated operative orientation relative to bottom assembly 6340 under the urging of springs 6322 (
Reference is now made to
As seen most clearly in an enlargement in
Upward displacement of pivotable clamp mounting element 6630 under the indirect urging of springs 6322 relative to SUPCAS 6030 causes upward displacement of clamp element 6620, such that shoulder 6752 of clamp element 6620 comes into engagement with shoulder 6496 of SUPCAS 6030 and causes consequent rotation of clamp element 6620 relative to shoulder 6496 about pivot pin 6632.
Reference is now made to
As distinguished from the operative orientation of
Pivotable lever-operated element 6640 is no longer in an extreme upwardly rotated operative orientation relative to bottom assembly 6340. Concomitant with the slightly less upwardly rotated operative orientation of pivotable lever-operated element 6640, lever connecting element 6650, bottom lever element 6660, top lever element 6670, linkage element 6680 and activation pin element 6690 are each in a respective slightly less than upwardmost operative orientation.
Slightly downward displacement of pivotable clamp mounting element 6630 relative to SUPCAS 6030 causes corresponding downward displacement of clamp element 6620, such that shoulders 6752 of clamp elements 6620 no longer are in engagement with shoulders 6496 of SUPCAS 6030. Clamp elements 6620 are urged by springs 6633 into touching engagement with a rim 8010 of SUPCA 3100.
Reference is now made to
As distinguished from the operative orientation of
Pivotable lever-operated element 6640 is now in an extreme downward rotated operative orientation relative to bottom assembly 6340. Concomitant with the extreme downwardly rotated operative orientation of pivotable lever-operated element 6640, lever connecting element 6650, bottom lever element 6660, top lever element 6670, linkage element 6680 and activation pin element 6690 are each in a respective downwardmost operative orientation.
The downward displacement of pivotable clamp mounting element 6630, indicated by an arrow 8040, relative to SUPCAS 6030 causes corresponding downward displacement of clamp elements 6620, indicated by an arrow 8042, in clamping engagement with rim 8010 of SUPCA 3100. The downward displacement of clamp elements 6620 causes downward displacement of SUPCA 3100, as indicated by an arrow 8044, downward displacement of the SUPCAS 6030, onto which SUPCA 3100 is seated, as indicated by an arrow 8046, and the downward displacement of vertically displaceable base housing 6300, as indicated by an arrow 8048, relative to bottom assembly 6340 against the urging of springs 7414.
It is seen that as the result of downward displacement of SUPCAS 6030, the top of outer drive shaft assembly 7400 lies substantially above the plane of upstanding circumferential rim 6432 of SUPCAS 6030. As a result of this, the outer drive shaft assembly 7400 is in full seated engagement with blade 3550 and has forced blade 3550 out of blade receiving recess 3510.
It is also seen that as a result of downward displacement of top lever element 6670, in a direction indicated by arrow 8020 (
Locking engagement of shoulder 7276 of lever locking element 7050 with edge 6965 of bottom lever element 6660, as shown, ensures that, upon a user releasing top lever element 6670, the bottom lever element 6660 remains locked in its lowered position.
Reference is now made to
At this stage operation of MMIDD 6000 may be actuated by a user pressing on electrical operation actuation button 8002 for processing the contents of SUPCA 3100 by rotation of blade 3550 of SUPCA 3100 in operative engagement with the contents thereof.
Reference is now made to
Displacement of azimuthal alignment activation driving element 7060, in the direction indicated by arrow 8074, produces rotational movement of rotationally displacing element 7020 and azimuthal alignment activation element 7030 about pivot axis 7010, such that generally radially extending wall portion 7124 and elongate protrusion 7134 of rotationally displacing element 7020 and curved cam path defining edge 7192 of azimuthal alignment activation element 7030 approach engagement with one of protrusions 7726 of rotating ventilating element 7440, which is fixedly coupled to outer drive shaft assembly 7400 and thus rotates together with blade 3550. It is appreciated that the azimuthal orientation of the rotating ventilating element 7440, and thus of protrusions 7726, prior to engagement therewith by edge 7912, is entirely arbitrary at this stage, namely after completion of processing of the contents of SUPCA 3100.
It is a particular feature of an embodiment of the present invention that the azimuthal alignment assembly 6320 is operative to properly align a blade, such as blade 3550 in the illustrated embodiment, such that it is aligned with the blade receiving recess 3510 of SUPCA 3100 irrespective of the azimuthal orientation of blade 3550 and thus of protrusions 7726 on rotating ventilating element 7440. It is appreciated that blade receiving recess 3510 is configured to receive a blade, such as blade 160, blade 3160 or blade 3550, in one of two azimuthally opposite operative orientations. The features of the operation of the azimuthal alignment assembly 6320 which achieve the azimuthal alignment between the blade receiving recess 3510 and the blade, such as blade 160, blade 3160 or blade 3550, are described below with reference to
It is appreciated that when SUPCA 4100, including blade 4150, or SUPCA 4200, including blade 4250, is used together with MMIDD 6000, no azimuthal alignment is required since blades 4150 and 4250 do not move axially relative to MMIDD 6000.
Reference is now made to
Further displacement of azimuthal alignment activation driving element 7060, in the direction indicated by arrow 8084, produces further rotational movement of rotationally displacing element 7020 and azimuthal alignment activation element 7030 about pivot axis 7010, such that one of generally radially extending wall portion 7124 and elongate protrusion 7134 of rotationally displacing element 7020 and curved cam path defining edge 7192 of azimuthal alignment activation element 7030 engages one of protrusions 7726 of rotating ventilating element 7440, which is fixedly coupled to outer drive shaft assembly 7400 and thus rotates together with blade 3550. This initial engagement produces initial rotation of rotating ventilating element 7440 in either a clockwise or a counterclockwise direction, as indicated by an arrow 8086.
It is appreciated that in the operative orientation of
Reference is now made to
Still further displacement of azimuthal alignment activation driving element 7060, in the direction indicated by arrow 8094, produces still further rotational movement of rotationally displacing element 7020 and azimuthal alignment activation element 7030 about pivot axis 7010 such that portions of generally radially extending wall portion 7124 and elongate protrusion 7134 of rotationally displacing element 7020 and curved cam path defining edge 7192 of azimuthal alignment activation element 7030 engages both protrusions 7726 of rotating ventilating element 7440, which is fixedly coupled to outer drive shaft assembly 7400 and thus rotates together with blade 3550. In practice, both protrusions 7726 are engaged with at least curved cam path defining edge 7192 at this stage. It is appreciated that there are only two possible azimuthal orientations of the rotating ventilating element 7440 at which both protrusions 7726 are engaged with curved cam path defining edge 7192.
It is appreciated that in the operative orientation of
Reference is now made to
The operative orientation of
Releasing the top lever element 6670 allows the bottom lever element 6660, together with clamp elements 6620, pivotable clamp mounting element 6630, pivotable lever-operated element 6640, lever connecting element 6650, SUPCAS 6030 and vertically displaceable base housing 6300, to be displaced upwardly relative to bottom assembly 6340 under the urging of springs 7414, 6684 and 6322. This upward displacement causes blade 3550 to be fully seated in blade receiving recess 3510. At this stage, the outer drive shaft 7400 is still fully seated in blade 3550.
As specifically seen in
Reference is now made to
In the operative orientation of
Additionally, pivotable lever-operated element 6640 is approaching its extreme upwardly rotated operative orientation relative to bottom assembly 6340. Concomitantly lever connecting element 6650, bottom lever element 6660, top lever element 6670, linkage element 6680 and activation pin element 6690 are each in a respective slightly less than upwardmost operative orientation.
It is appreciated that in this stage clamp elements 6620 are still in light clamping engagement with the rim 8010 of SUPCA 3100.
Reference is now made to
Further upward displacement of pivotable clamp mounting element 6630 relative to SUPCAS 6030 causes corresponding upward displacement of clamp element 6620, such that shoulders 6752 of clamp elements 6620 are in engagement with shoulders 6496 of SUPCAS 6030. Clamp elements 6620 are thus rotated against the urging of springs 6634 out of engagement with the rim 8010 of SUPCA 3100.
At this stage a user can open the door of the upper housing assembly 6010 and remove SUPCA 3100 from the SUPCAS 6030.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. The scope of the present invention includes both combinations and subcombinations of various features described hereinabove as well as modifications thereof, all of which are not in the prior art.
Number | Date | Country | Kind |
---|---|---|---|
PCT/IL2017/050823 | Jul 2017 | IL | national |
The following patent applications are related to the subject matter of the present application and the disclosure thereof is hereby incorporated by reference and priority thereof is hereby claimed pursuant to 37 C.F.R. 1.78(a)(1): U.S. Provisional Patent Application Ser. No. 62/533,743, filed Jul. 18, 2017 and entitled SINGLE-USE FOOD PREPARATION CONTAINER ASSEMBLIES, SYSTEMS AND METHODS; and PCT Patent Application No. PCT/IL2017/050823, filed Jul. 20, 2017 and entitled SINGLE-USE FOOD PREPARATION CONTAINER ASSEMBLY, SYSTEM AND METHOD. The following patent applications are related to the subject matter of the present application and the disclosure thereof is hereby incorporated by reference: U.S. Provisional Patent Application Ser. No. 62/364,491, filed Jul. 20, 2016 and entitled CUP WITH INTEGRATED BLENDING FUNCTIONALITY; and U.S. Provisional Patent Application Ser. No. 62/383,639, filed Sep. 6, 2016 and entitled FOOD PRODUCT PREPARATION SYSTEM.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2018/050057 | 1/16/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62533743 | Jul 2017 | US |