Single-use lens assembly

Information

  • Patent Grant
  • 7848035
  • Patent Number
    7,848,035
  • Date Filed
    Thursday, September 18, 2008
    16 years ago
  • Date Issued
    Tuesday, December 7, 2010
    14 years ago
Abstract
An optical assembly includes an output optical element having a thermally conductive and optically transmissive material and a thermal conduit in thermal communication with the output optical element and having at least one surface configured to be in thermal communication with at least one heat dissipating surface of a light delivery apparatus. The optical assembly further includes a coupling portion configured to be placed in at least two states. In a first state, the coupling portion is attached to the apparatus such that the at least one surface of the thermal conduit is in thermal communication with the at least one heat dissipating surface. In a second state, the coupling portion is detached from the apparatus after having been attached to the apparatus in the first state and in which the coupling portion is configured to prevent re-attachment of the coupling portion to the apparatus.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This application relates generally to devices and methods used to irradiate portions of a patient's body with electromagnetic radiation.


2. Description of the Related Art


For treatment of various conditions or maladies (e.g., ischemic stroke), laser light is applied to a selected portion of the human body (e.g., the scalp) by pressing an optical assembly against the body and irradiating the body with laser light from a light delivery apparatus. To avoid unduly heating the irradiated tissue, the irradiated portion of the body can be cooled during irradiation by a portion of the optical assembly in contact with the body. The possibility of cross-contamination between subsequently-treated patients can be a concern in such instances.


SUMMARY

In certain embodiments, an optical assembly is releasably mountable to a light delivery apparatus comprising at least one heat dissipating surface. The optical assembly comprises an output optical element comprising a thermally conductive and optically transmissive material. The optical assembly further comprises a thermal conduit in thermal communication with the output optical element and comprising at least one surface configured to be in thermal communication with the at least one heat dissipating surface. The optical assembly further comprises a coupling portion configured to be placed in at least two states comprising a first state and a second state. In the first state, the coupling portion is attached to the light delivery apparatus such that the at least one surface of the thermal conduit is in thermal communication with the at least one heat dissipating surface of the light delivery apparatus. In the second state, the coupling portion is detached from the light delivery apparatus after having been attached to the light delivery apparatus in the first state and in which the coupling portion is configured to prevent re-attachment of the coupling portion to the light delivery apparatus.


In certain embodiments, an optical element is releasably mountable to a mounting portion of a light delivery apparatus. The optical element comprises a coupling portion adapted to be coupled to the mounting portion of the light delivery apparatus. The coupling portion is configured to be placed in at least two states comprising a first state and a second state. In the first state, the coupling portion is attached to the light delivery apparatus. In the second state, the coupling portion is detached from the light delivery apparatus after having been attached to the light delivery apparatus in the first state and in which the coupling portion is configured to prevent re-attachment of the coupling portion to the light delivery apparatus.


In certain embodiments, a light delivery apparatus comprises a mounting portion and an optical element releasably mountable to the mounting portion. The optical element is adapted to be in at least two states comprising a first state and a second state. In the first state, the optical element is attached to the mounting portion. In the second state, the optical element is detached from the mounting portion after having been attached to the mounting portion in the first state and the optical element is configured to prevent re-attachment of the optical element to the mounting portion.


In certain embodiments, an optical assembly is releasably mountable to a light delivery apparatus comprising at least one heat dissipating surface. The optical assembly comprises an optical element comprising a thermally conductive and optically transmissive material. The optical assembly further comprises a thermal conduit in thermal communication with the output optical element and comprising at least one surface configured to be in thermal communication with the at least one heat dissipating surface. The optical assembly further comprises a coupling portion configured to releasably mount to the light delivery apparatus such that the at least one surface of the thermal conduit is in thermal communication with the at least one heat dissipating surface by rotating relative to and engaging a corresponding portion of the optical assembly without the at least one surface of the thermal conduit rotating relative to the at least one heat dissipating surface.


In certain embodiments, a light delivery apparatus has at least one heat dissipating surface. The light delivery apparatus comprises a mounting portion and an optical assembly. The optical assembly comprises an optical element comprising a thermally conductive and optically transmissive material. The optical assembly further comprises a thermal conduit in thermal communication with the optical element and comprising at least one surface configured to be in thermal communication with the at least one heat dissipating surface. The optical assembly further comprises a coupling portion configured to releasably mount to the mounting portion such that the at least one surface of the thermal conduit is in thermal communication with the at least one heat dissipating surface by rotating relative to and engaging a corresponding portion of the light delivery apparatus without the at least one surface of the thermal conduit rotating relative to the at least one heat dissipating surface.


In certain embodiments, a method releasably mounts an optical assembly to a light delivery apparatus comprising at least one heat dissipating surface. The method comprises providing an optical assembly adapted to be in at least two states comprising a first state and a second state. In the first state, the optical assembly is attached to the light delivery apparatus. In the second state, the optical assembly is detached from the light delivery apparatus after having been attached to the light delivery apparatus in the first state and the optical assembly is configured to prevent re-attachment of the optical assembly to the light delivery apparatus. The method further comprises attaching the optical assembly to the light delivery apparatus. The method further comprises detaching the optical assembly from the light delivery apparatus.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates an optical assembly in accordance with certain embodiments described herein.



FIG. 2 schematically illustrates a light delivery apparatus compatible with certain embodiments described herein.



FIG. 3 schematically illustrates two perspective views of a thermal conduit compatible with certain embodiments described herein.



FIGS. 4A and 4B schematically illustrate example heat dissipating surfaces and example thermal conduits in accordance with certain embodiments described herein.



FIGS. 5A and 5B schematically illustrate two perspective views of an example optical assembly comprising a coupling portion in accordance with certain embodiments described herein.



FIG. 5C schematically illustrates a perspective view of an example “bayonet ring” portion of the light delivery apparatus compatible with certain embodiments described herein.



FIGS. 6A-6F schematically illustrate a series of configurations of the optical assembly and light delivery apparatus in accordance with certain embodiments described herein.



FIG. 7 schematically illustrates an example coupling portion comprising one or more indicators with two alternative appearances in accordance with certain embodiments described herein.



FIG. 8 schematically illustrates an exploded perspective view of an example mechanism in accordance with certain embodiments described herein.



FIG. 9 schematically illustrates two perspective views of an example first element in accordance with certain embodiments described herein.



FIG. 10 schematically illustrates two perspective views of an example second element in accordance with certain embodiments described herein.



FIG. 11 schematically illustrates two perspective views of an example third element in accordance with certain embodiments described herein.



FIG. 12 schematically illustrates an example spring element in accordance with certain embodiments described herein.



FIG. 13 schematically illustrates an example plate element in accordance with certain embodiments described herein.



FIG. 14A schematically illustrates two perspective views of an example optical assembly in accordance with certain embodiments described herein with the first element partially cut-away.



FIG. 14B schematically illustrates two perspective views of the example optical assembly of FIG. 14A with the first element totally removed.



FIG. 15 is a flow diagram of an example method of releasably mounting an optical assembly to a light delivery apparatus in accordance with certain embodiments described herein.





DETAILED DESCRIPTION

To reduce the probability of cross-contamination, the optical assembly of certain embodiments described herein is advantageously releasably mounted to the light delivery apparatus, thereby allowing the optical assembly to be (i) sterilized or otherwise cleaned separate from the light delivery apparatus, or (ii) disposed of after a single use. The optical assembly can be configured to be attached or affixed to the light delivery apparatus, and after the patient's body has been irradiated, the optical assembly can be detached or removed from the light delivery apparatus. In certain “single-use” embodiments, after being removed, the optical assembly of certain embodiments is configured to not be re-attachable to the light delivery apparatus.



FIG. 1 schematically illustrates an optical assembly 100 in accordance with certain embodiments described herein. The optical assembly 100 is releasably mountable to a light delivery apparatus 10 comprising at least one heat dissipating surface 20. The optical assembly 100 comprises an output optical element 110 comprising a thermally conductive and optically transmissive material. The optical assembly 100 further comprises a thermal conduit 120 in thermal communication with the output optical element 110 and comprising at least one surface 122 configured to be in thermal communication with the at least one heat dissipating surface 20. The optical assembly 100 further comprises a coupling portion 130 configured to be placed in at least two states. In a first state of the at least two states, the coupling portion 130 is attached to the light delivery apparatus 10 such that the at least one surface 122 of the thermal conduit 120 is in thermal communication with the at least one heat dissipating surface 20 of the light delivery apparatus 10. In a second state of the at least two states, the coupling portion 130 is detached from the light delivery apparatus 10 after having been attached to the light delivery apparatus 10 in the first state and in which the coupling portion 130 is configured to prevent re-attachment of the coupling portion 130 to the light delivery apparatus 10.


In certain embodiments, the light delivery apparatus 10 is configured to deliver light to a portion of a patient's body. For example, in certain embodiments, the light delivery apparatus 10 is configured for treatment of a patient's brain by irradiating a portion of the patient's scalp with a predetermined wavelength and power density of laser light (e.g., as described in U.S. Pat. No. 7,303,578, which is incorporated in its entirety by reference herein).


In certain embodiments, as schematically illustrated by FIG. 2, the light delivery apparatus 10 comprises a housing 12 which is optically coupled to a light source (e.g., a laser) via an optical conduit 14. In certain embodiments, the housing 12 is sized to be hand-held during operation.


The at least one heat dissipating surface 20 of the light delivery apparatus 10 in certain embodiments comprises a thermally conductive material (e.g., copper, aluminum, or other metal) which is in thermal communication with a cooling system (not shown). The cooling system in accordance with certain embodiments described herein utilizes one or more cooling mechanisms, including, but not limited to, a reservoir containing a cooling material (e.g., a cryogen), a conduit through which a cooling liquid (e.g., water) flows, a thermoelectric device, and a refrigerator. During operation of the light delivery apparatus 10, the at least one heat dissipating surface 20 is cooled such that thermal energy from the optical assembly 100 is dissipated away from the at least one heat dissipating surface 20.


In certain embodiments, the output optical element 110 comprises a material which is substantially thermally conductive and which is substantially optically transmissive to light emitted by the light delivery apparatus 10 (e.g., light in the wavelength range of 600 nanometers to 2000 nanometers, light in an infrared wavelength range). Example materials for the output optical element 110 include but are not limited to, sapphire, diamond, and calcium fluoride. In certain embodiments, the output optical element 110 comprises a lens having at least one curved surface (e.g., convex or concave) through which the light from the light delivery apparatus 10 is transmitted. In certain other embodiments, the output optical element 110 comprises a window having two substantially planar surfaces. In certain embodiments, the output optical element 110 comprises a diffuser which diffuses the light transmitted through the output optical element 110.


In certain embodiments, the thermal conduit 120 comprises a thermally conductive material (e.g., copper, aluminum, or other metal). In certain such embodiments, the at least one surface 122 of the thermal conduit 120 comprises the thermally conductive material. For example, in certain embodiments, the thermal conduit 120 comprises at least one of aluminum, nickel, and zinc. In certain embodiments in which the thermal conduit 120 comprises aluminum, the at least one surface 122 is anodized, while in certain other embodiments, the thermal conduit 120 comprises a nickel plating. In certain embodiments, the thermal conduit 120 is constructed of a single unitary piece, while in certain other embodiments, the thermal conduit 120 comprises a plurality of portions which are coupled or affixed together. In certain embodiments, the thermal conduit 120 is bonded to the output optical element 110 (e.g., by a thermally conductive material, by press fitting, by swaging, by metal injection, or by a collet spring). The thermal conduit 120 of certain embodiments is in thermal communication with the output optical element 110 and has sufficient thermal conductivity such that the output optical element 110 is cooled by the at least one heat dissipating surface 20 of the light delivery apparatus 10 when the optical assembly 100 is mounted to the light delivery apparatus 10.



FIG. 3 schematically illustrates two perspective views of a thermal conduit 120 compatible with certain embodiments described herein. The thermal conduit 120 schematically illustrated by FIG. 3 comprises an elongate tube 123 having a first end portion 124 and a second end portion 125. The first end portion 124 is in thermal communication with the output optical element 120 and the second end portion 125 comprises the at least one surface 122 configured to be in thermal communication with the at least one heat dissipating surface 20 of the light delivery apparatus 10. The first end portion 124 of the thermal conduit 120 of certain embodiments comprises a hole 126 through which light from the light delivery apparatus 10 propagates to the output optical element 110 during operation. In certain embodiments, the output optical element 110 fits at least partially within the hole 126 and is in thermal communication with an inner surface of the first end portion 124. In certain other embodiments, the first end portion 124 comprises an outer surface which is in thermal communication with a portion of the output optical element 110.



FIGS. 4A and 4B schematically illustrate example heat dissipating surfaces 20 and example thermal conduits 120 in accordance with certain embodiments described herein. In certain embodiments, the at least one surface 122 of the second end portion 125 comprises one or more portions 127 configured to fit with one or more portions 22 of the at least one heat dissipating surface 20. In certain embodiments, the one or more portions 127 and the one or more portions 22 provide registration of the second end portion 125 with the at least one heat dissipating surface 20. In certain embodiments, as schematically illustrated by FIG. 4A, the one or more portions 127 of the second end portion 125 comprise one or more protrusions and the one or more portions 22 of the at least one heat dissipating surface 20 comprise one or more recesses. For example, the protrusions can comprise substantially planar portions (e.g., four tabs) of the second end portion 125 and the recesses can comprise regions (e.g., four) between projections of the at least one heat dissipating surface 20 which extend substantially perpendicularly to the protrusions, as schematically illustrated by FIG. 4A.


In certain embodiments, the one or more portions 127 of the second end portion 125 comprise one or more recesses and the one or more portions 22 of the at least one heat dissipating surface 20 comprise one or more protrusions. For example, as schematically illustrated by FIG. 4B, the protrusions can comprise a plurality of fins or pins (e.g., more than ten) and the recesses can comprise slots or holes (e.g., more than ten) into which the fins at least partially fit. In certain embodiments, the fit of the protrusions into the recesses is sufficiently loose so that their relative alignment and the application force used to place the second end portion 125 of the thermal conduit 120 in thermal communication with the at least one heat dissipating surface 20 do not unduly hinder mounting the optical assembly 100 to the light delivery apparatus 10.


In certain embodiments, the one or more portions 127 of the second end portion 125 comprise one or more protrusions and recesses and the one or more portions 22 of the at least one heat dissipating surface 20 comprise one or more recesses and protrusions which are configured to fit with one or more portions 127 of the second end portion 125. Various other configurations of the heat dissipating surface 20 and the at least one surface 122 of the thermal conduit 120 are also compatible with certain embodiments described herein. In certain such embodiments, the numbers, shapes, sizes, and configurations of the one or more portions 127 can be selected to exhibit an appearance which is indicative of the manufacturer or source of the optical assembly 100.


Certain embodiments utilize a heat dissipating surface 20 and a thermal conduit 120 which advantageously control the allowable relative motion of the at least one surface 122 of the thermal conduit 120 and the at least one heat dissipating surface 20 of the light delivery apparatus 10 during the process of connecting and disconnecting the optical assembly 100 and the light delivery apparatus 10. For example, the at least one surface 122 can be restricted from rotating relative to the at least one heat dissipating surface 20 during the mounting or dismounting process so as to reduce any rubbing or friction between these two surfaces. Certain such embodiments in which the at least one surface 122 of the thermal conduit 120 does not rotate relative to the at least one heat dissipating surface 20 advantageously avoid wear of the at least one heat dissipating surface 20 due to repeated mounting/dismounting of optical assemblies 100. Rotation of the coupling portion 130 in certain embodiments engages the coupling portion 130 to the light delivery apparatus 10 without the output optical element 110 rotating relative to the light delivery apparatus 10.


In certain embodiments, at least one of the heat dissipating surface 20 of the light delivery apparatus 10 and the at least one surface 122 of the thermal conduit 120 comprises a material selected to improve the thermal conductivity between the at least one heat dissipating surface 20 and the at least one surface 122. For example, in certain embodiments, the at least one surface 122 can comprise a relatively soft material (e.g., indium plating) and the at least one heat dissipating surface 20 can comprise a relatively hard material (e.g., silicon carbide or diamond grit). In certain such embodiments, the hard material deforms the soft material at one or more contact points between the two surfaces, thereby making good thermal contact between the two surfaces.


In certain embodiments, an intervening material is placed between the at least one heat dissipating surface 20 and the at least one surface 122. In certain such embodiments, the intervening material advantageously improves the thermal conductivity between the at least one heat dissipating surface 20 and the at least one surface 122. For example, the intervening material can comprise a metal which is deformed by pressure between the at least one heat dissipating surface 20 and the at least one surface 122 or a thermally conductive grease.


In certain other embodiments, the intervening material is part of an adapter configured to be placed at least partially between the at least one heat dissipating surface 20 and the at least one surface 122. In certain embodiments, the adapter comprises one or more first portions (e.g., protrusions, recesses, or both) configured to fit with one or more portions (e.g., recesses, protrusions, or both) of the light delivery apparatus 10, and one or more second portions configured to fit with one or more portions of the thermal conduit 120. The adapter of certain embodiments can provide thermal conductivity between the at least one heat dissipating surface 20 and the thermal conduit 120. For example, the adapter of certain embodiments is configured to fit with the one or more portions 127 of the second end portion 125 and with the one or more portions 22 of the at least one heat dissipating surface 20. In certain such embodiments, the adapter is configured to fit with the one or more portions 127 and with the one or more portions 22 although the one or more portions 127 do not fit with the one or more portions 22. In this way, the adapter of certain embodiments advantageously provides a sufficient fit with the one or more portions 127 and with the one or more portions 22 so that an optical assembly 100 that would otherwise not mount to the light delivery apparatus 10 can be mounted to the light delivery apparatus 10.


The coupling portion 130 of certain embodiments is coupled to the thermal conduit 120, and provides a mechanism for attaching the thermal conduit 120 to the light delivery apparatus 10. In certain embodiments, the coupling portion 130 comprises one or more protrusions 132 configured to fit with one or more recesses of the light delivery apparatus 10. In certain embodiments, the coupling portion 130 comprises one or more recesses configured to fit with one or more protrusions of the light delivery apparatus 10.



FIGS. 5A and 5B schematically illustrate two perspective views of an example optical assembly 100 comprising a coupling portion 130 in accordance with certain embodiments described herein. FIG. 5C schematically illustrates a perspective view of an example “bayonet ring” portion 30 of the light delivery apparatus 10 compatible with certain embodiments described herein. In certain embodiments, the coupling portion 130 comprises one or more protrusions 132, as schematically illustrated by FIG. 5A, which are configured to fit with recesses 32 of a portion 30 of the light delivery apparatus 10, as schematically illustrated by FIG. 5C. In certain embodiments, the connection between the coupling portion 130 and the light delivery apparatus 10 is spring loaded (e.g., upon rotation of the optical assembly 100 relative to the light delivery apparatus 10 such that the protrusions 132 move along the recesses 32), such that upon connecting the optical assembly 100 to the light delivery apparatus 10, a force is generated which provides a consequent contact pressure between the at least one surface 125 of the thermal conduit 122 and the at least one heat dissipating surface 20 of the light delivery apparatus 10.



FIGS. 6A-6F schematically illustrate a series of configurations of the optical assembly 100 and light delivery apparatus 10 in accordance with certain embodiments described herein. FIGS. 6A-6C schematically illustrate an example process of placing the coupling portion 130 in the first state in which the coupling portion 130 is attached to the light delivery apparatus 10 such that the at least one surface 122 of the thermal conduit 120 is in thermal communication with the at least one heat dissipating surface 20 of the light delivery apparatus 10. In the configuration shown in FIG. 6A, the coupling portion 130 is in a third state in which the coupling portion 130 is unattached to the light delivery apparatus 10 and is configured to be attached to the light delivery apparatus 10 prior to being in the first state. In the configuration shown in FIG. 6B, the coupling portion 130 is placed in proximity to the light delivery apparatus 10, such that one or more portions of the coupling portion 130 at least partially engage with one or more portions of the light delivery apparatus 10. For example, as schematically illustrated by FIG. 6B, the optical assembly 100 is placed in contact with the light delivery apparatus 10 and the coupling portion 130 is rotated relative to the light delivery apparatus 10. In the configuration shown in FIG. 6C, the optical assembly 100 is attached to the light delivery apparatus 10 with the coupling portion 130 in the first state. In certain embodiments, the thermal conduit 120 is electrically coupled to an electrical ground when the coupling portion 130 is in the first state.


In certain embodiments, detaching the optical assembly 100 from the light delivery apparatus 10 after having been attached places the coupling portion 130 in the second state in which the coupling portion 130 is configured to prevent re-attachment of the coupling portion 130 to the light delivery apparatus 10. FIGS. 6D-6F schematically illustrate an example process of attempting to re-attach the optical assembly 100 to the light delivery apparatus 10 while the coupling portion 130 is in the second state. In the configuration shown in FIG. 6D, the coupling portion 130 is in the second state in which the coupling portion 130 is unattached to the light delivery apparatus 10 and is configured to prevent re-attachment to the light delivery apparatus 10 after being in the first state. In the configuration shown in FIG. 6D, the coupling portion 130 is placed in proximity to the light delivery apparatus 10 (e.g., the optical assembly 100 is placed in contact with the light delivery apparatus 10), but portions of the optical assembly 100 cannot engage portions of the light delivery apparatus 10 (e.g., even if the coupling portion 130 is attempted to be rotated relative to the light delivery apparatus 10, as schematically illustrated by FIG. 6E). In the configuration shown in FIG. 6F, the optical assembly 100 is not attached to the light delivery apparatus 10 and falls away from the light delivery apparatus 10.



FIG. 7 schematically illustrates an example coupling portion 130 comprising one or more indicators 134 with two alternative appearances in accordance with certain embodiments described herein. In certain embodiments, the indicator 134 provides a visual indication of the current state in which the coupling portion 130 is in. For example, on the left side of FIG. 7, the indicator 134 displays a first color (e.g., green) indicative of the coupling portion 130 being in the first state. On the right side of FIG. 7, the indicator 134 displays a second color (e.g., red) indicative of the coupling portion 130 being in the second state. Certain other embodiments utilize an indicator 134 located at other positions of the coupling portion 130. Certain other embodiments utilize one or more indicators 134 with other indicia of the state of the coupling portion 130, including but not limited to, alphanumeric characters.


In certain embodiments, the coupling portion 130 comprises a mechanism 140 which allows rotation of the coupling portion 130 in a first direction to place the coupling portion 130 in the first state and which allows rotation of the coupling portion 130 in a second direction opposite to the first direction to remove the coupling assembly 130 from the first state. The mechanism 140 of certain such embodiments is configured to inhibit rotation of the coupling portion 130 in the first direction upon the coupling portion 130 being removed from the first state.



FIG. 8 schematically illustrates an exploded perspective view of an example mechanism 140 in accordance with certain embodiments described herein. In certain embodiments, the mechanism 140 comprises a first element 150, a second element 160, and a third element 170. In certain embodiments, the second element 160 is between the first element 150 and the third element 170.



FIG. 9 schematically illustrates two perspective views of an example first element 150 in accordance with certain embodiments described herein. In certain embodiments, the first element 150 comprises a plastic resin (e.g., thermoplastic polymer, acrylonitrile butadiene styrene or ABS, polyvinyl chloride or PVC, acetal-based), although other materials are also compatible with certain embodiments described herein. In certain embodiments, the first element 150 is a portion of the coupling portion 130, as schematically illustrated by FIG. 9. The first element 150 comprises a first plurality of protrusions 151 (e.g., ratchet teeth) positioned along a first circle 152 and a second plurality of protrusions 153 (e.g., ratchet teeth) positioned along a second circle 154 substantially concentric with the first circle 152. The first element 150 of certain embodiments has a generally cylindrical shape. In certain embodiments, the protrusions 151 and the protrusions 153 are on an inner surface of the first element 150. In certain embodiments, the protrusions 151 extend further from the inner surface than do the protrusions 153. In certain embodiments, the first plurality of protrusions 151 have a smaller number of protrusions (e.g., four) than does the second plurality of protrusions 153 (e.g., between 20 and 40).


The first element 150 of certain embodiments further comprises a hole 155 generally concentric with the first circle 152 and the second circle 154 through which the thermal conduit 120 is configured to extend. The first element 150 of certain embodiments further comprises an outer housing 156 configured to be gripped by a user to attach/detach the coupling portion 130 to/from the light delivery apparatus 10. In certain embodiments, the first element 150 further comprises the protrusions 132 (e.g., pins extending radially inward towards a center of the first element 150) of the coupling portion 130 which fit in respective recesses of the light delivery apparatus 10. In certain such embodiments, the first element 150 is configured to be removably affixed to the light delivery apparatus 10 thereby allowing the coupling portion 130 to be attached and detached from the light delivery apparatus 10. In certain embodiments, the first element 150 further comprises one or more indicator holes 157 through which a user can see the one or more indicators 134 of the coupling portion 130.



FIG. 10 schematically illustrates two perspective views of an example second element 160 in accordance with certain embodiments described herein. In certain embodiments, the second element 160 comprises a plastic resin (e.g., thermoplastic polymer, acrylonitrile butadiene styrene or ABS, polyvinyl chloride or PVC, acetal-based), although other materials are also compatible with certain embodiments described herein. The second element 160 comprises a first side 161 and a second side 162 opposite to the first side 161. The second element 160 further comprises a third plurality of protrusions 163 (e.g., ratchet teeth) on the first side 161 and configured to mate with the first plurality of protrusions 151. The second element 160 further comprises a fourth plurality of protrusions 164 (e.g., ratchet teeth) on the second side 162. In certain embodiments, the second element 160 is generally annular with a hole 165 through which the thermal conduit 120 is configured to extend. In certain embodiments, the third plurality of protrusions 163 have a smaller number of protrusions (e.g., four) than does the fourth plurality of protrusions 164 (e.g., between 20 and 40). In certain embodiments, the first side 161 further comprises the one or more indicators 134 of the coupling portion 130.



FIG. 11 schematically illustrates two perspective views of an example third element 170 in accordance with certain embodiments described herein. In certain embodiments, the third element 170 comprises a plastic resin (e.g., thermoplastic polymer, acrylonitrile butadiene styrene or ABS, polyvinyl chloride or PVC, acetal-based), although other materials are also compatible with certain embodiments described herein. The third element 170 comprises a fifth plurality of protrusions 171 (e.g., ratchet teeth) configured to mate with the second plurality of protrusions 153. The third element 170 further comprises a sixth plurality of protrusions 172 (e.g., ratchet teeth) configured to mate with the fourth plurality of protrusions 164. The fifth plurality of protrusions 171 and the sixth plurality of protrusions 172 of certain embodiments are on the same side 173 of the third element 170 but with the protrusions 171 extending farther from the side 173 than do the protrusions 172, as schematically illustrated by FIG. 11. In certain embodiments, the fifth plurality of protrusions 171 extend through the hole 165 of the second element 160 to engage the second plurality of protrusions 153 of the first element 150. In certain embodiments, the third element 170 is generally annular with a hole 174 through which the thermal conduit 120 is configured to extend. In certain embodiments, the third element 170 further comprises one or more portions 175 which engage corresponding portions 128 of the thermal conduit 120, such that the third element 170 is keyed to the thermal conduit 120.


In certain embodiments, the mechanism 140 further comprises a spring element 180 and a plate element 190, as schematically illustrated in FIG. 8. FIG. 12 schematically illustrates an example spring element 180 in accordance with certain embodiments described herein. In certain embodiments, the spring element 180 comprises a metal (e.g., stainless steel), although other materials are also compatible with certain embodiments described herein. The spring element 180 of certain embodiments is generally annular with a hole 181 through which the thermal conduit 120 is configured to extend. The spring element 180 of certain embodiments has a portion 182 configured to press against the third element 170 (e.g., against a side opposite to the side 173). In certain embodiments, the spring element 180 comprises one or more leaf springs 183 which extend away from the portion 182, as schematically illustrated by FIG. 12. As described more fully below, the spring element 180 is placed between the third element 170 and the plate element 190, such that the leaf springs 183 are compressed thereby providing a force on the third element 170 towards the second element 160 and the first element 150.



FIG. 13 schematically illustrates an example plate element 190 in accordance with certain embodiments described herein. In certain embodiments, the plate element 190 comprises a plastic resin (e.g., thermoplastic polymer, acrylonitrile butadiene styrene or ABS, polyvinyl chloride or PVC, acetal-based), although other materials are also compatible with certain embodiments described herein. The plate element 190 of certain embodiments is generally annular with a hole 191 through which the thermal conduit 120 is configured to extend. In certain embodiments, the plate element 190 comprises one or more portions 192 configured to engage one or more portions of the first element 150. In certain embodiments, the plate element 190 further comprises one or more portions 193 configured to engage one or more portions (e.g., portions 127) of the thermal conduit 120.



FIG. 14A schematically illustrates two perspective views of an example optical assembly 100 in accordance with certain embodiments described herein with the first element 150 partially cut-away. FIG. 14B schematically illustrates two perspective views of the example optical assembly 100 of FIG. 14A with the first element 150 totally removed. In certain embodiments, to mount the optical assembly 100 to the light delivery apparatus 10, the optical assembly 100 is placed in proximity to the light delivery apparatus 10. For example, the optical assembly 100 is at least partially inserted into the light delivery apparatus 10 such that the portions 127 of the thermal conduit 120 mate with the portions 22 of the at least one heat dissipating surface 20 of the light delivery apparatus 10. In this position, the protrusions 132 of the coupling portion 130 are inserted into the recesses 32 of the portion 30 of the light delivery apparatus 10. In certain embodiments, the coupling portion 130 is rotated (e.g., clockwise) relative to the light delivery apparatus 10, while the thermal conduit 120 does not rotate relative to the at least one heat dissipating surface 20. This rotation pulls the coupling portion 130 and the portion of the light delivery apparatus 10 towards one another, and also pulls the thermal conduit 120 and the at least one heat dissipating surface 130 towards one another, and creates a thermal contact force pressing the thermal conduit 120 and at least one heat dissipating surface 130 together.


Before the coupling portion 130 is in the first state, the third element 170 is disengaged from the first element 150. During the rotation of the coupling portion 130, the second element 160 rotates with the first element 150 (which is part of the coupling portion 130), driven by the first plurality of protrusions 151 of the first element 150. This action causes the third element 170 (which is keyed to the thermal conduit 120) to ratchet up and down as the fourth plurality of protrusions 164 pass beneath the sixth plurality of protrusions 172. Rotation of the coupling portion 130 stops in certain embodiments when the protrusions 132 of the coupling portion 130 reach the ends of the recesses 32 of the portion 30 of the light delivery apparatus 10. In this position, the optical assembly 100 is mounted to the light delivery apparatus 10 and is positioned for operation of the light delivery apparatus 10. In certain embodiments, one or more portions (e.g., green portions) of the first side 161 of the second element 160 align with the one or more indicator windows 157 of the first element 150 to indicate that the coupling portion 130 is in the first state.


In certain embodiments, to detach the optical assembly 100 from the light delivery apparatus 10, the coupling portion 130 is rotated in the opposite direction (e.g., counterclockwise) relative to the light delivery apparatus 10. During this rotation, the second element 160 is prevented from rotating by the interaction of the fourth plurality of protrusions 164 with the sixth plurality of protrusions 172. Once the coupling portion 130 of certain embodiments has been rotated by a predetermined angle (e.g., 10 degrees), the second element 160 disengages (e.g., moves off) from the first plurality of protrusions 151 of the first element 150. This action forces the third element 170 to move as well, allowing the fifth plurality of protrusions 171 to engage with the second plurality of protrusions 153 of the first element 150, such that the third element 170 is engaged with the first element 150 when the coupling portion 130 is in the second state. This interaction of the protrusions 171 and protrusions 153 prevents subsequent rotations of the coupling portion 130 in the direction (e.g., clockwise) for mounting the optical assembly 100 on the light delivery apparatus 10.


Counter-clockwise rotation of the coupling portion 130 can continue in certain embodiments until the protrusions 132 reach the end of the recesses 32 of the portion 30 of the light delivery apparatus 10, upon which the coupling portion 130 can be pulled away from the light delivery apparatus 10. In certain embodiments, one or more portions (e.g., red portions) of the first side 161 of the second element 160 align with the one or more indicator windows 157 of the first element 150 to indicate that the coupling portion 130 is in the second state.



FIG. 15 is a flow diagram of an example method 200 of releasably mounting an optical assembly 100 to a light delivery apparatus 10 in accordance with certain embodiments described herein. In an operational block 210, the method 200 comprises providing the optical assembly 100. The optical assembly 100 is adapted to be in at least two states comprising a first state and a second state. In the first state, the optical assembly 100 is attached to the light delivery apparatus 10. In the second state, the optical assembly 100 is detached from the light delivery apparatus 10 after having been attached to the light delivery apparatus 10 in the first state. Also, in the second state, the optical assembly 100 is configured to prevent re-attachment of the optical assembly 100 to the light delivery apparatus 10. In an operational block 220, the method 200 further comprises attaching the optical assembly 100 to the light delivery apparatus 10. In an operational block 230, the method 200 further comprises detaching the optical assembly 100 from the light delivery apparatus 10.


In certain embodiments, the light delivery apparatus 10 comprises a mounting portion 30 and at least one heat dissipating surface 20, and the optical assembly 100 comprises a coupling portion 130 and at least one surface 122 of a thermal conduit 120. Attaching the optical assembly 100 to the light delivery apparatus 10 in certain such embodiments comprises rotating the coupling portion 130 relative to the mounting portion 30 without the at least one surface 122 of the thermal conduit 120 rotating relative to the at least one heat dissipating surface 20.


In certain embodiments, attaching the optical assembly 100 to the light delivery apparatus 10 places the optical assembly 100 in the first state and detaching the optical assembly 100 from the light delivery apparatus 10 places the optical assembly 100 in the second state. In certain embodiments, a user of the optical assembly 100 and the light delivery apparatus 10 may seek to override the single-use functionality of the optical assembly 100. For example, in certain embodiments, the user may utilize an adapter between the optical assembly 100 and the light delivery apparatus 10. Such an adapter would be configured to mate to the light delivery apparatus 10 and to mate with the optical assembly 100. In certain such embodiments, the adapter would be configured to mate with the optical assembly 100 when the optical assembly 100 is in the first state, when the optical assembly 100 is in the second state, or when the optical assembly 100 is in either the first state or the second state. In certain other embodiments, the adapter would be configured so that the optical assembly 100 is not placed in the second state when the optical assembly 100 is detached from the adapter. Thus, detaching the optical assembly 100 from the light delivery apparatus 10 in certain such embodiments comprises avoiding placing the optical assembly 100 in the second state.


Various embodiments have been described above. Although this invention has been described with reference to these specific embodiments, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. An optical assembly releasably mountable to a light delivery apparatus comprising at least one heat dissipating surface, the optical assembly comprising: an output optical element comprising a thermally conductive and optically transmissive material;a thermal conduit in thermal communication with the output optical element and comprising at least one surface configured to be in thermal communication with the at least one heat dissipating surface; anda coupling portion configured to be placed in at least two states comprising: a first state in which the coupling portion is attached to the light delivery apparatus such that the at least one surface of the thermal conduit is in thermal communication with the at least one heat dissipating surface of the light delivery apparatus; anda second state in which the coupling portion is detached from the light delivery apparatus after having been attached to the light delivery apparatus in the first state and in which the coupling portion is configured to prevent re-attachment of the coupling portion to the light delivery apparatus.
  • 2. The optical assembly of claim 1, wherein the at least two states further comprise a third state in which the coupling portion is unattached to the light delivery apparatus and is configured to be attached to the light delivery apparatus prior to the first state.
  • 3. The optical assembly of claim 1, wherein the output optical element comprises sapphire.
  • 4. The optical assembly of claim 1, wherein the thermal conduit comprises an elongate tube having a first end portion in thermal communication with the output optical element and a second end portion comprising the at least one surface.
  • 5. The optical assembly of claim 4, wherein the second end portion comprises one or more portions configured to fit with one or more portions of the at least one heat dissipating surface.
  • 6. The optical assembly of claim 5, wherein the one or more portions of the second end portion comprise one or more protrusions and the one or more portions of the at least one heat dissipating surface comprise one or more recesses.
  • 7. The optical assembly of claim 1, wherein the thermal conduit comprises a hole through which light from the light delivery apparatus propagates to the output optical element.
  • 8. The optical assembly of claim 1, wherein the thermal conduit comprises at least one of aluminum, nickel, and zinc.
  • 9. The optical assembly of claim 1, wherein the thermal conduit is electrically coupled to an electrical ground when the coupling portion is in the first state.
  • 10. The optical assembly of claim 1, wherein the coupling portion comprises one or more protrusions configured to fit with one or more recesses of the light delivery apparatus.
  • 11. The optical assembly of claim 1, wherein the coupling portion comprises one or more recesses configured to fit with one or more protrusions of the light delivery apparatus.
  • 12. The optical assembly of claim 1, further comprising an adapter comprising one or more first portions configured to fit with one or more portions of the light delivery apparatus, the adapter further comprising one or more second portions configured to fit with one or more portions of the thermal conduit.
  • 13. The optical assembly of claim 12, wherein the adapter provide thermal conductivity between the at least one heat dissipating surface and the thermal conduit.
  • 14. The optical assembly of claim 12, wherein the one or more first portions comprise one or more protrusions configured to fit with one or more recesses of the light delivery apparatus.
  • 15. The optical assembly of claim 12, wherein the one or more first portions comprise one or more recesses configured to fit with one or more protrusions of the light delivery apparatus.
  • 16. The optical assembly of claim 12, wherein the one or more second portions comprise one or more protrusions configured to fit with one or more recesses of the thermal conduit.
  • 17. The optical assembly of claim 12, wherein the one or more second portions comprise one or more recesses configured to fit with one or more protrusions of the thermal conduit.
  • 18. The optical assembly of claim 1, wherein the coupling portion comprises an indicator configured to indicate a current state of the coupling portion.
  • 19. The optical assembly of claim 1, wherein the coupling portion comprises a mechanism which allows rotation of the coupling portion in a first direction to place the coupling assembly in the first state and which allows rotation of the coupling portion in a second direction opposite to the first direction to remove the coupling assembly from the first state, the mechanism configured to inhibit rotation of the coupling portion in the first direction upon the coupling portion being removed from the first state.
  • 20. The optical assembly of claim 19, wherein the mechanism comprises: a first element comprising: a first plurality of protrusions positioned along a first circle; anda second plurality of protrusions positioned along a second circle substantially concentric with the first circle;a second element comprising: a first side and a second side opposite to the first side;a third plurality of protrusions on the first side and configured to mate with the first plurality of protrusions; anda fourth plurality of protrusions on the second side; anda third element comprising: a fifth plurality of protrusions configured to mate with the second plurality of protrusions; anda sixth plurality of protrusions configured to mate with the fourth plurality of protrusions.
  • 21. The optical assembly of claim 20, wherein the third element is disengaged from the first element before the coupling portion is in the first state and the third element is engaged with the first element when the coupling portion is in the second state.
  • 22. The optical assembly of claim 20, wherein the second element is between the first element and the third element.
  • 23. A light delivery apparatus having at least one heat dissipating surface, the light delivery apparatus comprising: a mounting portion; andan optical assembly comprising: an optical element comprising a thermally conductive and optically transmissive material;a thermal conduit in thermal communication with the optical element and comprising at least one surface configured to be in thermal communication with the at least one heat dissipating surface; anda coupling portion configured to releasably mount to the mounting portion such that the at least one surface of the thermal conduit is in thermal communication with the at least one heat dissipating surface by rotating relative to and engaging a corresponding portion of the light delivery apparatus without the at least one surface of the thermal conduit rotating relative to the at least one heat dissipating surface.
  • 24. A method of releasably mounting an optical assembly to a light delivery apparatus comprising at least one heat dissipating surface, the method comprising: providing an optical assembly comprising a thermal conduit with at least one surface adapted to be placed in thermal communication with the at least one heat dissipating surface of the light delivery apparatus, the optical assembly adapted to be in at least two states comprising: a first state in which the optical assembly is attached to the light delivery apparatus; anda second state in which the optical assembly is detached from the light delivery apparatus after having been attached to the light delivery apparatus in the first state and in which the optical assembly is configured to prevent re-attachment of the optical assembly to the light delivery apparatus, wherein the light delivery apparatus comprises a mounting portion and the optical assembly comprises a coupling portion;attaching the optical assembly to the light delivery apparatus, wherein attaching the optical assembly to the light delivery apparatus comprises rotating the coupling portion relative to the mounting portion without the at least one surface of the thermal conduit rotating relative to the at least one heat dissipating surface; anddetaching the optical assembly from the light delivery apparatus.
  • 25. The method of claim 24, wherein attaching the optical assembly to the light delivery apparatus places the optical assembly in the first state and detaching the optical assembly from the light delivery apparatus places the optical assembly in the second state.
  • 26. The method of claim 24, wherein detaching the optical assembly from the light delivery apparatus comprises avoiding placing the optical assembly in the second state.
US Referenced Citations (164)
Number Name Date Kind
3735755 Eggleton et al. May 1973 A
3810367 Peterson May 1974 A
4076393 Bates Feb 1978 A
4315514 Drewes et al. Feb 1982 A
4343301 Indech Aug 1982 A
4630273 Inoue et al. Dec 1986 A
4633872 Chaffee et al. Jan 1987 A
4669466 L'Esperance Jun 1987 A
4671285 Walker Jun 1987 A
4798215 Turner Jan 1989 A
4846196 Wiksell et al. Jul 1989 A
4850351 Herman et al. Jul 1989 A
4930504 Diamantopoulos et al. Jun 1990 A
4951482 Gilbert Aug 1990 A
4951653 Fry et al. Aug 1990 A
4966144 Rochkind et al. Oct 1990 A
5029581 Kaga et al. Jul 1991 A
5037374 Carol Aug 1991 A
5054470 Fry et al. Oct 1991 A
5150704 Tatebayashi et al. Sep 1992 A
5259380 Mendes et al. Nov 1993 A
5267294 Kuroda et al. Nov 1993 A
5282797 Chess Feb 1994 A
5358503 Bertwell et al. Oct 1994 A
5401270 Muller et al. Mar 1995 A
5441495 Liboff et al. Aug 1995 A
5445146 Bellinger Aug 1995 A
5445608 Chen et al. Aug 1995 A
5464436 Smith Nov 1995 A
5474528 Meserol Dec 1995 A
5501655 Roit et al. Mar 1996 A
5511563 Diamond Apr 1996 A
5540737 Fenn Jul 1996 A
5368555 Schwartz et al. Dec 1996 A
5580550 Gough et al. Dec 1996 A
5580555 Schwartz Dec 1996 A
5601526 Chapelon et al. Feb 1997 A
5616140 Prescott Apr 1997 A
5617258 Negus et al. Apr 1997 A
5621091 Kunkel et al. Apr 1997 A
5622168 Keusch et al. Apr 1997 A
5627870 Kopecky May 1997 A
5640978 Wong Jun 1997 A
5643334 Eckhouse et al. Jul 1997 A
5728090 Martin et al. Mar 1998 A
5755752 Segal May 1998 A
5762867 D'Silva Jun 1998 A
5817008 Rafert et al. Oct 1998 A
5842477 Naughton et al. Dec 1998 A
5843073 Sinofsky Dec 1998 A
5849585 Mather et al. Dec 1998 A
5871521 Kaneda et al. Feb 1999 A
5879376 Miller Mar 1999 A
5902741 Purchio et al. May 1999 A
5928207 Pisano et al. Jul 1999 A
5928945 Seliktar et al. Jul 1999 A
5954762 Di Mino et al. Sep 1999 A
5958761 Yogev et al. Sep 1999 A
5983141 Sluijter et al. Nov 1999 A
5989245 Prescott Nov 1999 A
6030767 Wagner et al. Feb 2000 A
6033431 Segal Mar 2000 A
6042531 Holcomb Mar 2000 A
6045575 Rosen et al. Apr 2000 A
6046046 Hassanein Apr 2000 A
6060306 Flatt et al. May 2000 A
6063108 Salansky et al. May 2000 A
6100290 Levy et al. Aug 2000 A
6107325 Chan et al. Aug 2000 A
6107608 Hayes Aug 2000 A
6112110 Wilk Aug 2000 A
6117128 Gregory Sep 2000 A
6129748 Kamei Oct 2000 A
6143878 Koopman et al. Nov 2000 A
6146410 Nagypal et al. Nov 2000 A
6149679 Di Mino et al. Nov 2000 A
6156028 Prescott Dec 2000 A
6162211 Tankovich et al. Dec 2000 A
6179771 Mueller Jan 2001 B1
6179830 Kokubu Jan 2001 B1
6187210 Lebouitz et al. Feb 2001 B1
6198958 Ives et al. Mar 2001 B1
6210317 Bonlie Apr 2001 B1
6210425 Chen Apr 2001 B1
6214035 Streeter Apr 2001 B1
6221095 Van Zuylen et al. Apr 2001 B1
6267780 Streeter Jul 2001 B1
6273885 Koop et al. Aug 2001 B1
6273905 Streeter Aug 2001 B1
6277974 Lo et al. Aug 2001 B1
6290713 Russell Sep 2001 B1
6290714 Streeter Sep 2001 B1
6306130 Anderson et al. Oct 2001 B1
6312451 Streeter Nov 2001 B1
6344050 Chen Feb 2002 B1
6358272 Wilden Mar 2002 B1
6363285 Wey Mar 2002 B1
6364907 Obochi et al. Apr 2002 B1
6379295 Woo Apr 2002 B1
6395016 Oron et al. May 2002 B1
6397107 Lee et al. May 2002 B1
6402678 Fischell et al. Jun 2002 B1
6421562 Ross Jul 2002 B1
6443974 Oron et al. Sep 2002 B1
6443978 Zharov Sep 2002 B1
6447537 Hartman Sep 2002 B1
6471716 Pecukonis Oct 2002 B1
6494900 Salansky et al. Dec 2002 B1
6514220 Melton, Jr. et al. Feb 2003 B2
6537301 Kamei Mar 2003 B1
6537304 Oron Mar 2003 B1
6551308 Muller et al. Apr 2003 B1
6571735 Wilkinson Jun 2003 B1
6602274 Chen Aug 2003 B1
6663659 McDaniel Dec 2003 B2
6689062 Mesallum Feb 2004 B1
6743222 Durkin et al. Jun 2004 B2
6899723 Chen May 2005 B2
6918922 Oron Jul 2005 B2
6974224 Thomas-Benedict Dec 2005 B2
7041094 Connors et al. May 2006 B2
7118563 Weckwerth et al. Oct 2006 B2
7303578 De Taboada et al. Dec 2007 B2
7344555 Anders et al. Mar 2008 B2
7351253 DiMauro et al. Apr 2008 B2
7534255 Streeter et al. May 2009 B1
7559945 Breden et al. Jul 2009 B2
20010044623 Chen Nov 2001 A1
20020029071 Whitehurst Mar 2002 A1
20020068927 Prescott Jun 2002 A1
20020087205 Chen Jul 2002 A1
20020123781 Shanks et al. Sep 2002 A1
20020156371 Hedlund et al. Oct 2002 A1
20020161418 Wilkens et al. Oct 2002 A1
20020216797 Wilkens et al. Oct 2002
20020188334 Carlgren Dec 2002 A1
20020198575 Sullivan Dec 2002 A1
20030004556 McDaniel Jan 2003 A1
20030021124 Elbrecht et al. Jan 2003 A1
20030109906 Streeter Jun 2003 A1
20030125782 Streeter Jul 2003 A1
20030125783 Moran Jul 2003 A1
20030144712 Streeter Jul 2003 A1
20030167080 Hart et al. Sep 2003 A1
20030212442 Streeter Nov 2003 A1
20030216797 Oron Nov 2003 A1
20040014199 Streeter Jan 2004 A1
20040015214 Simkin et al. Jan 2004 A1
20040030325 Cahir et al. Feb 2004 A1
20040044384 Leber et al. Mar 2004 A1
20040073278 Pachys Apr 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040132002 Streeter Jul 2004 A1
20040138727 Taboada et al. Jul 2004 A1
20040153130 Oron et al. Aug 2004 A1
20040153131 Yorke Aug 2004 A1
20040220513 Streeter Nov 2004 A1
20040260367 Taboada et al. Dec 2004 A1
20050009161 Streeter Jan 2005 A1
20050024853 Thomas-Benedict Feb 2005 A1
20050107851 De Taboada et al. May 2005 A1
20050159793 Streeter Jul 2005 A1
20050187595 Streeter Aug 2005 A1
20050203595 Oron Sep 2005 A1
Foreign Referenced Citations (27)
Number Date Country
320 0584 Jul 1983 DE
41 08 328 Sep 1992 DE
42 13 053 Oct 1993 DE
295 15 096 Jan 1996 DE
0 130 950 Apr 1990 EP
0 763 371 Mar 1997 EP
0 783 904 Jul 1997 EP
1 074 275 Feb 2001 EP
1 226 787 Jul 2002 EP
2 082 696 Jul 2009 EP
04023634 Feb 1992 JP
WO 9203964 Mar 1992 WO
WO 9636397 Nov 1996 WO
WO 9636396 Jan 1997 WO
WO 9804321 Feb 1998 WO
WO 9822573 May 1998 WO
WO 9942178 Aug 1999 WO
WO 9946005 Sep 1999 WO
WO 9962599 Dec 1999 WO
WO 0025684 May 2000 WO
WO 0035534 Jun 2000 WO
WO 02055149 Jul 2002 WO
WO 02092509 Nov 2002 WO
WO 02098509 Dec 2002 WO
WO 2005025672 Mar 2005 WO
WO 2006115761 Nov 2006 WO
WO 2008049905 May 2008 WO
Related Publications (1)
Number Date Country
20100067128 A1 Mar 2010 US