The invention relates to a sintering apparatus for sintering at least one workpiece, in particular a dental workpiece, with a sintering chamber for receiving the workpiece to be sintered during the sintering operation, wherein the sintering chamber is delimited by a base area of the sintering apparatus on which the workpiece can be placed during the sintering operation, wherein the sintering apparatus has at least one gas feed for introducing protective gas into the sintering chamber. The invention also relates to a method for sintering at least one workpiece, in particular a dental workpiece, in a sintering apparatus and also to an arrangement with at least one workpiece, in particular a dental workpiece, to be sintered and a sintering apparatus.
For the sintering of workpieces, in particular dental workpieces, a wide variety of sintering apparatuses have already been proposed in the prior art. DE 20 2011 106 734 U1 discloses a sintering chamber in which a slight negative pressure is intended to be produced in the upper region of a sintering space by a Venturi effect. In DE 20 2011 005 465 U1, it is proposed for example to lower the workpieces to be sintered in an annular sintering tray completely within sintering granules, so that the sintering granules completely surround and cover the workpieces to be sintered during the sintering operation. It has been found from practical experience that, with this arrangement, the process of shrinkage of the workpiece that occurs during the sintering operation may be hindered, which leads to unwanted deformation of the workpiece. A sintering apparatus of the generic type is also disclosed for example in WO 2011/020688 A1. In this document it is proposed that a quartz tray, which has the base area, should be filled during the operation of the sintering apparatus with inert beads, into which the article to be sintered is placed. To enter the quartz tray, that is to say the area around the workpiece to be sintered, the protective gas must flow around the quartz tray in order to enter the interior of the quartz tray from above. It has been found that, with this type of arrangement, a relatively great amount of protective gas is consumed during the sintering operation and impairments of the article to be sintered can nevertheless be caused by remains of another gas, in particular oxygen.
In DE 10 2011 056 211, it is proposed to cover the tray in which the article to be sintered is located by a closure element, wherein the covered tray can be flowed through by protective gas or inert gas. However, it is not explained in this document what form the covered tray should take to allow a flow to pass through it in this way.
DE 10 2009 019 041 A1 concerns a sintering apparatus for sintering magnesium or magnesium alloys at relatively low sintering temperatures of 600° C. to 642° C. under a protective gas atmosphere. In
Extensive tests with a wide variety of sintering apparatuses have shown that even small changes in the structure of arrangements and sintering apparatuses of the generic type can often have an unexpectedly strong influence on the quality of the sintering result, in particular at very high sintering temperatures of sometimes over 1200° C. In particular, it is difficult with arrangements known in the prior art to ensure that no undesired discoloration or oxidation of the workpiece to be sintered occurs.
The object of the invention is to improve a sintering apparatus of the generic type further to the extent that on the one hand it can be constructed as simply as possible and on the other hand undesired adverse influences on the article to be sintered are avoided as far as possible in the case of the article to be sintered.
For this purpose, a sintering apparatus according to the invention provides that the gas feed is arranged on the side of the base area that is facing away from the sintering chamber and the base area has at least one through-flow region that is permeable to the protective gas for the introduction of the protective gas coming from the gas feed into the sintering chamber.
In other words, it is consequently provided that the base area itself has a corresponding through-flow capability, by which the protective gas coming from the gas feed can reach the workpiece to be sintered. This is a very direct feed of the protective gas to the workpiece to be sintered, which on the one hand allows a very simple construction of the sintering apparatus, but on the other hand ensures that the protective gas reaches the workpiece as directly and completely as possible, whereby the workpiece is protected particularly effectively from undesired discolorations or oxidations during the sintering operation. The base area is the area of the sintering apparatus that is intended for the workpiece to be placed on directly or with a protective material placed in between during the sintering operation. The base area is consequently the area of the sintering apparatus that carries the workpiece to be sintered during the sintering operation.
In a preferred embodiment, the base area delimits the sintering chamber downwardly in the operating position during the sintering operation, wherein the gas feed is arranged under the base area. Preferred variants provide in this connection that the gas feed opens out into a gas distribution chamber of the sintering apparatus, preferably with a gas distribution cap arranged in between, wherein the gas distribution chamber is arranged on the side of the base area that is facing away from the sintering chamber. It is favorable in connection with this if the gas distribution chamber is arranged under the base area in the operating position during the sintering operation.
There are various possibilities for forming the through-flow region in the base area. The through-flow region in the base area may take the form of at least one through-flow opening, preferably a number of through-flow openings, in the base area. In the case of a number of through-flow openings, a kind of screen-like construction of the base area may be obtained. It may however also be the case that the through-flow region in the base area takes the form of at least one open-pore region in the base area. The through-flow openings are usually created artificially, for example by drilling, punching, etching or the like, whereas in the case of base areas with open-pore regions a porosity with good gas permeability that already exists intrinsically in the material is used for passing the protective gas through the base area. It is of course also possible for the two variants to be combined with one another to form the through-flow region in the base area.
A base area with at least one open-pore region may be a high-temperature-resistant gas-permeable shaped body of a metallic or ceramic kind This base area may have inert properties and/or be formed as a separating layer in sheet form. Possible materials for such base areas are ZrO2, Al2O3, SiC, SiN, HT alloys, etc.
Particularly preferred embodiments of the invention provide that the base area forms the bottom of a sintering tray of the sintering apparatus for receiving the workpiece to be sintered during the sintering operation. The sintering chamber is then favorably the interior space of the sintering tray.
Sintering apparatuses according to the invention are generally used in sintering furnaces. Many of the sintering furnaces known in the prior art have a kind of flue for carrying away the gases given off during the sintering operation, which brings about a certain flue effect and consequently a perturbation of the atmosphere in the sintering furnace. In order that these flows in the sintering furnace do not cause any perturbation or turbulence of the protective gas atmosphere forming around the workpiece, preferred embodiments of the sintering apparatus according to the invention provide that the sintering chamber is closed off upwardly by a covering in an operating position during the sintering operation. The covering may be gas-tight, but may also have at least one through-flow opening, preferably a number of through-flow openings, and/or at least one open-pore region. Open-pore regions of the covering may be formed in the same way as the open-pore regions of the base area.
The component parts of the sintering apparatus may preferably consist of metal, metal alloys or else ceramic.
As already mentioned at the beginning, apart from the sintering apparatus, the invention also relates to an arrangement with at least one workpiece, in particular a dental workpiece, to be sintered and a sintering apparatus. This is a sintering apparatus according to the invention and the workpiece is favorably placed on the base area directly or with a supporting material placed in between, in particular during the sintering operation.
Particularly preferred variants of such an arrangement provide that the protective gas coming from the gas feed can only be fed to the workpiece through the supporting material. As a result, the gas stream fed to the workpiece undergoes further cleaning in the supporting material in the direct vicinity of the workpiece to be sintered, whereby foreign gases that disturb the sintering operation are filtered out from the gas stream fed to the workpiece, and consequently a very clean protective gas atmosphere is achieved in the direct vicinity of the workpiece during the sintering operation. As a result of this, undesired discolorations and other impairments of the workpiece during the sintering operation can be avoided particularly well. In particular in the case of these variants, it is ensured that the gas stream fed to the workpiece is cleaned by means of the supporting material directly before it reaches the region around the workpiece. As a result, a high quality of the workpieces to be produced along with relatively low protective gas consumption can be ensured even in the case of very high sintering temperatures of over 1200° C.
Particularly preferred variants provide that the supporting material completely covers the through-flow region or is arranged in the through-flow region over its full surface area or forms the entire surface area of the through-flow region.
Gases that may be used as the protective gas are those that are already used as such in the prior art, in particular inert gases. The protective gas serves for displacing the air and other gases from the area around the workpiece and for providing a gas shroud that surrounds the article to be sintered during the sintering operation and does not react with the article to be sintered. Argon and/or nitrogen may be used for example as the protective gas.
It is favorable if the supporting material lies on the base area. Alternatively, the supporting material may however also be integrated in the base area. Since the discolorations and other impairments of the workpiece during the sintering operation are usually attributable to oxidation, particularly preferred embodiments of the invention provide that the supporting material is a material that adsorbs oxygen. The term material in this connection also includes a mixture of different materials. In other words, the supporting material consequently has at least a certain affinity, preferably a good affinity, for oxygen. It is particularly preferably provided that the supporting material has a greater affinity for oxygen than the workpiece. Affinity for oxygen is understood here as meaning the tendency of a substance or a material to adsorb oxygen, in particular by chemical reaction. The greater the affinity for oxygen of a substance or material, the more likely it is that oxygen will be adsorbed, and therefore the more oxygen will be adsorbed, on this substance or this material. Oxygen or residual oxygen in this case means the free unadsorbed oxygen, which can lead to unwanted oxidation of the workpiece. Apart from possibly present oxygen radicals, this oxygen is generally present in the air as a molecule with two oxygen atoms.
Particularly preferred embodiments of the invention provide that the supporting material comprises or consists of granular loose material and/or at least one gas-permeable solid. In the case of granular loose material, the supporting material may be formed of or comprise ceramic supporting grains, such as for example ceramic sintering beads known per se, for example of zirconium dioxide partially stabilized with yttrium. In preferred embodiments, the ceramic supporting grains have a diameter of between 0.4 mm and 2 mm. It has been found that, in the case of arrangements according to the invention, when the protective gas is passed through the supporting material a considerable cleaning effect is achieved even by using such a commonplace supporting material. In addition to the ceramic supporting grains, however, additional materials may also be added to the supporting material, for example to reduce the oxygen content. These materials or material mixtures may be formed as supporting material, but also as a gas-permeable, preferably open-pore solid. Mixed forms in which the supporting material consists of loose material or loose material mixtures and at least one such gas-permeable solid are also possible.
The term dental workpiece comprises all those artificially fabricated components that can be used in dentures as a replacement for natural teeth or component parts of teeth, and also aids for attaching or producing such tooth replacement parts. The workpieces to be sintered are particularly preferably such workpieces of metal or metal alloys. The workpieces may be sintered in the green or white state. In arrangements according to the invention, and consequently also during the sintering operation, the workpieces lie on the supporting material, preferably directly. They therefore protrude at least partly, preferably greatly, beyond the supporting material, whereby problems with shrinkage occurring during the sintering operation are avoided.
As mentioned at the beginning, apart from an arrangement according to the invention, the invention also relates to a method according to the invention for sintering a workpiece, in particular a dental workpiece, with a sintering apparatus according to the invention. Where applicable, the statements made above concerning the embodiment according to the invention of a sintering apparatus and/or of the arrangement are also applicable to the method according to the invention described below. It is at least provided in the case of the method according to the invention that the workpiece to be sintered is placed on the base area directly or with a supporting material placed in between during the sintering operation and the protective gas coming from the gas feed is directed to the workpiece and/or introduced into the sintering chamber through the through-flow region of the base area, preferably only through the through-flow region of the base area.
Various sintering apparatuses and arrangements according to the invention, with which methods according to the invention also can be carried out, are represented in the figures described below, in which:
In
In the variants shown according to
This construction also achieves the effect that the protective gas can only be fed to the workpiece 2 through the supporting material 3, in that the protective gas coming from the gas feed 5 can only be fed to the workpiece 2 through the through-flow region 14 in the base area 6, wherein the supporting material 3 completely covers the through-flow region 14, as is the case in the variants of an embodiment according to
The through-flow region 14 in the base area 6, through which the protective gas can enter the sintering chamber 18, may take the form of at least one through-flow opening 15, preferably a number of through-flow openings 15, in the base area 6. This is the case in the exemplary embodiment according to
In the variant of an embodiment according to
During the operation of the sintering apparatus 4 or arrangement 1 according to the invention as shown in
The sintering apparatus 4 or the arrangement 1 of the exemplary embodiment according to
It is pointed out for the sake of completeness that the open-pore regions 21 in the covering 19 and also the open-pore regions 16 in the base area 6 may be formed over the entire covering 19 or base area 6 or else only over partial regions of the respective covering 19 or base area 6.
In
Even if the exemplary embodiments according to
As already explained at the beginning, the supporting material 3 may for example be granules, a powder or a granule-powder mixture. The supporting material 3 may however also take the form of a gas-permeable solid or comprise such a solid. Mixed forms thereof are also possible. The supporting material 3 may for example be customary, commercially available sintering beads as they are known, for example of zirconium dioxide partially stabilized with yttrium. It has been found that such a supporting material 3 also already has a certain cleaning function and especially has an oxygen-binding function. Other ceramic supporting grains or mixtures thereof may well also be used as supporting material 3. In order to improve the cleaning function, and in particular the binding of residual oxygen, it is also possible however to mix with these ceramic supporting grains 28 an additional material 29, which may in particular have a greater affinity for oxygen than the ceramic supporting bodies 28 themselves. The greater affinity for oxygen of the additional material 29 may be achieved for example by the additional material that is used being a material or material mixture which comprises at least one chemical element or at least one chemical compound that has a greater affinity for oxygen than the material of the workpiece 2 or than the material of the ceramic supporting grains 28. In particular, the additional material 29 may serve the purpose of chemically binding the residual oxygen to it. If the additional material 29 comprises components that could become attached to the workpiece 2 during the sintering operation, it is favorable if an intermediate layer of ceramic supporting grains 28 is present between the additional material 29 and the workpiece 2. The various components of the supporting material 3 may consequently be in the form of a homogeneous or else a homogeneous mixture. Additional materials 29 with great affinity for oxygen may for example be metals or metal alloys. However, ceramic additional materials also come into consideration. The additional material 29 may likewise be in the form of pellets or powder. The additional material may for example be cobalt, chromium, molybdenum, titanium or titanium alloys. The supporting material 3 may consequently be for example a loose material consisting of two components, such as for example the ceramic supporting grain 28 and the additional material 29. However, multi-component mixtures are also conceivable. For example, a third component may be present in the supporting material 3 in the form of a carrier substance 30. This carrier substance 30 may serve the purpose that the additional material 29 is adsorbed on it. It may for example be ceramic materials such as aluminum-corundum. The carrier substance 30 favorably has a rough and/or abrasive surface. The grain diameter of the ceramic supporting grains 28 is favorably greater than the grain diameter of the carrier substance 30. The grain diameter of the additional materials 29 is then in turn favorably smaller than that of the carrier substance 30. Even when the carrier substance is absent, the grain diameter of the supporting grains is favorably greater than that of the additional material.
1 arrangement
2 workpiece
3 supporting material
4 sintering apparatus
5 gas feed
6 base area
14 through-flow region
15 through-flow opening
16 open-pore region
17 sintering tray
18 sintering chamber
19 covering
20 through-flow opening
21 open-pore region
22 gas outlet
23 outer wall
24 base carrier
25 side wall
26 gas distribution cap
27 gas distribution chamber
28 ceramic supporting grain
29 additional material
30 carrier substance
31 supporting foot
Number | Date | Country | Kind |
---|---|---|---|
13002055 | Apr 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AT2014/000040 | 2/28/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/169303 | 10/23/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2002241 | Forde | May 1935 | A |
3295844 | Neeley et al. | Jan 1967 | A |
4724121 | Weyand | Feb 1988 | A |
5048801 | Johnson et al. | Sep 1991 | A |
5352395 | Kallenbach et al. | Oct 1994 | A |
5432319 | Indig | Jul 1995 | A |
5604919 | Sterzel et al. | Feb 1997 | A |
5911102 | Takahashi et al. | Jun 1999 | A |
6027686 | Takahashi et al. | Feb 2000 | A |
6696015 | Tokuhara et al. | Feb 2004 | B2 |
6891140 | Sato et al. | May 2005 | B2 |
7767942 | Stephan et al. | Aug 2010 | B2 |
8591803 | Wolff et al. | Nov 2013 | B2 |
9033703 | Rohner | May 2015 | B2 |
20040042923 | Hirasawa | Mar 2004 | A1 |
20060006589 | Canova et al. | Jan 2006 | A1 |
20060154827 | Kanechika | Jul 2006 | A1 |
20080213119 | Wolz | Sep 2008 | A1 |
20080220963 | Takahashi | Sep 2008 | A1 |
20080271599 | Edlinger | Nov 2008 | A1 |
20090325116 | Matsuura | Dec 2009 | A1 |
20100044002 | Leffew | Feb 2010 | A1 |
20100127418 | Davidson | May 2010 | A1 |
20100242814 | Jeney | Sep 2010 | A1 |
20100274292 | Wolff et al. | Oct 2010 | A1 |
20110006450 | Stephan | Jan 2011 | A1 |
20110171589 | Ha et al. | Jul 2011 | A1 |
20110269088 | Rohner | Nov 2011 | A1 |
20120090411 | Perlinger et al. | Apr 2012 | A1 |
20120174404 | Wolz | Jul 2012 | A1 |
20130029279 | Jussel | Jan 2013 | A1 |
20130149186 | Hachenberg | Jun 2013 | A1 |
20130241120 | Yamanishi et al. | Sep 2013 | A1 |
20140051014 | Steinwandel et al. | Feb 2014 | A1 |
20140123892 | Vladimirov | May 2014 | A1 |
20140127637 | Gardin | May 2014 | A1 |
20140299195 | Noack et al. | Oct 2014 | A1 |
20140348690 | Chen | Nov 2014 | A1 |
20140352634 | Sullivan et al. | Dec 2014 | A1 |
20150044622 | Yang | Feb 2015 | A1 |
20150287572 | Daugherty et al. | Oct 2015 | A1 |
20150314131 | Stevenson et al. | Nov 2015 | A1 |
20150335407 | Korten et al. | Nov 2015 | A1 |
20160052055 | Reichert | Feb 2016 | A1 |
20160184062 | Jussel | Jun 2016 | A1 |
20160199906 | Mochizuki | Jul 2016 | A1 |
20160214327 | Uckelmann et al. | Jul 2016 | A1 |
20160317257 | Fornoff | Nov 2016 | A1 |
20170167791 | He et al. | Jun 2017 | A1 |
20170183231 | Morris | Jun 2017 | A1 |
20170191758 | He et al. | Jul 2017 | A1 |
20170203362 | Cha | Jul 2017 | A1 |
20180072630 | Beaman | Mar 2018 | A1 |
20180186646 | Leisenberg | Jul 2018 | A1 |
20180327325 | Gangakhedkar | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
201543821 | Aug 2010 | CN |
102901356 | Jan 2013 | CN |
102009019041 | Nov 2010 | DE |
202011005465 | Aug 2011 | DE |
202011106734 | Jan 2012 | DE |
202012004493 | Aug 2012 | DE |
102011056211 | Feb 2013 | DE |
102012100631 | Jul 2013 | DE |
0094511 | Nov 1983 | EP |
0480107 | Apr 1992 | EP |
0524438 | Jan 1993 | EP |
1645351 | Apr 2006 | EP |
1885278 | Jan 2009 | EP |
2470113 | Aug 2013 | EP |
S5194407 | Aug 1976 | JP |
S5681603 | Jul 1981 | JP |
S58141305 | Aug 1983 | JP |
S60224702 | Nov 1985 | JP |
H0525563 | Feb 1993 | JP |
H06330105 | Nov 1994 | JP |
2002372373 | Dec 2002 | JP |
2008021495 | Feb 2008 | WO |
2009020378 | Feb 2009 | WO |
2009029993 | Mar 2009 | WO |
2011020688 | Feb 2011 | WO |
2013053950 | Apr 2013 | WO |
2014047664 | Apr 2014 | WO |
2014169304 | Oct 2014 | WO |
Entry |
---|
Illustration “MULTIMAT2SINTER” Dentsply admitted prior art. (Jan. 1, 2012). |
Pages 5 to 7 of catalogue of Amann Girrbach AG “Ceramill Agrotherm/Argovent” published Oct. 2012. |
https://de.wikipedia.org/wiki/Stahl, retrieved Oct. 18, 2018 and English translation. |
http://web.mitedu/2.813.www/readins/Ellingham_diagrams.pdf, retrieved on Oct. 18, 2018. |
Number | Date | Country | |
---|---|---|---|
20160052055 A1 | Feb 2016 | US |