Polycrystalline diamond (“PCD”) materials and PCD elements formed therefrom are well known in the art. Conventional PCD may be formed by subjecting diamond particles in the presence of a suitable solvent metal catalyst material to processing conditions of high pressure/high temperature (HPHT), where the solvent metal catalyst promotes desired intercrystalline diamond-to-diamond bonding between the particles, thereby forming a PCD structure. The resulting PCD structure produces enhanced properties of wear resistance and hardness, making such PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired.
The catalyst/binder material used to facilitate diamond-to-diamond bonding can be provided generally in two ways. The catalyst/binder can be provided in the form of a raw material powder that is pre-mixed with the diamond grains or grit prior to sintering. In other methods, the catalyst/binder can be provided by infiltration into the diamond material (during high temperature/high pressure processing) from an underlying substrate material that the final PCD material is to be bonded to. After the catalyst/binder material has facilitated the diamond-to-diamond bonding, the catalyst/binder material is generally distributed throughout the diamond matrix within interstitial regions formed between the bonded diamond grains. Particularly, as shown in
Solvent catalyst materials may facilitate diamond intercrystalline bonding and bonding of PCD layers to each other and to an underlying substrate. Solvent catalyst materials used for forming conventional PCD include metals from Group VIII of the Periodic table, such as cobalt, iron, or nickel and/or mixtures or alloys thereof, with cobalt being the most common. Conventional PCD may include from 85 to 95% by volume diamond and a remaining amount of the solvent catalyst material. However, while higher metal content increases the toughness of the resulting PCD material, higher metal content also decreases the PCD material hardness, thus limiting the flexibility of being able to provide PCD coatings having desired levels of both hardness and toughness. Additionally, when variables are selected to increase the hardness of the PCD material, brittleness also increases, thereby reducing the toughness of the PCD material.
PCD is commonly used in earthen drilling operations, for example in cutting elements used on various types of drill bits. Although PCD is extremely hard and wear resistant, PCD cutting elements may still fail during normal operation. Failure may occur in three common forms, namely wear, fatigue, and impact cracking. The wear mechanism occurs due to the relative sliding of the PCD relative to the earth formation, and its prominence as a failure mode is related to the abrasiveness of the formation, as well as other factors such as formation hardness or strength, and the amount of relative sliding involved during contact with the formation. Excessively high contact stresses and high temperatures, along with a very hostile downhole environment, also tend to cause severe wear to the diamond layer. The fatigue mechanism involves the progressive propagation of a surface crack, initiated on the PCD layer, into the material below the PCD layer until the crack length is sufficient for spalling or chipping. Lastly, the impact mechanism involves the sudden propagation of a surface crack or internal flaw initiated on the PCD layer, into the material below the PCD layer until the crack length is sufficient for spalling, chipping, or catastrophic failure of the cutting element.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one aspect, embodiments of the present disclosure relate to a method of making a polycrystalline diamond compact that includes forming multiple layers of premixed diamond particles and carbonate material, where the carbonate material includes an alkaline earth metal carbonate, and where each layer has a weight percent ratio of diamond to carbonate that is different from (e.g., between) adjacent layers, and subjecting the layers to high pressure high temperature conditions.
In another aspect, embodiments of the present disclosure relate to a polycrystalline diamond construction that includes a polycrystalline diamond body made of a plurality of bonded together diamond grains forming a matrix phase, a plurality of interstitial regions interposed between the bonded together diamond grains, and a carbonate material disposed within the interstitial regions, where the carbonate material includes an alkaline earth metal carbonate.
In yet another aspect, embodiments of the present disclosure relate to a downhole tool that has a body, a plurality of blades extending from the body, and at least one polycrystalline diamond cutting element disposed on the plurality of blades, where the polycrystalline diamond cutting element has a polycrystalline diamond body made of a plurality of bonded together diamond grains forming a matrix phase, a plurality of interstitial regions interposed between the bonded together diamond grains, and a carbonate material disposed within the interstitial regions, where the carbonate material includes an alkaline earth metal carbonate, and where the body also has a height measured between a working surface and a non-working surface, and the height is greater than 4 mm.
Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.
Embodiments of the present disclosure are described with reference to the following figures. The same numbers are used throughout the figures to reference like features and components.
As used herein, the term carbonate-based polycrystalline diamond refers to the resulting material produced by subjecting individual diamond particles in the presence of a carbonate material to sufficiently high pressure high temperature (HPHT) conditions that causes intercrystalline bonding to occur between adjacent diamond crystals to form a network or matrix phase of diamond-to-diamond bonding and a plurality of interstitial regions dispersed between the bonded together diamond grains. Carbonate-based polycrystalline diamond of the present disclosure may be referred to as polycrystalline diamond or PCD, but is distinguished from conventionally formed polycrystalline diamond (described in the background section) formed with a transition metal solvent catalyst.
According to embodiments of the present disclosure, a carbonate-based polycrystalline diamond body may have a microstructure including a matrix phase of a plurality of bonded together diamond grains with a plurality of interstitial regions interposed between the bonded together diamond grains and a carbonate material disposed within the interstitial regions, where the carbonate material includes (e.g., is selected from) an alkaline earth metal carbonate or from a combination of an alkali metal carbonate and an alkaline earth metal carbonate. In carbonate-based polycrystalline diamond material of the present disclosure, inclusion of a transition metal catalyst, silicon, and/or a silicon-containing compound is not necessary for formation of diamond-to-diamond bonds, and thus the carbonate-based polycrystalline diamond bodies may not contain such materials.
As described above, the polycrystalline diamond body has a matrix phase of a plurality of bonded together diamond grains with a plurality of interstitial regions interposed between the bonded together diamond grains and one or more carbonate materials disposed within the interstitial regions. The body shown in
Carbonate-based polycrystalline diamond bodies according to embodiments of the present disclosure may be formed by sintering multiple homogeneous layers together under high pressure high temperature (HPHT) conditions. For example, a method of making a polycrystalline diamond body may include forming multiple layers of premixed diamond particles and carbonate material, where the carbonate material is selected from an alkaline earth metal carbonate. In some embodiments, the carbonate material may include an alkali metal carbonate in addition to an alkaline earth metal carbonate. As used herein, a layer may include an amount of homogeneously premixed diamond particles and carbonate material extending a thickness and an area measured perpendicular to the thickness, where each layer of premixed material may have a weight percent ratio of diamond to carbonate that is uniform throughout the thickness and across the area of the layer. The premixed layers may be sintered together by subjecting the layers to high pressure high temperature conditions, such as pressures greater than 6 GPa and temperatures greater than 1700° C. (3,092° F.) and within the region of diamond thermodynamic stability. For example, in some embodiments, the premixed layers may be sintered together under a pressure of 6-8 GPa and a temperature of greater than 2,000° C. (3,632° F.), or under a pressure of 8-10 GPa and a temperature of greater than 2,000° C. (3,632° F.).
According to embodiments of the present disclosure, each layer may have a weight percent ratio of diamond to carbonate that is different from the weight percent ratio of adjacent layers. For example, referring to
As shown, the thickness 310 of each of the layers 302, 304, 306 is substantially constant throughout the layer such that planar boundaries or interface surfaces are formed between adjacent layers. However, according to other embodiments, one or more layers may have a varying thickness such that non-planar interface surfaces or boundaries are formed. Further, premixed layers may have equal or unequal thicknesses when compared with other premixed layers. For example, as shown in
Further, the premixed layers 302, 304, 306 shown in
According to some embodiments, premixed layers having equal planar dimensions perpendicular to the thickness may be formed by pouring each layer into a canister or container having a continuous or planar inner wall. For example, a mixture of an amount of diamond particles and carbonate material having a predetermined weight percent ratio of diamond to carbonate may be poured into the canister to form a first outer layer, where the first outer layer is poured to a thickness extending axially along the canister and where the inner wall of the canister defines the area (i.e., planar dimension perpendicular to the thickness) of the first outer layer. A subsequent layer may then be formed adjacent to the first outer layer by pouring a second mixture of an amount of diamond particles and carbonate material having a predetermined weight percent ratio of diamond to carbonate (which may be different from the weight percent ratio of diamond to carbonate of the first outer layer) into the canister and adjacent to the first outer layer. The second mixture may be poured into the canister to a thickness equal to or different than the thickness of the first outer layer, where the inner wall of the canister defines the area of the subsequent layer. A second outer layer (or additional subsequent layers in embodiments having more than three premixed layers) having a predetermined weight percent ratio of diamond to carbonate (which may be different than the weight percent ratio of the subsequent layer and optionally also different than the weight percent ratio of the first outer layer) may then be poured into the canister adjacent to the subsequent layer and up to a thickness equal to or different than the thicknesses of the first outer layer and the subsequent layer, where the area of the second outer layer is defined by the inner wall shape of the canister.
Referring now to
Referring still to
In addition to varying the amount of carbonate material mixed with diamond in each layer, the layers 402, 403, 404, 405, 406 may include the same or different types of carbonate material mixed with diamond. For example, the inner layer 404 may be formed of a premixed composition of only diamond, magnesium carbonate and calcium carbonate, while the adjacent layers 403, 405 and outer layers 402, 406 may be formed of a premixed composition of only diamond and magnesium carbonate. Other premixed layers, such as inner layers, may be formed of diamond and both an alkali metal carbonate and alkaline earth metal carbonate. Further, premixed layers of the present disclosure may be described as being formed only of diamond and one or more carbonates; however, such compositions may also include minor impurities.
Referring now to
An inner layer 504 is disposed adjacent to the first outer layer 502 and also has a weight percent ratio of diamond to carbonate that is substantially constant throughout the layer. The weight percent ratio of the inner layer 504 may be less than the first outer layer 502, where a higher concentration of diamond is premixed in the first outer layer 502 than in the inner layer 504. A second outer layer 506 is disposed adjacent to the inner layer 504 and opposite from the first outer layer 502, where the second outer layer 506 has a weight percent ratio different from the weight percent ratio of the inner layer 504. The weight percent ratio of the second outer layer 506 may be less than the weight percent ratio of the inner layer 504 (and thus also less than the weight percent ratio of the first outer layer 502. However, in other embodiments, the weight percent ratio of the second outer layer may be equal to or different from the weight percent ratio of the first outer layer and may be greater than or less than the weight percent ratio of the inner layer. Further, an infiltration layer 520 may be disposed adjacent to the second outer layer 506, opposite from the inner layer 504. The infiltration layer 520 may be formed of a carbonate material, such as magnesium carbonate.
As shown in
Further, the thicknesses of each layer shown in
Infiltration layers may be positioned adjacent to the first outer layer or the second outer layer of a premixed layer assembly. For example, the infiltration layer 520 shown in
In yet other embodiments, an infiltration layer may be positioned adjacent to both the first outer layer and the second outer layer of a premixed layer assembly. For example, referring to
Diamond particles used in the diamond and carbonate mixtures may include, for example, natural or synthetic diamond, and may have varying particle sizes, depending on the end use application. For example, diamond particles may range in size from submicrometer to 100 micrometers (fine and/or coarse sized), and from 1-5 micrometers in some embodiments, from 5-10 micrometers in other embodiments, and from 15-20 micrometers in yet other embodiments. Further, diamond particles may have a monomodal distribution (having the same general average particle size) or a multimodal distribution (having different volumes of different average particle sizes). Carbonate materials that may be used in the diamond and carbonate mixtures forming premixed layers of the present disclosure (and as an infiltration material in some embodiments) may include alkali metal carbonates and/or alkaline earth metal carbonates, such as, for example, magnesium carbonate or calcium carbonate. The carbonate material may have a particle size ranging from submicron to 100 micrometers and from 0.1 to 30 micrometers in some embodiments. Further, different premixed layers may have different particle size ranges. For example, center layers can have tougher, coarse grade diamond, while the carbonate material may have a substantially uniform particle size range throughout the premixed layer assembly.
Further, according to embodiments of the present disclosure, the weight percent of carbonate in a premixed layer may range from greater than 0 percent carbonate by weight to less than about 20 percent carbonate by weight, and the weight percent of diamond in a premixed layer may range from greater than 80 percent diamond by weight to less than 99 percent diamond by weight. For example, some embodiments may include a diamond and carbonate mixture having a weight percent ratio of diamond to carbonate that includes greater than about 90 percent by weight of diamond and less than about 10 percent by weight of carbonate material. In another embodiment, one or more premixed layers may have a weight percent ratio of diamond to carbonate that includes greater than 95 percent by weight diamond and less than 5 percent by weight carbonate. For example, in some embodiments, one or both outer layers of a premixed layer assembly may have 4 percent or less by weight of carbonate material and 96 percent or more by weight diamond. In other embodiments, one or both outer layers of a premixed layer assembly may have 2 percent or less by weight of carbonate material and 98 percent or more by weight diamond, depending on grain size.
As shown in
According to embodiments of the present disclosure, premixed layers of diamond and one or more carbonate materials may be sintered under high pressure high temperature conditions to form a polycrystalline diamond body. High pressure high temperature conditions may include pressures greater than 6 GPa and temperatures greater than 1,700° C. Further, as described above, an infiltration layer made of one or more carbonates of an alkali or alkaline earth metal may be positioned adjacent to one of the premixed layers, where during the sintering process, the carbonates of the infiltration layer infiltrate a depth into the premixed layers. The depth of infiltration may depend on the composition of the premixed layers and the sintering conditions, for example.
For example,
Polycrystalline diamond bodies made according to embodiments of the present disclosure may be used as cutting elements on down hole cutting tools, such as drill bits. For example, down hole tools of the present disclosure may have a body, a plurality of blades extending from the body, and at least one polycrystalline diamond cutting element according to embodiments of the present disclosure disposed on the plurality of blades. The at least one polycrystalline diamond cutting element is disposed on the blades such that a working surface, i.e., a surface that contacts and cuts the formation being drilled, is positioned at a leading face of the blade and faces in the direction of the drill's rotation. The polycrystalline diamond cutting element may include a polycrystalline diamond body made of a plurality of bonded together diamond grains forming a matrix phase, a plurality of interstitial regions interposed between the bonded together diamond grains, and a carbonate material disposed within the interstitial regions, where the carbonate material is selected from at least one of an alkali metal carbonate and/or an alkaline earth metal carbonate. Further, as described above, the polycrystalline diamond body may have a height measured between a working surface and a non-working surface of greater than 4 mm.
A polycrystalline diamond cutting element may be rotatably secured to the blade, such as disclosed in U.S. Pat. No. 8,091,655, or may be mechanically secured to the blade, such as disclosed in U.S. Provisional Patent Application No. 61/599,665. In yet other embodiments, a polycrystalline diamond cutting element of the present disclosure may be brazed within a pocket formed in a blade or body of a down hole cutting tool.
As described above, a polycrystalline diamond body according to embodiments of the present disclosure has a plurality of bonded together diamond grains forming a matrix phase, a plurality of interstitial regions interposed between the bonded together diamond grains, and a carbonate material disposed within the interstitial regions, where the carbonate material is selected from at least one of an alkali metal carbonate and/or an alkaline earth metal carbonate. In such embodiments, the polycrystalline diamond material may be formed without the use of a metal solvent catalyst so that the finished polycrystalline diamond body does not contain any metal solvent catalyst.
Forming a carbonate-based polycrystalline diamond body according to methods disclosed herein allows for the formation of a thick solid polycrystalline diamond. For example, a polycrystalline diamond body of the present disclosure may include a working surface, a side surface, and a non-working surface distal from the working surface, where a distance between the working surface and non-working surface, or height, is greater than 4 mm. In some embodiments, a polycrystalline diamond body may have a height of greater than 6 mm.
Further, forming carbonate-based polycrystalline diamond material according to methods disclosed herein allows for the formation of a polycrystalline diamond body having increased wear resistance when compared with conventionally formed and leached polycrystalline diamond (i.e., polycrystalline diamond body formed with a metal solvent catalyst and then a portion of the catalyst material removed). For example,
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.
Pursuant to 35 U.S.C. §119, this application claims the benefit of U.S. Provisional Patent Application No. 61/726,707, filed on Nov. 15, 2012, and U.S. patent application Ser. No. 14/079,689, filed on Nov. 14, 2013, which are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61726707 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14079689 | Nov 2013 | US |
Child | 15276183 | US |