The field of the invention generally relates to balloon inflation devices and methods. More particularly, the field of the invention relates to balloon dilation devices and methods for the treatment of sinusitis.
Sinusitis is a condition affecting over 35 million Americans, and similarly large populations in the rest of the developed world. Sinusitis occurs when one or more of the four paired sinus cavities (i.e., maxillary, ethmoid, frontal, sphenoid) becomes obstructed, or otherwise has compromised drainage. Normally the sinus cavities, each of which are lined by mucosa, produce mucous which is then moved by beating cilia from the sinus cavity out to the nasal cavity and down the throat. The combined sinuses produce approximately one liter of mucous daily, so the effective transport of this mucous is important to sinus health.
Each sinus cavity has a drainage pathway or outflow tract opening into the nasal passage. This drainage passageway can include an ostium, as well as a “transition space” in the region of the ostia, such as the “frontal recess,” in the case of the frontal sinus, or an “ethmoidal infundibulum,” in the case of the maxillary sinus. When the mucosa of one or more of the ostia or regions near the ostia become inflamed, the egress of mucous is interrupted, setting the stage for an infection and/or inflammation of the sinus cavity, i.e., sinusitis. Though many instances of sinusitis may be treatable with appropriate medicates, in some cases sinusitis persists for months or more, a condition called chronic sinusitis, and may not respond to medical therapy. Some patients are also prone to multiple episodes of sinusitis in a given period of time, a condition called recurrent sinusitis.
Balloon dilation has been applied to treat constricted sinus passageways for the treatment of sinusitis. These balloon dilation devices typically involve the use of an inflatable balloon located at the distal end of a catheter such as a balloon catheter. Generally, the inflatable balloon is inserted into the constricted sinus passageway in a deflated state. The balloon is then expanded to open or reduce the degree of constriction in the sinus passageway being treated to facilitate better sinus drainage and ventilation. At the same time most, if not all, of the functional mucosal tissue lining of the sinuses and their drainage passageways are preserved.
Exemplary devices and methods particularly suited for the dilation of anatomic structures associated with the maxillary and anterior ethmoid sinuses are disclosed, for example, in U.S. Pat. No. 7,520,876 and U.S. Patent Application Publication No. 2008-0172033. Other systems have been described for the treatment of various other sinuses including the frontal sinus. For example, U.S. Patent Application Publication No. 2008-0097295 discloses a frontal sinus guide catheter (
In a first embodiment of the invention, a balloon dilation catheter includes a substantially rigid inner guide member and a movable shaft coupled to a balloon that is slidably mounted on the substantially rigid inner guide member. To treat a drainage pathway of a sinus cavity (e.g., frontal sinus cavity) of a subject using the balloon dilation catheter, the substantially rigid inner guide member is advanced into a drainage pathway of the subject via a nasal passageway. The shaft and balloon are then advanced in a distal direction over the substantially rigid inner guide member to place the balloon in the drainage pathway. This enables the balloon to track over the inner guide member. The balloon is inflated to expand or otherwise remodel the drainage pathway. Where the sinus cavity is the frontal sinus cavity the drainage pathway is the frontal recess.
In another aspect of the invention, a device for dilating the outflow tract of a sinus cavity includes a substantially rigid inner guide member having a proximal end and a distal end and a shaft coupled to a balloon, the shaft having a first lumen along at least a portion thereof containing the substantially rigid inner guide member, the shaft having a second lumen operatively coupled to the interior of the balloon. A handle is disposed along a proximal portion of the substantially rigid inner guide member, the handle including a moveable knob operatively coupled to the shaft, wherein distal advancement of the knob advances the shaft and balloon over the substantially rigid inner guide in a distal direction.
Alternatively, the inner guide member 14 may have some degree of malleability such that the user may bend or impart some desired shape or configuration to the distal end of the inner guide member 14. As explained herein in more detail, the inner guide member 14 may include an optional lumen 18 (best illustrated in
Still referring to
Still referring to
As seen in
Referring to
The inner guide member 14 may have a length of about 7 inches to about 11 inches from the distal end 20 to the proximal end 21 when loaded into the handle 12, although other dimensions may be used. The inner guide member 14 may be formed from stainless steel hypotube having an inner diameter in the range of about 0.020 inch to about 0.050 inch, and more preferably between about 0.036 inch and 0.040 inch, with a wall thickness within the range of about 0.005 inch to about 0.020 inch, and more preferably between about 0.008 inch to about 0.012 inch. The curved distal portion 16 of the inner guide member 14 may be formed right to the distal end 20 and may have a radius of curvature of about 0.25 inch to about 1.5 inch, and more preferably about 0.75 to about 1.25 inch.
The length of the inner guide member 14 that projects distally from the distal-most portion of the balloon 36 is about 0.5 inch to about 2.0 inch, and more preferably, about 0.8 inch to about 1.2 inch when the balloon 36 is in the fully retracted state (e.g., illustrated in
The balloon 36 is mounted on the shaft 30 so as to form a fluidic seal between the two components. The balloon 36 may be bonded to the shaft using a weld, adhesive, or the like. Alternately, the balloon 36 may be secured to the shaft using a mechanical connection. Generally, any technique known to those skilled in the art may be used to secure to the balloon 36 to the shaft 30. Given that the balloon 36 is secured directly to the shaft 30, both structures are slidably mounted over the inner guide member 14. The balloon 36 generally takes on a cylindrical-shape when inflated. While not limited to specific dimensions, the inflated balloon 36 has a diameter within the range of about 3 mm to about 9 mm, and more preferably a diameter within the range of about 5 to about 7 mm when inflated. The length of the balloon 36 may generally fall within the range of about 10 mm to 25 mm although other lengths may be used. Both the shaft 30 and the balloon 36 are preferably formed of high strength but flexible polymeric materials such as polyamides (e.g., Nylon), PEBAX or the like. The balloon 36 may be “blow molded” to a relatively thin wall thickness, and capable of holding relatively high pressures from about 6 atmospheres to about 20 atmospheres of inflation pressure. The balloon 36 is inflated using a fluid which is typically a liquid such as water or saline.
Referring now to
As best seen in
The helical portion 52 of the shaft 30 may be formed by “skiving” away a portion of the shaft 30.
For example, U.S. Pat. Nos. 5,391,199 and 5,443,489, which are incorporated by reference, describe a system wherein coordinates of an intrabody probe are determined using one or more field sensors such as, Hall effect devices, coils, or antennas that are carried on the probe. U.S. Patent Application Publication No. 2002-0065455, which is also incorporated by reference, describes a system that is capable of generating a six-dimensional position and orientation representation of the tip of a catheter using a combination of sensor and radiation coils. U.S. Patent Application Publication No. 2008-0269596, which is also incorporated by reference, describes yet another monitoring system that has particular applications in orthopedic procedures. Commercial systems such as the LANDMARX Element (Medtronic Xomed Products, Inc., Jacksonville, Fla.) are available for use in conjunction with ENT procedures.
In the embodiment of
Other commercial systems may also be used in connection with the balloon dilation catheter 10 illustrated in
Referring now to
Now referring to
After the frontal recess 102 has been widened or otherwise remodeled, the balloon 36 is deflated and removed as illustrated in
In certain patients, treatment of one or both frontal sinuses 104 as described above may be adequate. In other patients, additional sinuses may need to be treated, particularly the maxillary and/or anterior ethmoid sinuses. In such patients, a combination procedure may be well suited. The maxillary and/or anterior ethmoid sinuses can be treated with a system such as described in U.S. Pat. No. 7,520,876 and U.S. Patent Application Publication No. 2008-0172033, commercially available as the FinESS system by Entellus Medical, Inc. of Maple Grove, Minn. Alternatively, other sinuses could be treated more conventionally using surgical techniques such as, for instance, functional endoscopic sinus surgery (FESS).
Also, the sphenoid and/or maxillary sinus outflow tracts could be dilated with the embodiment of the balloon catheter 10 described above. It is also contemplated that the balloon catheter 10, particularly the embodiment of
While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. The invention, therefore, should not be limited, except to the following claims, and their equivalents.
Application is a continuation of U.S. patent application Ser. No. 15/139,052 filed on Apr. 26, 2016, which itself is a continuation of U.S. patent application Ser. No. 14/524,889, filed on Oct. 27, 2014, now issued as U.S. Pat. No. 9,339,637, which itself is a continuation of U.S. application Ser. No. 13/644,538, filed on Oct. 4, 2012, now U.S. Pat. No. 8,882,795, which is a continuation of U.S. patent application Ser. No. 13/116,712 filed on May 26, 2011, which is a continuation of U.S. application Ser. No. 12/479,521, filed on Jun. 5, 2009, now U.S. Pat. No. 8,282,667. The above-noted Applications are incorporated by reference as if set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
2525183 | Robison | Oct 1950 | A |
3800788 | White | Apr 1974 | A |
3861393 | Durand | Jan 1975 | A |
4566438 | Liese | Jan 1986 | A |
4737141 | Spits | Apr 1988 | A |
5024658 | Kozlov et al. | Jun 1991 | A |
5021043 | Becker et al. | Jul 1991 | A |
5169386 | Becker et al. | Dec 1992 | A |
5195989 | Euteneuer | Mar 1993 | A |
5324257 | Osborne | Jun 1994 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5415634 | Glynn et al. | May 1995 | A |
5441497 | Narciso, Jr. | Aug 1995 | A |
5443489 | Ben-Haim | Aug 1995 | A |
5466222 | Ressemann et al. | Nov 1995 | A |
5470315 | Adams | Nov 1995 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5588950 | Sano et al. | Dec 1996 | A |
5632762 | Myler | May 1997 | A |
5645628 | Thome | Jul 1997 | A |
5795325 | Valley et al. | Aug 1998 | A |
5964767 | Tapia et al. | Oct 1999 | A |
6083188 | Becker | Jul 2000 | A |
6090132 | Fox | Jul 2000 | A |
6113567 | Becker | Sep 2000 | A |
6206870 | Kanner | Mar 2001 | B1 |
6238364 | Becker | May 2001 | B1 |
6491940 | Levin | Dec 2002 | B1 |
6543452 | Lavigne | Apr 2003 | B1 |
D501677 | Becker | Feb 2005 | S |
6851424 | Scopton | Feb 2005 | B2 |
7500971 | Chang et al. | Mar 2009 | B2 |
7520876 | Ressemann et al. | Apr 2009 | B2 |
7678099 | Ressemann et al. | Mar 2010 | B2 |
7785315 | Muni et al. | Aug 2010 | B1 |
7842062 | Keith et al. | Nov 2010 | B2 |
7879061 | Keith et al. | Feb 2011 | B2 |
7918871 | Truitt et al. | Apr 2011 | B2 |
8114113 | Becker | Feb 2012 | B2 |
8146400 | Goldfarb et al. | Apr 2012 | B2 |
8241266 | Keith et al. | Aug 2012 | B2 |
8277478 | Drontle et al. | Oct 2012 | B2 |
8282667 | Drontle et al. | Oct 2012 | B2 |
8348969 | Keith et al. | Jan 2013 | B2 |
8568439 | Keith et al. | Oct 2013 | B2 |
8585728 | Keith et al. | Nov 2013 | B2 |
8585729 | Keith et al. | Nov 2013 | B2 |
8623043 | Keith et al. | Jan 2014 | B1 |
8657846 | Keith et al. | Feb 2014 | B2 |
8801670 | Drontle et al. | Aug 2014 | B2 |
8834513 | Hanson et al. | Sep 2014 | B2 |
8882795 | Drontle et al. | Nov 2014 | B2 |
8888686 | Drontle et al. | Nov 2014 | B2 |
8915938 | Keith et al. | Dec 2014 | B2 |
8986340 | Drontle et al. | Mar 2015 | B2 |
9005284 | Ressemann | Apr 2015 | B2 |
9011412 | Albritton, IV et al. | Apr 2015 | B2 |
9101739 | Lesch, Jr. et al. | Aug 2015 | B2 |
9192748 | Ressemann et al. | Nov 2015 | B2 |
9278199 | Keith et al. | Mar 2016 | B2 |
9282986 | Hanson | Mar 2016 | B2 |
9283360 | Lesch et al. | Mar 2016 | B2 |
9320876 | Ressemann et al. | Apr 2016 | B2 |
9333327 | Setliff, III et al. | May 2016 | B2 |
9339637 | Drontle et al. | May 2016 | B2 |
9370650 | Hanson | Jun 2016 | B2 |
9433343 | Drontle et al. | Sep 2016 | B2 |
9440049 | Drontle et al. | Sep 2016 | B2 |
94333343 | Drontle et al. | Sep 2016 | |
9486614 | Drontle et al. | Nov 2016 | B2 |
9550049 | Hanson | Jan 2017 | B2 |
9694167 | Keith et al. | Jul 2017 | B2 |
9700705 | Lesch, Jr. et al. | Jul 2017 | B2 |
9775975 | Ressemann et al. | Oct 2017 | B2 |
10022525 | Hanson et al. | Jul 2018 | B2 |
10029069 | Keith et al. | Jul 2018 | B2 |
10086181 | Lesch et al. | Oct 2018 | B2 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020138121 | Fox | Sep 2002 | A1 |
20040054349 | Brightbill | Mar 2004 | A1 |
20040064083 | Becker | Apr 2004 | A1 |
20040064150 | Becker | Apr 2004 | A1 |
20040068299 | Laske et al. | Apr 2004 | A1 |
20050059931 | Garrison et al. | Mar 2005 | A1 |
20050075661 | Levine et al. | Apr 2005 | A1 |
20050240147 | Makower et al. | Oct 2005 | A1 |
20050245906 | Makower et al. | Nov 2005 | A1 |
20050251119 | Eaton et al. | Nov 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060063973 | Makower et al. | Mar 2006 | A1 |
20060095066 | Chang et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060106361 | Muni et al. | May 2006 | A1 |
20060111691 | Bolmsjo et al. | May 2006 | A1 |
20060149310 | Becker | Jul 2006 | A1 |
20060210605 | Chang et al. | Sep 2006 | A1 |
20060284428 | Beadle et al. | Dec 2006 | A1 |
20060293612 | Jenson et al. | Dec 2006 | A1 |
20070005094 | Eaton et al. | Jan 2007 | A1 |
20070073269 | Becker | Mar 2007 | A1 |
20070129751 | Muni et al. | Jun 2007 | A1 |
20070135789 | Chang et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070167682 | Goldfarb et al. | Jul 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070208301 | Evard et al. | Sep 2007 | A1 |
20070249896 | Goldfarb et al. | Oct 2007 | A1 |
20070250105 | Ressemann et al. | Oct 2007 | A1 |
20070270644 | Goldfarb et al. | Nov 2007 | A1 |
20070282305 | Goldfarb et al. | Dec 2007 | A1 |
20070293726 | Goldfarb et al. | Dec 2007 | A1 |
20070293727 | Goldfarb et al. | Dec 2007 | A1 |
20080015472 | Ressemann et al. | Jan 2008 | A1 |
20080015540 | Muni et al. | Jan 2008 | A1 |
20080033353 | Truitt et al. | Feb 2008 | A1 |
20080082045 | Goldfarb et al. | Apr 2008 | A1 |
20080097154 | Makower et al. | Apr 2008 | A1 |
20080097239 | Chang et al. | Apr 2008 | A1 |
20080097295 | Makower et al. | Apr 2008 | A1 |
20080097400 | Chang et al. | Apr 2008 | A1 |
20080097514 | Chang et al. | Apr 2008 | A1 |
20080097515 | Chang et al. | Apr 2008 | A1 |
20080097516 | Chang et al. | Apr 2008 | A1 |
20080103521 | Makower et al. | May 2008 | A1 |
20080119693 | Makower et al. | May 2008 | A1 |
20080125626 | Chang et al. | May 2008 | A1 |
20080132938 | Chang et al. | Jun 2008 | A1 |
20080154217 | Carrez | Jun 2008 | A1 |
20080154237 | Chang et al. | Jun 2008 | A1 |
20080154250 | Makower et al. | Jun 2008 | A1 |
20080172033 | Keith et al. | Jul 2008 | A1 |
20080195041 | Goldfarb et al. | Aug 2008 | A1 |
20080228085 | Jenkins et al. | Sep 2008 | A1 |
20080234720 | Chang et al. | Sep 2008 | A1 |
20080269596 | Revie et al. | Oct 2008 | A1 |
20080275483 | Makower et al. | Nov 2008 | A1 |
20080281156 | Makower et al. | Nov 2008 | A1 |
20080287908 | Muni | Nov 2008 | A1 |
20080319424 | Muni et al. | Dec 2008 | A1 |
20090005763 | Makower et al. | Jan 2009 | A1 |
20090028923 | Muni et al. | Jan 2009 | A1 |
20090030274 | Goldfarb et al. | Jan 2009 | A1 |
20090030380 | Binmoeller | Jan 2009 | A1 |
20090073718 | Chung | Mar 2009 | A1 |
20090093823 | Chang et al. | Apr 2009 | A1 |
20090132033 | Maurer et al. | May 2009 | A1 |
20090187098 | Makower et al. | Jul 2009 | A1 |
20090198216 | Muni et al. | Aug 2009 | A1 |
20090204142 | Becker | Aug 2009 | A1 |
20090216196 | Drontle et al. | Aug 2009 | A1 |
20090318875 | Friedman | Dec 2009 | A1 |
20100016811 | Smith | Jan 2010 | A1 |
20100030113 | Morriss et al. | Feb 2010 | A1 |
20100168511 | Muni et al. | Jul 2010 | A1 |
20100211007 | Lesch et al. | Aug 2010 | A1 |
20100241155 | Chang et al. | Sep 2010 | A1 |
20100274222 | Setliff, III et al. | Oct 2010 | A1 |
20100312101 | Drontle | Dec 2010 | A1 |
20110071349 | Drontle et al. | Mar 2011 | A1 |
20110224652 | Drontle et al. | Sep 2011 | A1 |
20120010646 | Keith et al. | Jan 2012 | A1 |
20120184983 | Chang et al. | Jul 2012 | A1 |
20120283625 | Keith et al. | Nov 2012 | A1 |
20130030458 | Drontle et al. | Jan 2013 | A1 |
20130030459 | Drontle et al. | Jan 2013 | A1 |
20130041463 | Ressemann | Feb 2013 | A1 |
20130072958 | Ressemann et al. | Mar 2013 | A1 |
20130123833 | Lesch et al. | May 2013 | A1 |
20140350520 | Drontle et al. | Nov 2014 | A1 |
20140357959 | Hanson et al. | Dec 2014 | A1 |
20140364700 | Hanson et al. | Dec 2014 | A1 |
20140378776 | Hanson et al. | Dec 2014 | A1 |
20150031950 | Drontle et al. | Jan 2015 | A1 |
20150105818 | Keith et al. | Apr 2015 | A1 |
20160038726 | Hanson et al. | Feb 2016 | A1 |
20160151614 | Ressemann et al. | Jun 2016 | A1 |
20160166814 | Lesch et al. | Jun 2016 | A1 |
20160367286 | Drontle et al. | Dec 2016 | A1 |
20160375229 | Setfliff, III et al. | Dec 2016 | A1 |
20170007282 | Drontle | Jan 2017 | A1 |
20170028112 | Drontle et al. | Feb 2017 | A1 |
20170050001 | Drontle et al. | Feb 2017 | A1 |
20170113027 | Drontle et al. | Apr 2017 | A1 |
20170368319 | Lesch, Jr. et al. | Dec 2017 | A1 |
20180008806 | Ressemann et al. | Jan 2018 | A1 |
20180304051 | Keith et al. | Oct 2018 | A1 |
20180304058 | Hanson et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1 129 634 | Jan 1985 | EP |
159815 | Nov 2005 | EP |
2009-505691 | Feb 2009 | JP |
WO 91177787 | Nov 1991 | WO |
WO 9600033 | Jan 1996 | WO |
WO 2005086945 | Sep 2005 | WO |
WO 2007035204 | Mar 2007 | WO |
WO 2009065085 | May 2009 | WO |
WO2010014799 | Feb 2010 | WO |
2017135980 | Aug 2017 | WO |
2017192394 | Nov 2017 | WO |
Entry |
---|
Iro, H., J. Zenk, “A new device for frontal sinus endoscopy: First Clinical Report”, Department of Otorhinolaryngology, University of Eralngen-Nuremberg, Germany. Otorhinolaryngology, Head and Neck Surgery vol. 125 No. 6, Dec. 2001, pp. 613-616 (4 pages). |
Petersen, Robert J., Canine Fossa Puncture, The Laryngoscope Office, Oct. 5, 1972, pp. 369-371. |
Elidan, J., MD., Irrigation of the Maxillary Sinus by Canine Fossa Puncture Experience with 202 Patients, Ann Otol Rhinol Laryngol, 92:1983, pp. 528-529. |
Yanagisawa, Eiji, et al., Trans-Canine-Fossa Maxillary Sinoscopy for Biopsy Via the Stammberger Technique, ENT Rhinoscopic Clinic, Aug. 2001 Rhino, pp. 1-3. |
Yanagisawa, Eiji, et al., Powered Endoscopic Inferior Meatal Antrostomy Under Canine Fossa Telescopic Guidance, ENT-Ear, Nose & Throat Journal, Sep. 2001, pp. 618-620. |
Sathananthar, Shanmugam, et al., Canine Fossa Puncture and Clearance of the Maxillary Sinus for the Severely Diseased Maxillary Sinus, The Laryngoscope 115: Jun. 2005, pp. 1026-1029. |
Robinson, Simon, et al., Patterns of Innervation of the Anterior Maxilla: A Cadaver Study with Relevance to Canine Fossa Puncture of the Maxillary Sinus, Laryngoscope 115: Oct. 2005, pp. 1785-1788. |
Bolger, William, E., et al., Catheter-Based Dilation of the Sinus Ostia: Initial Safety and Feasibility Analysis in a Cadaver Model, Maryland Sinus Clinic, Bethesda, Maryland, and California Sinus Institute, Palo Alto, California, OceanSide Publications, Inc., May-Jun. 2006, vol. 20, No. 3, pp. 290-294. |
Friedman, Michael, M.D. et al., Functional Endoscopic Dilatation of the Sinuses (FEDS): Patient Selection and Surgical Technique, Operative Technologies in Otolaryngology, vol. 17, No. 2, Jun. 2006, pp. 126-134. |
Jones, Nick, Commentary on “Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation”, Annals of Otology, Rhinology & Laryngology 115(4), pp. 300-301 (2006). |
Bolger, William E., Commentary Misconceptions Regarding Balloon Catheter Dilation of Paranasal Sinus Ostia, Annals of Otology, Rhinology & Laryngology 115(10): 791-792 (2006). |
Lanza, Donald, C., et al., Commentary Balloon Sinuplasty: Not Ready for Prime Time, Annals of Otology, Rhinology & Laryngology 115(10): 789-790 (2006). |
Brown, Christopher, L., et al., “Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation”, Annals of Otology, Rhinology & Laryngology 115(4):293-299 (2006). |
Gottman, D., et al., “Balloon Dilatation of Recurrent Ostia Occlusion of the Frontal Sinus”, ECR Mar. 3, 2001, 2:-3:30 PM, Vienna Austria (1 page). |
Entellus Medical, 510(k) Premarket Notification cover letter and Attachment B: Predicate Device Labeling, dated Aug. 15, 2007. |
R. Peterson, Sinus Puncture Therreapy: Canine Fossa Puncture Method “How I Do It” Head and Neck, The Larynsgoscope 91: Dec. 1981, pp. 2126-2128. |
T.G.A. Ijaduola, Use of a Foley Catheter for Short-Tem Drainage of Frontal Sinus Surgery, Journ. of Laryngology and Otology, Apr. 1989, vol. 103, pp. 375-378. |
A. Gatot et al., Early Treatment of Oribital Floor Fractures with Catheter Balloon in Childre, Int'l. J. of Ped. Otorhinolaryngology, 21 (1991) 97-101. |
D.I. Tarasov et al., Treatment of Chronic Ethmoiditis by IntraCellular Administration of Medicines to the Ethmoidal Labyrinth, Vestn Otorinolaringol. Nov.-Dec. 1978; (6):45-47 (Abstract in English). |
J.M. Robison, Pressure Treatment of Maxillary Sinusitis, J.A.M.A., May 31, 1952, pp. 436-440. |
J.M. Robison, Pressure Treatment of Purulent Maxillary Sinusitis, Texas State Journal of Medicine, May 1952, pp. 281-288. |
Entellus Medical, 510(k) Letter (Amendment 1) and Attachment D&E, dated Mar. 13, 2008. |
Gottman et al., Balloon Dilation of Recurrent Ostial Occlusion of the Frontal Sinus, Gottman et al.: Abstract (B-0453) Mar. 2001, 22 pages. |
PCT International Search Report for PCT/US2007/088834, Applicant: Entellus Medical, Inc., Forms PCT/ISA/220 and PCT/ISA/210, dated May 20, 2008 (4 pages). |
PCT Written Opinion for PCT/US2007/088834, Applicant: Entellus Medical, Inc., Forms PCT/ISA/237, dated May 20, 2008 (10 pages). |
PCT International Search Report for PCT/US2007/66187, Applicant: Entellus Medical, Inc., Forms PCT/ISA/220 and PCT/ISA/210, dated Apr. 17, 2008 (5 pages). |
PCT Written Opinion for PCT/US2007/66187, Applicant: Entellus Medical, Inc., Forms PCT/ISA/237, dated Apr. 17, 2008 (5 pages). |
Folweiler, David S., Nasal Specific Technique as Part of a Chropractic Approach to Chronic Sinusitis and Sinus Headaches, Journal of Manipulative and Physiological Therapeutics, vol. 18, No. 1 (Jan. 1995). |
PCT International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) of the International Bureau for PCT/US2007/066187, Applicant: Entellus Medical, Inc., Form PCT/IB/326, dated Oct. 30, 2006 (4 pages). |
Medtronic, ENT Image-Guided Surgery System, http://www.xomed.com/xomed_products_element.html, Jun. 3, 2009 (2 pages). |
International Search Report dated Aug. 2, 2010, for PCT/US2010/037508, Applicant: Entellus Medical, Inc. (4 pages). |
Written Opinion of the International Search Authority dated Aug. 2, 2010, for PCT/US2010/037508, Applicant: Entellus Medical, Inc. (4 pages). |
International Preliminary Report on Patentability dated Jul. 30, 2009, for PCT/US2007/088834, Applicant: Entellus Medical, Inc. (9 pages). |
PCT International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) for PCT/US2010/037508, Applicant: Entellus Medical Inc., Form PCT/IB/326 and 373, dated Dec. 15, 2011 (6pages). |
Extended European Search Report dated Oct. 23, 2012 issued by the European Patent Office in EP Application No. 10784199.1-1526 /2437843 PCT/US2010037508, Applicant: Entellus Medical, Inc., (6pages). |
Notification of First Office Action dated Apr. 2, 2013 issued by the Chinese Patent Office in Chinese Patent Application No. 201080024851.X, Applicant: Entellus Medical, Inc., (7pages), including an English translation prepared by Kangxin Partners, P.C. (7pages). |
Communication under Rule 71(3) EPC issued by the European Patent Office dated May 21, 2015 in European Patent Application No. 10 784 199.1-1506, Applicant: Entellus Medical, Inc., (6pages). |
Notification of the Second Office Action issued by the The State Intellectual Property Office of P.R.C. dated Dec. 25, 2013 in Chinese Patent Application No. 201080024851.X including English Translation prepared by Kangxin Partners, Applicant: Entellus Medical, Inc., (5pages). |
Notification of the Third Office Action issued by the The State Intellectual Property Office of P.R.C. dated Jul. 15, 2014 in Chinese Patent Application No. 201080024851.X including English Translation prepared by Kangxin Partners, Applicant: Entellus Medical, Inc., (8pages). |
Notice of Rejection issued by the Japanese Patent Office dated Mar. 18, 2014 in Japanese Patent Application No. 2012-514199 including English Translation prepared by Kita-Aoyama International Patent Bureau, Applicant: Entellus Medical, Inc., (4pages). |
Decision of Rejection issued by the Japanese Patent Office dated Sep. 2, 2014 in Japanese Patent Application No. 2012-514199 including English Translation prepared by Kita-Aoyama International Patent Bureau, Applicant: Entellus Medical, Inc., (3pages). |
Notice of Allowance issued by the Japanese Patent Office dated May 12, 2015 in Japanese Patent Application No. 2012-514199 including English Translation prepared by Kita-Aoyama International Patent Bureau, Applicant: Entellus Medical, Inc., (4pages). |
The extended European search report dated Jan. 21, 2016 in European Application No. 15184180.6-1501, (6pages). |
Communication pursuant to Article 94(3) EPC dated May 4, 2018 in European Patent Application No. 15184180.6-1132, Applicant: Entellus Medical, Inc., (4pages). |
Office Action dated Jun. 1, 2018 in U.S. Appl. No. 15/139,052, (44pages). |
Fiber-optic Surgical Probe, http://www.anthonyproducts.com/store/p-389-fiber-optic-surgical-probe.aspx, 1 page, at least as early as Jul. 12, 2011. |
Light Probe Kit, http://www.fiberoptix.com/products/light-probe-kit.html, 2 pages, Apr. 2010. |
Number | Date | Country | |
---|---|---|---|
20170113027 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15139052 | Apr 2016 | US |
Child | 15345322 | US | |
Parent | 14524889 | Oct 2014 | US |
Child | 15139052 | US | |
Parent | 13644538 | Oct 2012 | US |
Child | 14524889 | US | |
Parent | 13116712 | May 2011 | US |
Child | 13644538 | US | |
Parent | 12479521 | Jun 2009 | US |
Child | 13116712 | US |