Sinus illumination lightwire device

Information

  • Patent Grant
  • 9155492
  • Patent Number
    9,155,492
  • Date Filed
    Friday, September 24, 2010
    13 years ago
  • Date Issued
    Tuesday, October 13, 2015
    8 years ago
Abstract
An illuminating wire medical device may include an elongate flexible housing and an illuminating fiber and a core wire extending through at least part of the housing, the core wire providing desired pushability and torquability. The illuminating device may further include a connector assembly cooperating with the illuminating fiber to accommodate changes in length, to absorb forces applied during use of the device and to channel errant light away from the illuminating fibers of the device.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical devices, systems and methods and more particularly to methods and devices for performing minimally invasive procedures that reduce the need to provide fluoroscopic or other radiographic visualization.


BACKGROUND

The skull contains a series of cavities known as paranasal sinuses that are connected by passageways. The paranasal sinuses include frontal sinuses, ethmoid sinuses, sphenoid sinuses and maxillary sinuses. The paranasal sinuses are lined with mucus-producing mucosal tissue and ultimately open into the nasal cavity. Normally, mucus produced by the mucosal tissue slowly drains out of each sinus through an opening known as an ostium. If the mucosal tissue of one of these passageways becomes inflamed for any reason, the cavities which drain through that passageway can become blocked. This blockage can be periodic (resulting in episodes of pain) or chronic. This interference with drainage of mucus (e.g., occlusion of a sinus ostium) can result in mucosal congestion within the paranasal sinuses. Chronic mucosal congestion of the sinuses can cause damage to the epithelium that lines the sinus with subsequent decreased oxygen tension and microbial growth (e.g., a sinus infection).


The term “sinusitis” refers generally to any inflammation or infection of the paranasal sinuses caused by bacteria, viruses, fungi (molds), allergies or combinations thereof. It has been estimated that chronic sinusitis (e.g., lasting more than 3 months or so) results in 18 million to 22 million physician office visits per year in the United States. Patients who suffer from sinusitis typically experience at least some of the following symptoms: headaches or facial pain; nasal congestion or post-nasal drainage; difficulty breathing through one or both nostrils; bad breath; and/or pain in the upper teeth.


One of the ways to treat sinusitis is by restoring the lost mucus flow. The initial therapy is typically drug therapy using anti-inflammatory agents to reduce the inflammation and antibiotics to treat the infection. A large number of patients do not respond to drug therapy. Currently, the gold standard for patients with chronic sinusitis that do not respond to drug therapy is a corrective surgery called Functional Endoscopic Sinus Surgery (FESS).


During FESS, an endoscope is inserted into the nose and, under visualization through the endoscope, the surgeon may remove diseased or hypertrophic tissue or bone and may enlarge the ostia of the sinuses to restore normal drainage of the sinuses. FESS procedures are typically performed with the patient under general anesthesia.


Although FESS continues to be the gold standard therapy for surgical treatment of severe sinus disease, FESS does have several shortcomings. For example, FESS can cause significant post-operative pain. Also, some FESS procedures are associated with significant postoperative bleeding and, as a result, nasal packing is frequently placed in the patient's nose for some period of time following the surgery. Such nasal packing can be uncomfortable and can interfere with normal breathing, eating, drinking etc. Also, some patients remain symptomatic even after multiple FESS surgeries. Additionally, some FESS procedures are associated with risks of iatrogenic orbital, intracranial and sinonasal injury. Many otolaryngologists consider FESS an option only for patients who suffer from severe sinus disease (e.g., those showing significant abnormalities under CT scan). Thus, patients with less severe disease may not be considered candidates for FESS. One of the reasons why FESS procedures can be bloody and painful relates to the fact that instruments having straight, rigid shafts are used. In order to target deep areas of the anatomy with such straight rigid instrumentation, the physician needs to resect and remove or otherwise manipulate any anatomical structures that may lie in the direct path of the instruments, regardless of whether those anatomical structures are part of the pathology.


New devices, systems and techniques are being developed for the treatment of sinusitis and other disorders of the ear, nose, throat and paranasal sinuses. For example, various catheters, guidewires and other devices useable to perform minimally invasive, minimally traumatic ear, nose and throat surgery have been described in U.S. patent application Ser. No. 10/829,917, entitled “Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat;” Ser. No. 10/912,578, entitled “Implantable Device and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders;” Ser. No. 10/944,270, entitled “Apparatus and Methods for Dilating and Modifying Ostia of Paranasal Sinuses and Other Intranasal or Paranasal Structures;” Ser. No. 11/037,548, entitled “Devices, Systems and Methods For Treating Disorders of the Ear, Nose and Throat;” and Ser. No. 11/116,118, entitled “Methods and Devices For Performing Procedures Within the Ear, Nose, Throat and Paranasal Sinuses.” Each of these applications is hereby incorporated herein, in its entirety, by reference thereto. Many of these new devices, systems and techniques are useable in conjunction with endoscopic, radiographic and/or electronic assistance to facilitate precise positioning and movement of catheters, guidewires and other devices within the ear, nose, throat and paranasal sinuses and to avoid undesirable trauma or damage to critical anatomical structures such as the eyes, facial nerves and brain.


For example, in one new procedure (referred to in this patent application as a “Flexible Transnasal Sinus Intervention” or FTSI), a dilatation catheter (e.g., a balloon catheter or other type of dilator) is advanced through the nose to a position within the ostium of a paranasal sinus or other location, without requiring removal or surgical alteration of other intranasal anatomical structures. The dilatation catheter is then used to dilate the ostium or other anatomical structures to facilitate natural drainage from the sinus cavity. In some cases, a tubular guide may be initially inserted through the nose and advanced to a position near the sinus ostium and a guidewire may then be advanced through the tubular guide and into the affected paranasal sinus. The dilatation catheter may then be advanced over the guidewire and through the tubular guide to a position where its dilator (e.g., balloon) is positioned within the sinus ostium. The dilator (e.g., balloon) is then expanded causing the ostium to dilate. In some cases, such dilatation of the ostium may fracture, move or remodel bony structures that surround or are adjacent to the ostium. Optionally, in some procedures, irrigation solution and/or therapeutic agents may be infused through a lumen of the dilatation catheter and/or other working devices (e.g., guidewires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices, drills, rasps, saws, etc.) may be advanced through the tubular guide and/or over the guidewire to deliver other therapy to the sinus or adjacent tissues during the same procedure in which the FTSI is carried out. It is to be understood that, in FTSI procedures, structures and passageways other than sinus ostia may be dilated using the tools described above, tissue may be resected or ablated, bone may be restructured, drugs or drug delivery systems may be deployed, etc., as described in the documents incorporated herein by reference. Thus, for the purposes of this application the term FTSI will be generally used to refer broadly to all of those procedures, not just dilation of sinus ostia.


In FTSI procedures that include positioning of a guidewire into a paranasal sinus, the placement of the guidewire is typically confirmed by visualizing the procedure under fluoroscopy or other x-ray visualization technique, for example. Appropriate positioning of the tubular guide at the position near the sinus ostium may also be confirmed via fluoroscopy. Reaching and accessing target anatomy can be a challenge in general and more so in particular patients as anatomy can both be variable and unpredictable. Additionally, the devices employed in a medical procedure must be durable to withstand stresses during normal operating conditions as well as those resulting from unexpected challenges. In order to reduce the radiation exposure to the patient undergoing the procedure, and particularly to the surgeon and other personnel that carry out many of these types of procedures, there is a need for methods and devices that eliminate or reduce the need to use fluoroscopic visualization during such procedures. There is also a need for a medical device that embodies acceptable torquability and pushability. Further, there is a need for a device that has structure which facilitates the accommodation of forces placed thereon. At least some of these objectives will be met by the present invention.


SUMMARY

Briefly and in general terms, the present disclosure is directed towards an apparatus and method for facilitating visualization of target anatomy. In one approach, the apparatus is embodied in an illuminating device configured to be positioned at or adjacent anatomy within a patient's body. The illuminating device can be employed to provide transillumination.


In one aspect, the illuminating device is embodied in an elongate member having proximal and distal portions, where the distal portion is configured to be placed at an interventional site. At the proximal portion of the device is configured a connector. The elongate member can further include an internal bore for receiving substructures of the device.


In one embodiment an illuminating guidewire device comprises:


an elongate flexible housing having a proximal end, a distal end configured to be placed at the site within a patient's body, and a lumen extending through the housing from the proximal end to the distal end, wherein the housing comprises at least a first portion of a first material (e.g., a coil) and a second portion of a second material (e.g., a cable tube) which first and second portions are joined together by a first joint and a second joint;


at least one illuminating fiber extending through the lumen of the housing;


at least one supporting member (e.g., a core wire) extending at least through the lumen of the housing where the first joint and second joint are located and wherein the first joint bonds the first portion of the housing to the supporting member and the second joint bonds the first portion of the housing to the second portion of the housing and the supporting member.


In another embodiment, the invention is directed toward a proximal assembly of an illuminating guidewire comprising:


a first tube (e.g., a hypotube) having a lumen extending therethrough;


an elongate flexible housing (e.g., a cable tube) having a lumen extending therethrough, the housing being received within the first tube but not extending proximally beyond the proximal end of the first tube;


a second tube (e.g., a bonding tube) having a lumen therethrough and positioned within the lumen of the first tube at the proximal end and extending beyond the proximal end of the first tube, but not beyond the distal end of the first tube;


at least one illuminating fiber extending through and proximally beyond the lumen of the housing and the lumen of the first tube and into the lumen of the second tube; and


wherein the housing is not fixably attached to the first tube and is free to rotate within the first tube and the distal end of the second tube and the proximal end of the first tube are fixably attached.


Yet another embodiment relates to a connector adapted to receive an illuminated guidewire having an outer diameter and comprising:

    • a proximal portion;
    • a distal portion; and
    • a bore extending through the proximal and distal portions and having a diameter in the proximal portion (e.g., an aperture) that is less than the diameter of the outer diameter of the illuminated guidewire.


In a specific embodiment of an illuminating device, the distal portion includes a coil and the proximal portion includes a cable tube. Extending longitudinally within the proximal and distal portions is one or more illumination fibers, a distal end of which is affixed within the coil and a proximal end. Also configured within certain portions of the proximal and distal portions are a core wire and a stranded wire. Various approaches to receiving the illumination fibers within the connector and profiles of the core wire are contemplated as are points of attachment and relative movements between the components.


Another specific embodiment includes design of the proximal end of the illuminating device which connects to a light source through a detachable connector which receives the illuminated device and then connects to the light cable of the light source and certain features of the detachable connector are contemplated


In a specific embodiment of an illuminating device with an end connector, the distal portion includes a coil and the proximal portion includes a cable tube. Extending longitudinally within the proximal and distal portions is one or more illumination fibers, a distal end of which is affixed within the coil and a proximal end being received within the connector. Also configured within the proximal and distal portions is a core wire. Various approaches to receiving the illumination fibers within the connector and profiles of the core wire are contemplated as are points of attachment and relative movements between the components. Moreover, various embodiments of the connector are contemplated.


Further, approaches to compensating for changing lengths of an illumination fiber are contemplated as are approaches to facilitating the operation of the illuminating device. In that regard, structure can be incorporated into the illuminating device to accommodate changes in length or steps can be taken to treat the illumination fiber to control length changes. Also, drugs can be injected at an interventional site to aid the illumination process.


A method for visually confirming the positioning of a distal end portion of a device placed within a patient is provided to include: inserting a distal end portion of an illuminating device internally into a patient, emitting light from the distal end portion of the illuminating device; observing transillumination resulting from the light emitted from the distal end portion of the illuminating device that occurs on an external surface of the patient; and correlating the location of the observed transillumination on the external surface of the patient with an internal location of the patient that underlies the location of observed transillumination, to confirm positioning of the distal end portion of the illuminating device.


In at least one embodiment, the observation is performed by direct line of sight human observation, without the need for fluoroscopy.


In at least one embodiment, the observation is performed by direct line of sight human observation, without the need for any visualization equipment.


In at least one embodiment, the illuminating device comprises a guidewire.


In at least one embodiment, the illuminating device comprises an ostium seeker device.


In at least one embodiment, the illuminating device comprises a sinus suction instrument.


In at least one embodiment, the illuminating device comprises an integrated wire dilatation catheter, wherein an integrated illuminating guidewire extends distally of a distal end of a dilatation catheter.


In at least one embodiment, the distal end portion of the illuminating guidewire is inserted into a sinus passageway of the patient.


In at least one embodiment, the distal end portion of the illuminating guidewire is inserted through an ostium opening to a sinus of the patient, and the distal end portion is advanced into the sinus.


In at least one embodiment, the distal end portion of the illuminating guidewire is initially inserted through a nostril of the patient and then advanced into a sinus.


In at least one embodiment, a scope is inserted through the nostril of the patient, wherein the guidewire is inserted adjacent the scope, and visualization of the advancement of the distal end portion of the guidewire is performed via the scope as the distal end portion is advanced toward an ostium of the sinus.


In at least one embodiment, transillumination is observed when a light emitting portion of the distal end portion is located in the sinus of the patient.


If observation of transillumination and correlation reveals that the distal end portion of the illumination device has been misrouted to a location other than a target location, the distal end portion of the device can be retracted and re-routed to the target location, which can be confirmed by observing transillumination and correlating.


In observing transillumination, the motion of the transillumination spot resulting from the light emitted from the distal end portion of the illuminating device can be observed and tracked or followed visually, as the distal end portion is moved relative to the patient, and this can be one way of confirming that the transillumination spot in motion correlates to a position of the distal end portion. This technique can be particularly useful when there are additional sources of transillumination, such as a light from a scope, for example.


Further, transillumination resulting from the light emitted from the distal end portion of the device can be distinguished from transillumination resulting from light emitted from a scope by identifying a transillumination spot that is at least one of brighter, smaller or more well-defined than other transillumination effects observed. Alternatively, the transillumination resulting from the light emitted from the distal end portion of the device can be distinguished from transillumination resulting from light emitted from a scope by turning off or down the light source to the scope.


In at least one embodiment, a sinus guide is inserted within the patient prior to inserting the device, and the distal end portion of the illuminating device is inserted through the sinus guide.


In at least one embodiment, the illuminating device is preloaded in the guide, and the guide and preloaded illuminating device are inserted together into the patient. Advancement of the illuminating device relative to the guide can then be performed to extend a distal end portion of the illuminating device distally of a distal end of the guide.


A scope may be inserted within the patient, wherein the sinus guide is inserted adjacent the scope, and advancement of the sinus guide can be visualized via the scope.


In at least one embodiment, visualization of the advancement of the sinus guide is through use of the scope, up to a limit of adequate illumination by the scope. After that, the light emitted by the distal end portion of the illuminating device, having been advanced distally of a distal end of the sinus guide, extends the limit of adequate illumination of the scope, thereby extending a length of the adequate illumination of the scope.


In at least one embodiment, the sinus guide can be further distally advanced under visualization by the scope as facilitated by the extended length of the adequate illumination.


In at least one embodiment, visualization of the advancement of the illuminating device distally of the sinus guide can be performed via the scope, as facilitated by the light emitted from the distal end portion of the device.


In at least one embodiment, the scope is inserted into a nostril of the patient, and the sinus guide is inserted adjacent the scope.


In at least one embodiment, the scope and sinus guide are advanced into a sinus passageway of the patient.


In at least one embodiment, the sinus guide is further advanced toward an ostium of a sinus, and the advancement of the sinus guide is visually observed via the scope.


In at least one embodiment, the scope is inserted into a nostril of the patient, and the sinus guide is inserted adjacent the scope. The advancement of the sinus guide into a sinus passageway is visualized via the scope until a distal end of the sinus guide has reached a distal limit of illumination emitted by the scope.


In at least one embodiment, further advancement of the sinus guide toward an ostium of a sinus is visualized via the scope as facilitated by the extended length of adequate illumination provided by the illumination device.


In at least one embodiment, the scope is inserted into a nostril of the patient, and the sinus guide is inserted adjacent the scope. The advancement of the sinus guide to place a distal end of the sinus guide adjacent an approach to an ostium of a sinus is visualized via the scope.


In at least one embodiment, the distal end portion of the illuminating device is advanced further distally of a distal end of the sinus guide and distal of the limit of illumination of the scope to emit illumination, thereby extending a length of a space that is visualizable by the scope.


In at least one embodiment, the distal end portion of the device is further advanced into and through the ostium, and visualization of the advancement of the distal end portion into the ostium is performed via the scope.


In at least one embodiment the device comprises an illuminating guidewire, a working device is advanced over the guidewire to position a working end of the working device at a target location, and a surgical procedure is performed with the working device at the target location. The working device is removed from the patient after performing the surgical procedure. Optionally, an implant can be left at the target location.


A method of performing a minimally invasive surgical procedure is provided, including the steps of: inserting a distal end portion of an illuminating guidewire internally into a patient; emitting light from the distal end portion of the illuminating guidewire, wherein a proximal end portion is connected to a power source to enable the distal end portion to emit light; observing transillumination resulting from the light emitted from the distal end portion of the illuminating guidewire that occurs on an external surface of the patient; correlating the location of the observed transillumination on the external surface of the patient with an internal location of the patient that underlies the location of observed transillumination, to confirm positioning of the distal end portion of the illuminating guidewire; disconnecting the proximal end portion of the illuminating guidewire from the power source; advancing a working device over the guidewire so that a proximal end of the guidewire extends proximally from the working device; reconnecting the proximal end portion of the illuminating guidewire to the power source so that the distal end portion of the guidewire again emits light; positioning a working end of the working device at a target location; and performing a surgical procedure with the working device at the target location.


After performing the surgical procedure, the proximal end portion of the illuminating guidewire is disconnected from the power source; and the working device is removed from the patient and from the guidewire. Optionally, an implant can be left at the target location.


In at least one embodiment, a second working device is advanced over the guidewire after removing the first working device therefrom, so that a proximal end of the guidewire extends proximally from the second working device. Then the proximal end portion of the illuminating guidewire is reconnected to the power source so that the distal end portion of the guidewire again emits light.


In at least one embodiment, the illuminating guidewire includes at least one illumination fiber extending from a proximal end of the guidewire to the distal end portion, and the power source is a light source.


In at least one embodiment, the illuminating guidewire includes at least one laser fiber extending from a proximal end of the guidewire to the distal end portion, and the power source is a laser light source.


In at least one embodiment, the illuminating guidewire includes a light emitting diode at the distal end portion and electrical wires extending through the guidewire, electrically connecting the light emitting diode to the power source, and wherein the power source is an electrical power source.


A method for diagnosing and/or treating sinusitis or another disorder affecting a nose, a sinus or other anatomical structure of the ear, nose or throat in a human or animal patient is provided, including the steps of: advancing an introducing device through the nose and to a position where the distal end of the introducing device is near an opening of a sinus; advancing a distal end portion of an illuminating device that emits light from the distal end portion thereof through the introducing device while a proximal end of the illuminating device is connected to a power source; and monitoring a position of the distal end portion of the illuminating device distally of the distal end of the introducing device, by observing transillumination on an external surface of the patient that results from the light emitted by the distal end portion. The light emitted can be a desired wavelength in the visible spectrum and/or infrared spectrum.


In at least one embodiment, the distal end portion of the illuminating device is advanced through the opening of the sinus; and placement of the distal end portion of the illuminating device in the sinus is confirmed by observing the transillumination resulting from the light emitted from the distal end portion of the illuminating device that occurs on the external surface of the patient, and correlating the location of the observed transillumination on the external surface of the patient with an internal location of the patient that underlies the location of observed transillumination.


In at least one embodiment, the external surface on which the transillumination is observed is on the face of the patient.


In at least one embodiment, the external surface on which the transillumination is observed is on the palate of the patient.


In at least one embodiment the illuminating device comprises an illuminating guidewire, and a working device is provided that is positionable in an operative location and useable to perform a diagnostic or therapeutic procedure there. The proximal end of the illuminating guidewire is disconnected from the power source, while maintaining the distal end portion of the illuminating guidewire in its current position, and the working device is advanced over the guidewire so that a proximal end of the guidewire extends proximally from the working device. The proximal end of the illuminating guidewire is then reconnected to the power source so that the distal end portion of the guidewire again emits light. The working device is further advanced to position a working end of the working device at the operative location, and a diagnostic or therapeutic procedure is performed with the working device at the operative location.


In at least one embodiment, the operative location is the opening to the sinus.


An illuminating guidewire device is provided, including: a flexible distal end portion; a relatively less flexible proximal end portion; at least one light emitting element in the distal end portion; and at least one structure extending from a proximal end of the device through the proximal end portion and at least part of the distal end portion to connect the at least one light emitting element with a power source located proximally of the device.


In at least one embodiment, the at least one light emitting element comprises a distal end of at least one illumination fiber, and the at least one structure comprises the at least one illumination fiber running proximally of the distal end of the fiber to the proximal end of the device.


In at least one embodiment, the power source is a light source.


In at least one embodiment, the at least one light emitting element of the illuminating guidewire comprises a distal end of at least one laser fiber, and the at least one structure comprises the at least one laser fiber running proximally from the distal end of the fiber to the proximal end of said device.


In at least one embodiment, the power source is a laser light source.


In at least one embodiment, the at least one light emitting element comprises a light emitting diode, and the at least one structure comprises at least one electrical wire electrically connected to the light emitting diode and extending proximally of the light emitting diode to the proximal end of the device.


In at least one embodiment, the power source is an electrical power source.


In at least one embodiment, the distal end portion of the guidewire has an outside diameter configured and dimensioned to pass through an ostium of a sinus.


In at least one embodiment, the distal end portion of the guidewire has an outside diameter less than about 0.038 inches.


In at least one embodiment, the distal end portion of the guidewire has an outside diameter of about 0.035″±0.005″.


In at least one embodiment, the illuminating guidewire has a maximum outside diameter of less than about 0.038 inches.


In at least one embodiment, the illuminating guidewire has a maximum outside diameter of less than about 0.035 inches.


In at least one embodiment, the illuminating guidewire has a maximum outside diameter of about 0.035″±0.005″.


In at least one embodiment, the distal end portion of the device comprises a flexible coil. In at least one embodiment, the distal end portion further comprises a core wire extending internally of the coil. In at least one embodiment, the core wire is fixed to the coil.


In at least one embodiment, a core wire extends within the distal and proximal end portions of the device. In at least one embodiment, core wire extends within substantially the full length of the distal and proximal end portions.


In at least one embodiment, the distal end portion of the device includes a bend, such that a proximal part of the distal end portion is substantially aligned with a longitudinal axis of the device, and a distal part of the distal end portion is angled with respect to the longitudinal axis.


In at least one embodiment, the distal end of at least one illumination fiber is configured to emit light from a distal tip of the distal end portion of the device. The distal tip can be designed to either focus or distribute the light to achieve maximum transillumination. The distal tip can include a lens, prism or diffracting element.


In at least one embodiment, the distal end of at least one illumination fiber is positioned proximally of a distal tip of the distal end portion of the device.


In at least one embodiment, a flexible distal portion of the distal end portion extends distally of the distal end of the at least one illumination fiber.


In at least one embodiment, the distal end of at least one laser fiber is configured to emit light from a distal tip of the distal end portion of the device.


In at least one embodiment, the distal end of at least one laser fiber is positioned proximally of a distal tip of the distal end portion of the device.


In at least one embodiment, a flexible distal portion of the distal end portion extends distally of the distal end of at least one illumination fiber.


In at least one embodiment, a light emitting diode is mounted at a distal tip of the distal end portion of the device.


In at least one embodiment, a light emitting diode is positioned proximally of a distal tip of the distal end portion of the device. In at least one embodiment, a flexible distal portion of the distal end portion extends distally of the light emitting diode.


In at least one embodiment, an electrical power source is removably, electrically connected to at least one structure to provide electrical power to at least one light emitting element.


In at least one embodiment, at least one light conducting tube delivers light from a proximal end portion of the device to a distal end of the tube, where it is emitted.


In at least one embodiment, each light conducting tube is sealed in a proximal end of the device.


In at least one embodiment, each light emitting element is sealed at a distal tip of the device.


In at least one embodiment, a quick release connector is mounted over at least part of the proximal end portion of the guidewire. The quick release connector is adapted to be connected to a power source and to quickly connect to and release from the proximal end portion of the guidewire.


In at least one embodiment, the quick release connector is optically coupled with a light source.


In at least one embodiment, the proximal end portion of the quick release connector is adapted to connect with a light source.


In at least one embodiment, the proximal end portion of the quick release connector comprises an ACMI Corporation light post.


In at least one embodiment, the connector is rotatable with respect to a light channel extending from a light source, when the connector is connected to the light channel. In at least one embodiment, the light cable comprises a fluid filled light cable.


In at least one embodiment, a distal end portion of the connector comprises an opening configured to slidably receive the proximal end portion of the guidewire device; and a quick release locking mechanism is configured to fix the proximal end portion received in the connector.


In at least one embodiment, the quick release locking mechanism is movable between an unlocked configuration in which the proximal end portion can be slid from the connector to disconnect therefrom, and a locked configuration that maintains the proximal end portion in connection with the connector. In at least one embodiment, the quick release locking mechanism is biased toward the locked configuration.


In at least one embodiment, a radiopaque marker is provided on the distal end portion of the guidewire.


In at least one embodiment, an electromagnetic coil is provided at the distal end portion of the guidewire. Alternatively, a magnet, radiofrequency emitter or ultrasound crystal can be provided at the distal end portion of the guidewire.


An illuminating device is provided, including a distal end portion having an outside diameter configured and dimensioned to pass through an ostium of a sinus, at least one light emitting element in the distal end portion, and at least one structure extending from a proximal end of the device through the proximal end portion and at least part of the distal end portion to connect the at least one light emitting element with a power source.


In at least one embodiment, the illuminating device comprises an illuminating guidewire.


In at least one embodiment, the illuminating device comprises an ostium seeker device, and the distal end portion is rigid or malleable.


In at least one embodiment, the illuminating device comprises an ostium seeker device, and the distal end portion comprises a ball tip at a distal end thereof.


In at least one embodiment, the illuminating device comprises a sinus suction instrument, and the distal end portion further comprises a suction lumen configured and adapted to apply suction therethrough.


In at least one embodiment, the illuminating device comprises an integrated wire dilatation catheter, wherein an integrated illuminating guidewire extends distally of a distal end of a dilatation catheter of the device.


An illuminating guidewire device is provided including: a guidewire including an elongated main body having a flexible distal end portion and a relatively less flexible proximal end portion; at least one light conducting channel extending the length of the elongated body, and configured and dimensioned to deliver light from a proximal end of the guidewire to a distal end of the guidewire and to emit light from the distal end of the guidewire.


In at least one embodiment, the at least one light conducting channel comprises at least one illumination fiber.


In at least one embodiment, the at least one light conducting channel comprises at least two illumination fibers.


In at least one embodiment, the illumination fibers are formed of plastic.


In at least one embodiment, the at least one illumination fiber is formed of glass.


In at least one embodiment, the at least one light conducting channel comprises at least one laser fiber.


In at least one embodiment, a quick release connector is mounted over at least part of the proximal end portion of the elongated body, and is adapted to be connected to a light channel extending from a light source; and to quickly connect to and release from the proximal end portion of the elongated body.


In at least one embodiment, the quick release connector is optically coupled with the light source.


In at least one embodiment, a proximal end portion of the connector comprises a tapering light channel configured to adapt a relatively larger inside diameter of the light channel to a relatively smaller diameter of the proximal end of the elongated body.


In at least one embodiment, a proximal end portion of the quick release connector is adapted to connect with a light source. In at least one embodiment, the proximal end portion of the quick release connector includes an ACMI light post.


In at least one embodiment, the connector is rotatable with respect to the light channel extending from the light source, when the connector is connected to the light channel.


In at least one embodiment, the distal end portion of the connector comprises an opening configured to slidably receive the proximal end portion of the elongated body, and a quick release locking mechanism is configured to fix the proximal end portion received in the connector.


In at least one embodiment, the quick release locking mechanism, in a locked configuration, maintains a proximal end of the elongated body in alignment with a distal end of the tapering light channel of the connector.


In at least one embodiment, the quick release locking mechanism is movable between an unlocked configuration in which the proximal end portion can be slid from the connector to disconnect therefrom, and a locked configuration that maintains the proximal end portion in connection with the connector.


In at least one embodiment, a core wire extends at least within the distal end portion of the elongated body of the guidewire. In at least one embodiment, the core wire further extends within the proximal end portion.


An illuminating guidewire device is provided, including: a guidewire having an elongated main body with a flexible distal end portion and a relatively less flexible proximal end portion; a light emitting diode mounted in the distal end portion and configured to emit light from a distal tip of the distal end portion; and at least one electrical wire extending the length of the elongated body, being electrically connected to the light emitting diode, and extending proximally of a proximal end of the elongated body.


In at least one embodiment, the illuminating guidewire device includes at least two such electrical wires.


In at least one embodiment, a core wire extends at least within the distal end portion of the elongated body. In at least one embodiment, the core wire further extends within the proximal end portion.


In at least one embodiment, a radiopaque marker is provided on the distal end portion. In at least one embodiment, an electromagnetic coil is provided on the distal end portion.


An illuminating guidewire device is provided, including: a guidewire having a flexible distal end portion, a relatively less flexible proximal end portion, and a transparent portion interconnecting the distal and proximal end portions; at least one light emitting element mounted in the guidewire and configured to emit light through the transparent portion; and at least one structure extending from a proximal end of the device through the proximal end portion and connecting with the at least one light emitting element.


In at least one embodiment, the transparent portion comprises a clear tube.


In at least one embodiment, the clear tube includes cut out windows therein.


In at least one embodiment, the transparent portion comprises a plurality of struts interconnecting the proximal and distal end portions of the guidewire.


In at least one embodiment, a deflector is mounted distally of the at least one light emitting element in the transparent portion.


In at least one embodiment, a quick release connector is mounted over at least part of the proximal end portion, and is adapted to be connected to a light channel extending from a light source, and to quickly connect to and release from the proximal end portion of the guidewire.


In at least one embodiment, a core wire extends at least within the distal end portion. In at least one embodiment, the core wire further extends within the proximal end portion.


A quick release connector for use with an illuminating guidewire is provided to include: a main body having a proximal end portion and a distal end portion; a channel in the distal end portion and opening to a distal end of the main body, wherein the channel is configured and dimensioned to slidably receive a proximal end portion of the illuminating guidewire; and a quick release locking mechanism configured to assume a locked position and an unlocked position, wherein when in the locked position, the quick release locking mechanism fixes the proximal end portion of the illuminating guidewire in the channel.


In at least one embodiment, the quick release locking mechanism is biased to the locked position.


In at least one embodiment, upon inserting the proximal end portion of the illuminating guidewire into the channel, the proximal end portion contacts portions of the quick release locking mechanism, driving the portions apart to allow the proximal end portion to be slid into the channel.


In at least one embodiment, the quick release locking mechanism comprises a locking arm that extends into the channel and a portion that extends out of the housing, wherein the portion extending out of the housing is manually retractable to move the locking arm from the locked position to the unlocked position.


In at least one embodiment, the quick release locking mechanism includes at least two locking arms provided circumferentially about the distal end portion of the main body of the connector.


In at least one embodiment, the quick release locking mechanism comprises a pin vise.


In at least one embodiment, the proximal end portion of the connector is adapted to be connected to a light channel extending from a light source.


In at least one embodiment, the proximal end portion of the main body is optically coupled with a light source.


In at least one embodiment, the proximal end portion of the main body includes a tapering light channel configured to adapt a relatively larger inside diameter of a light channel to a relatively smaller diameter of the proximal end of the illuminating guidewire.


In at least one embodiment, the proximal end portion of the main body comprises an ACMI light post.


In at least one embodiment, the quick release connector is rotatable with respect to a light channel extending from a light source, when the connector is connected to the light channel.


These and other advantages and features of the invention will become apparent to those persons skilled in the art upon reading the details of the devices, methods and systems as more fully described below.


Other features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate by way of example, the features of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a patient being treated by a system for catheter-based minimally invasive sinus surgery according to prior art techniques.



FIGS. 2A through 2D are illustrations of partial sagittal sectional views through a human head showing various steps of a method of gaining access to a paranasal sinus using a sinus guide.



FIG. 3 illustrates a scope introduced on the side of the sinus guide.



FIG. 4 shows an illuminating guidewire according to one embodiment of the present invention.



FIG. 5 shows a distal end portion of a guidewire having a bent shape.



FIG. 6 is a cross-sectional illustration of a distal end portion of a guidewire device showing a core wire fixed to the coil.



FIG. 7 shows a cross-sectional view of a guidewire device that includes a fiber optic bundle of light fibers.



FIG. 8 shows an illuminating guidewire according to another embodiment of the present invention.



FIG. 9 is a cross-sectional illustration of a distal end portion of the guidewire shown in FIG. 8.



FIG. 10 shows an illuminating guidewire according to another embodiment of the present invention.



FIG. 11 illustrates an alternative transparent portion that may be included in a device shown in FIG. 10.



FIG. 12 illustrates another alternative transparent portion that may be included in a device shown in FIG. 10.



FIG. 13A illustrates an illuminating guidewire device including a quick release connector that is optically coupled to a light source.



FIG. 13B is a view of the arrangement of FIG. 13A in which the quick release locking mechanism is in the locked position.



FIG. 14A illustrates an alternative quick release connector.



FIG. 14B illustrates the connector of FIG. 14A mounted over a proximal end portion of an illuminating guidewire.



FIG. 15 illustrates another alternative quick release connector.



FIG. 16 illustrates another alternative quick release connector.



FIGS. 17A-17E are illustrations of partial coronal sectional views through a human head showing various steps of a method for treating an ostium that opens to a frontal sinus.



FIG. 18 illustrates a situation, like that described with regard to FIG. 3, where a scope has been inserted as far as possible without causing significant trauma to the patient. Additionally, FIG. 18 shows an illuminating guidewire having been extended distally of the limit of illumination of the scope, to effectively extend the illumination distance viewable by the scope.



FIG. 19 illustrates non-limiting examples of where one or more filters may be placed in an illuminating guidewire device.



FIG. 20A schematically illustrates a connector having a rotating shutter rotatably mounted therein.



FIG. 20B is an illustration of a plan view of the shutter of FIG. 20A.



FIG. 21 shows a frontal ostium seeker instrument that can be used to access a sinus ostium.



FIG. 22 shows a suction sinus instrument that is configured to evacuate blood and/or other fluids from a target surgical site, such as the frontal sinus.



FIG. 23 shows an integrated wire dilatation catheter 120 that includes an elongate, flexible catheter shaft having a balloon mounted thereon.



FIG. 24 shows a length of another embodiment of an illuminating guidewire.



FIG. 25 shows a cross-sectional view of the illuminating guidewire of FIG. 24.



FIG. 26 depicts a cross-sectional view of a preferred cable tube.



FIG. 27 shows another embodiment of a core wire.



FIG. 28 shows yet a further embodiment of a core wire.



FIG. 29 illustrates in cross-section, an enlarged view of the assembly depicted in FIG. 25;



FIG. 30 illustrates in cross-section another approach of fixing a core wire within a cable tube.



FIG. 31 shows yet another approach to configuring a core wire within a cable tube.



FIG. 32 depicts an exterior of a connection assembly.



FIG. 33 illustrates in cross-section the connector assembly of FIG. 32.



FIG. 34 shows a cross-sectional view of an alternative connector assembly.



FIG. 35 illustrates yet another embodiment of a connector assembly in cross-section.



FIG. 36 shows a lateral cross-section view of the connector assembly of FIG. 35.



FIG. 37 illustrates an illuminating guidewire according to one embodiment of this invention.



FIG. 37A-A shows a cross section of the guidewire of FIG. 37 at point A-A in the distal coil region.



FIG. 37B-B shows a cross section of the guidewire of FIG. 37 at point B-B in the proximal coil region.



FIG. 37C-C shows a cross section of the guidewire of FIG. 37 at point C-C in the distal cable tube region.



FIG. 37D-D shows a cross section of the guidewire of FIG. 37 at point D-D in the proximal cable tube region.



FIG. 37E-E shows a cross section of the guidewire of FIG. 37 at point E-E in the distal hypotube region.



FIG. 37F-F shows a cross section of the guidewire of FIG. 37 at point F-F in the proximal hypotube region.



FIG. 38 is a cross section view of the illuminated guidewire of FIG. 37.



FIG. 38A is a detailed view of area A of the guidewire of FIG. 38.



FIG. 38B is a detailed view of area B of the guidewire of FIG. 38.



FIG. 38C is a detailed view of area C of the guidewire of FIG. 38.



FIG. 39 shows cross-sectional view of an alternative connector assembly.



FIG. 39A illustrates a detailed view of the proximal end of the connector of FIG. 39.





DETAILED DESCRIPTION

The present disclosure provides an apparatus and method which eliminates or reduces a need for remote imaging techniques. To accomplish this, there is disclosed a medical device having desirable pushability and torquability so that an interventional site is accessed. The disclosed medical device embodies structure or includes components which are pre-treated so that it can accommodate forces applied thereto during operation.


Before the present devices and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a tube” includes a plurality of such tubes and reference to “the shaft” includes reference to one or more shafts and equivalents thereof known to those skilled in the art, and so forth.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


Turning now to FIG. 1, an illustration of a patient being treated by a system for catheter-based minimally invasive sinus surgery according to prior art techniques is shown. A C-arm fluoroscope 1000 that is useable to visualize a first introducing device 1002 (e.g., a sinus guide, guide catheter or guide tube), a second introducing device 1004 (e.g., a guidewire or elongated probe) and a working device 1006 (e.g., a balloon catheter, other dilatation catheter, debrider, cutter, etc.). The sinus guide, guide catheter or guide tube 1002 may be introduced under direct visualization, visualization provided by fluoroscope 1000 and/or from endoscopic visualization, to place the distal end of catheter or tube 1002 at a location approaching an ostium of a sinus to be treated.


Next guidewire or elongated probe 1004 is inserted through catheter or tube 1002 and distally advanced to extend the distal end of guidewire or elongated probe through the ostium to be treated and into the sinus that the ostium opens to. Proper placement often involves advancement and retraction of the distal end of guidewire or elongated probe, under fluoroscopic visualization, until it has been visually confirmed that the distal end of the guidewire or elongated probe is located where the surgeon believes the appropriate sinus to be located, relative to the other features of the patient's head that are visualized under fluoroscopy.


Once guidewire or elongated probe 1004 has been properly placed, working device 1006 is next passed over the guidewire or elongated probe 1004, under visualization via fluoroscope 1000 and/or an endoscope (not shown) that has been inserted adjacent catheter or tube 1002, to place the working end of working device 1006 in the target location where a surgical procedure is to be performed. Typically, the guidewire or elongated probe remains in place during the procedure. Under the same type(s) of visualization, the working (distal) end of working device is then actuated to perform the desired surgical procedure. In the case of a dilatation catheter, the balloon at the distal end portion of catheter 1006 is expanded once it has been located across the ostium. This expansion acts to open the ostium to allow proper mucus flow, as was described in more detail above.


After performance of the desired surgical procedure, the working device 1006 is deactivated and withdrawn from the patient, after which the remaining devices are withdrawn to complete the procedure.


By using the devices and methods described herein, at least the need for fluoroscopic visualization of the placement of the guidewire/elongated probe can be reduced or eliminated. Further optionally, all fluoroscopic visualization needs may be eliminated in some surgical circumstances.


It is to be appreciated that the devices and methods of the present invention relate to the accessing and dilatation or modification of sinus ostia or other passageways within the ear, nose and throat. These devices and methods may be used alone or may be used in conjunction with other surgical or non-surgical treatments, including but not limited to the delivery or implantation of devices and drugs or other substances as described in co-pending U.S. patent application Ser. No. 10/912,578.



FIGS. 2A through 2D are illustrations of partial sagittal sectional views through a human head showing various steps of a method of gaining access to a paranasal sinus using a sinus guide. In FIG. 2A, a first introducing device in the form of a sinus guide 1002 is introduced through a nostril and through a nasal cavity 1012 to a location close to an ostium 1014 of a sphenoid sinus 1016. Sinus guide 1002 may be straight, malleable, or it may incorporate one or more preformed curves or bends as further described in U.S. Patent Publication Nos. 2006/004323; 2006/0063973; and 2006/0095066, for example, each of which are incorporated herein, in their entireties, by reference thereto. In embodiments where sinus guide 1002 is curved or bent, the deflection angle of the curve or bend may be in the range of up to about 135 degrees.


In FIG. 2B, a second introduction device comprising a guidewire 10 is introduced through the first introduction device (i.e., sinus guide 1002) and advanced so that the distal end portion of guidewire 10 enters the sphenoid sinus 1016 through the ostium 1014.


In FIG. 2C, a working device 1006, for example a balloon catheter, is introduced over guidewire 10 and advanced to extend the distal end portion of device 1006 into the sphenoid sinus 1016. Thereafter, in FIG. 2D, working device 1006 is used to perform a diagnostic or therapeutic procedure. In this particular example, the procedure is dilatation of the sphenoid sinus ostium 1014, as is illustrated in FIG. 2D, where the balloon of device 1006 is expanded to enlarge the opening of the ostium 1014. After completion of the procedure, sinus guide 1002, guidewire 10 and working device 1006 are withdrawn and removed. It will be appreciated that the present invention may also be used to dilate or modify any sinus ostium or other man-made or naturally occurring anatomical opening or passageway within the nose, paranasal sinuses, nasopharynx or adjacent areas. As will also be appreciated by those of ordinary skill in the art, in this or any of the procedures described in this patent application, the operator may additionally advance other types of catheters, and that guidewire 10 may be steerable (e.g. torqueable, actively deformable) or shapeable or malleable.



FIGS. 2B-2D show an optional scope 1008 in dotted lines, that may be inserted to provide visualization of advancement of sinus guide 1002 and/or inserted alongside catheter 1006 to provide visualization of all or at least a portion of working tool 1006. It is to be appreciated that optional scope 1008 may comprise any suitable types of rigid or flexible endoscope and such optional scope may be separate from or incorporated into the working devices and/or introduction devices of the present invention, as further described in provisional Application Ser. No. 60/844,874 titled “Endoscopic Methods and Devices for Transnasal Procedures, which is hereby incorporated herein, in its entirety, by reference thereto.


Although scope 1008 may be useful to reduce or eliminate the need for fluoroscopic visualization during placement of sinus guide 1002 and/or for visualization of the procedure performed by working device 1006, it does not provide stand-alone capability to see inside the sinus (e.g., sphenoid sinus 1016 or other sinus of interest), and therefore cannot provide sufficient visual feedback for use in guiding guidewire 10 into the desired sinus (e.g., frontal sinus, or some other sinus of interest) or sufficient visual image confirmation of correct placement of guidewire 10 into the desired sinus.


Further, depending upon the particular configuration of the sinus passageways to be traversed to gain access to a target ostium, the scope 1008, due to physical limitations (e.g., outside diameter, degree of rigidity, etc.) may be unable to visualize as deep as the location of the ostium of interest. For example, FIG. 3 illustrates a situation where scope 1008 has been inserted as far as possible without causing significant trauma to the patient. The range of adequately illuminated visibility in this case does not extend all the way to ostium 1020, as indicated schematically by the rays 1009 shown extending distally from scope 1008. In this case, adequately illuminated visualization of guidewire 10 into ostium 1020 would not be possible via scope 1008. Additionally, if sinus guide 1002 is physically capable of being extended further distally to place the distal end thereof at the approach to ostium 1020, scope 1008 would also not be capable of adequately visualizing this. Thus, prior to the current invention, fluoroscopic or other x-ray visualization of these procedures was required, in order to ensure that the devices approach (and extend through) the appropriate ostium 1020 and not another adjacent opening, such as opening 1024.


In order to overcome these and other problems, the guidewire devices 10 of the present invention include their own light emitting capability. By illuminating a distal end portion of guidewire 10, a process known as transillumination occurs as guidewire 10 traverses through the sinus passageways, passes through an ostium and enters a sinus cavity. Transillumination refers to the passing of light through the walls of a body part or organ. Thus, when guidewire 10 is located in a sinus, the light emitted from guidewire 10 passes through the facial structures and appears as a glowing region on the skin (e.g., face) of the patient. It is noted that the light emitted from scope 1008, such as positioned in FIG. 3, for example, results in transillumination as well, but the resultant glow is much more diffuse and larger in area. As the light source in guidewire 10 gets closer to the surface of the structure that it is inserted into (e.g., the surface of the sinus), the transillumination effect becomes brighter and more focused (i.e., smaller in area). Additionally, the movements of the guidewire 10 can be tracked by following the movements of the transillumination spot produced on the skin of the patient. These concepts have been described in co-pending U.S. patent application Ser. No. 12/122,884, entitled “Sinus Illumination Lightwire Device” and in U.S. Pat. No. 7,559,925, which are hereby incorporated herein, in their entirety, by reference thereto.



FIG. 4 shows an illuminating guidewire 10 according to one embodiment of the present invention. Device 10 includes a flexible distal end portion 10d that provides a similar degree of flexibility to a standard, non-illuminating type of guidewire. Distal end portion 10d may include a coil 10c as an exterior portion thereof, to help provide the desired flexibility to this portion. The proximal end portion 10p of device 10 extends the device to provide a sufficient length so that device 10 extends proximally out of the patient (and, when inserted through another device, such as a sinus guide, proximally out of the device into which guidewire 10 is inserted), at all times, including the deepest location into which the distal end of device 10 is placed. The proximal end portion 10p can have visible markings, preferably spaced at equal intervals that can be observed by the user to confirm how far the guidewire 10 has been placed in the patient. Proximal end portion 10p also provides the necessary mechanical properties required to make the guidewire function properly. These mechanical properties include torquability, i.e., the ability to torque the proximal end portion 10p from a location outside of the patient and have that torque transmitted to the distal end portion 10d; pushability, i.e., sufficient rigidity, so that when an operator pushes on the proximal end portion 10p from a location outside of the patient, the pushing force transmits to the distal portion 10d to advance the distal portion 10d without buckling the device 10; and tensile strength so that an operator can pull on the proximal end portion 10p from a location outside of the patient and withdraw device 10 from the patient without significant plastic deformation or any disintegration of the device.


Coil 10c may be formed from a stainless steel wire, for example. The diameter of the coil wire can be between about 0.004 and about 0.008 inches, typically about 0.006 inches. Alternative materials from which coil 10c may be formed include, but are not limited to: ELGILOY®, CONICHROME® or other biocompatible cobalt-chromium-nickel alloy; nickel-titanium alloys, or other known biocompatible metal alloys having similar characteristics. Further alternatively, the distal end portion may comprise a braided metallic construction of any of the aforementioned materials in lieu of a coil.


The external casing of the proximal portion 10p can be made from a polyimide sheath, a continuous coil (optionally embedded in polymer or having polymer laminated thereon), a hypotube (e.g., stainless steel hypotube), a laser-cut hypotube, a cable tube, or a tube made from PEBAX® (nylon resin) or other medical grade resin. In any of these cases the construction needs to meet the required torquability, pushability and tensile requirements of the device.


In the example shown, coil 10c is joined to proximal portion 10p by solder, epoxy or other adhesive or mechanical joint. One or more illumination channels 10i are provided in device 10 and extend the length thereof. Illumination channels 10i are configured to transport light from the proximal end of device 10 to and out of the distal end of device 10. In the example shown, two illumination channels are provided, each comprising a plastic illumination fiber. The plastic used to make the illumination fibers is compounded for light transmission properties according to techniques known and available in the art. As one example, ESKA™ (Mitsubishi Rayon), a high performance plastic optical fiber may be used, which has a concentric double-layer structure with high-purity polymethyl methacrylate (PMMA) core and a thin layer of specially selected transparent fluorine polymer cladding. In one example, illumination fibers each have an outside diameter of about 0.010″. The illumination fibers can have an outside diameter in the range of about 0.005 inches to about 0.010 inches.


Alternatively, a single plastic illumination fiber 10i may be used that has an outside diameter of about 0.020″. Further alternatively, glass illumination fibers may be substituted which are much smaller in outside diameter, e.g., about 0.002″. In this case, more illumination fibers may be provided in a bundle, e.g., about six to fifty glass fibers 10i may be provided.


The distal end of device 10 is sealed by a transparent (or translucent) seal 10s which may be in the form of epoxy or other transparent or translucent adhesive or sealing material. Seal 10s maintains the distal ends of illumination fibers 10i coincident with the distal end of device 10 and also provides an atraumatic tip of the device 10. Further, seal 10s prevents entrance of foreign materials into the device. The distal end can be designed to either focus or distribute the light as it emanates therefrom, to achieve maximum transillumination effects. In this regard, the distal end can include a lens, prism or diffracting element.


The proximal end of device 10 is also sealed by a transparent (or translucent) seal 10ps which may be in the form of epoxy or other transparent or translucent adhesive or sealing material. Seal 10ps maintains the proximal ends of illumination fibers 10i coincident with the proximal end of device 10. The proximal end of device 10 may be further prepared by grinding and polishing to improve the optical properties at the interface of the proximal end of device 10 with a light source. The illumination fibers 10i at locations intermediate of the proximal and distal ends need not be, and typically are not fixed, since no mapping of these fibers is required, as device 10 provides only illumination, not a visualization function like that provided by an endoscope. Further, by leaving illumination fibers free to move at locations between the proximal and distal ends, this increases the overall flexibility and bendability of device 10 relative to a similar arrangement, but where the illumination fibers 10i are internally fixed.


The outside diameter of device 10 may be in the range of about 0.025 inches to about 0.040 inches, typically about 0.030 to 0.038 inches, and in at least one embodiment, is about 0.035″±0.005″. At least the distal portion 10p of device 10 is provided with a core wire 10cw that is contained therein. In the example shown in FIG. 4, core wire 10cw is a wire that is fixed to proximal section 10p such as by laser welding, epoxy or other adhesive or mechanical fixture. Core wire 10cw may extend substantially the full length of device 10. In any case, core wire 10cw is typically formed from stainless steel NITINOL (nickel-titanium alloy) or other biocompatible nickel-titanium alloys, cobalt-chromium alloys, or other metal alloys that are biocompatible and provide the necessary rigidity and torquability. Core wire 10cw may be formed as a wire, as in the example shown in FIG. 4, or alternatively, may be braided from any of the same materials or combination of materials mentioned above. Core wire 10cw, when formed as a wire can be ground to different diameters to provide varying amounts of rigidity and torquability. When formed as a braid, the braid can be formed to have varying amounts of rigidity and torquability along the length thereof. For example, core wire 10cw has a larger outside diameter at the proximal end portion than at the distal end portion so that it is more rigid and transfers more torque from the proximal portion of device 10, whereas at the distal end portion, core 10cw is relatively more flexible and twistable. For core wires 10cw that extend through proximal portion 10p, the portion of core wire near the proximal end of device 10 may have an even larger outside diameter.


Core wire 10cw particularly increases the pushability and the torquability of coil 10c which, by itself, is quite flexible and twistable. Combined with core wire 10cw, the distal portion is much more effective at transferring pushing and torquing forces without buckling or twisting. Additionally, core wire 10cw may be plastically deformed or memory set into a bent shape, an example of which is shown in FIG. 5. Bend 10b provides a steerability function, allowing an operator to direct the distal end of device 10 in different directions by torquing device about the longitudinal axis of the device, as indicated by the arrows in FIG. 5. In some embodiments this bending can be performed by an operator in the midst of a procedure, which can be particularly useful in combination with a scope 1008, as viewing through the scope may make it apparent to the operator that the guidewire 10 needs to be inserted or directed at an angle offset from where the straight direction along the longitudinal axis of the device would direct it to. In some embodiments, the guidewire 10 does not have a core wire. In these embodiments, the outer jacket (e.g., a coil, cable tube, laser-cut hypotube, braided polymer tube, etc.) provides the support for torque, pushability and tension. An advantage of not having a core wire is that the full inner diameter of the guidewire is then available to be filled with illumination fibers.


The illumination fibers, as noted above, can be free to move about radially within the device. Further, there is no need to center the illumination fibers 10i with respect to device 10 even at the distal and proximal ends of the device. FIG. 6 is a sectional illustration of a distal end portion of device 10 showing core wire 10cw fixed to coil 10c, with illumination fibers 10i residing adjacent to core wire 10cw, but not fixed to either core wire 10cw or coil 10c.


The plastic or glass illumination fibers 10i of the device shown in FIG. 4 are typically used to transmit light from a light source such as one provided in an operating room for use by endoscopes, e.g., xenon light source, halogen light source, metal halide light source, etc. Alternatively, device 10 may be configured to transmit light from other light sources, such as a laser light source, wherein laser fibers 10f would be substituted for the illumination fibers described above, and extend through device 10 in a fiber optic bundle as illustrated in the cross-sectional view of FIG. 7. The fiber optic bundle, like the illumination fibers 10i, contributes to stiffness (in both bending and torquing motions) of device 10, thereby enhancing trackability, steering and other torquing.



FIG. 8 illustrates another embodiment of an illuminating guidewire 10. In this example, proximal end portion of device 10 is formed externally by a coil with a polymer layer laminated thereon, but any of the other arrangements described above may be substituted. In this example, illumination is provided by a high intensity light emitting diode (LED) 10id fitted at the distal end of device 10. The proximal end of device 10 may be sealed such as with epoxy, or any of the other alternatives mentioned above with regard to the proximal end of device 10 in FIG. 4, in order to prevent pulling on the wires 10w at the connections with LED 10id, as well as to seal the proximal end of the device. Grinding and polishing are not necessary, as the proximal end of device 10 in FIG. 8 does not transmit light.


Device 10 in FIG. 8 performs substantially similar to the device 10 of FIG. 4 with regard to the properties of pushability, torquability and tensile properties. Device 10 of FIG. 8, however, does not require illumination fibers or laser fibers. Instead, a pair of insulated lead wires are electrically connected to the terminals of LED 10id (not shown) and then extend within device 10 over the length of device 10 to extend proximally from the proximal end of device 10. The free ends of wires 10w are configured to be connected to a power source that functions as the source of electrical power, to deliver electrical energy to LED 10id to illuminate it. FIG. 9 illustrates a cross-sectional view of a distal end portion of device 10 of FIG. 8. In this example, core wire 10cw is in the form of a flattened distal end core wire or shaping ribbon as known in the art, that extends between the two wires 10w. FIG. 9 also illustrates the insulation layer 10iw over each wire.


Any of the devices 10 described herein may optionally include one or more radiopaque markers and/or electromagnetic coils on the tip of the device 10 and/or elsewhere along the device for enhancing visibility by fluoroscopy systems, image guided surgery (IGS) systems, or other visualization systems.



FIG. 10 shows an alternative design of device 10 in which light is emitted proximally of the distal end of the device. This configuration may employ any of the various light transmission means described above (e.g., illumination fibers, laser fibers, LED). The proximal portion 10p may be constructed in any of the manners described above with regard to other embodiments of device 10. The distal portion 10d includes a transparent proximal end portion 10dp that mounts over the distal end of proximal end portion 10p of the device 10. The transparent portion 10dp permits the illumination emitted from illumination member 10i or 10id to pass out of the device 10 at the location of transparent portion 10dp. The illumination member(s) 10i or 10id thus terminate at the proximal end portion 10dp of the distal end portion of device 10. Distally of this transparent portion 10dp, the distal portion 10dd of distal end portion 10d of device 10 extends as a floppy guidewire leader or tip. This floppy guidewire leader or tip 10dd may include a coiled section 10c and may optionally include a core wire 10cw in the manner described above with regard to FIG. 4. The light emitted from illumination fibers will disperse naturally through the transparent portion 10dp. Optionally, a deflector 11, such as a convex mirror (e.g., parabolic or other convex) shape or other reflective surface may be provided distally of illumination fibers/light emitting portion 10i, 10id of device 10 to deflect light rays out of the transparent portion. Additionally, or further alternatively, illumination fibers 10i may be angled at the distal end portions thereof to direct the emitted light out through the transparent portion.


This configuration may be beneficial in further protecting the illumination emitter(s) 10i, 10id from foreign materials inside the body, as well as from trauma that may be induced by bumping the illumination emitter up against structures within the body. Further, a floppy guidewire leader 10dd of this type may provide more flexibility and maneuverability than a device in which the illumination emitter is located on the distal tip of the device.


Transparent portion 10dp may be provided as a clear plastic or glass integral tube, or may have openings or windows 10t provided therein (see the partial view of FIG. 10). Further alternatively, transparent portion may be formed by a plurality of struts 10st circumferentially arranged to interconnect the distal floppy tip 10dd with the proximal end portion 10p of device 10 as shown in the partial illustration of FIG. 12. Alternatively members 10st may be intersecting in a criss-crossing cage like configuration or other cage configuration. In any of these alternative configurations, members 10st may be transparent, but need not be and could be formed of non-transparent materials, such as metals or opaque plastics, for example.


Device 10 should be readily connectable to and disconnectable from a power source to enable attachment for providing illumination for positioning the guidewire 10 and/or other devices during a procedure, detachment to allow another device to be slid onto the guidewire 10 from a free proximal end thereof, and reattachment to again provide illumination, to assist in guidance/visualization of the device being passed over the guidewire 10, for example.



FIGS. 13A and 13B illustrate one example of a coupler 20 that is configured for quick connection and disconnection of an illumination guidewire 10 that employs illumination fibers 10i or laser fibers 10f. Coupler 20 is connected to a light source 1030, such as a conventional endoscope light source, for example, or other light source capable of delivering preferably at least 10,000 lux through coupler 20. Light cable 1032 optically connects connector 20 with light source 1030 to deliver light from the light source 1030 to connector 20. Light cable 1032 can optionally be a fluid-filled light cable, such as the type provided with DYMAX BlueWave™ 200 and ADAC Systems Cure Spot™ light cables, for example. A liquid filled light cable comprises a light conducting liquid core within plastic tubing. The liquid is non-toxic, non-flammable and transparent from 270 to 720 nm. The ends of a liquid filled light cable can be sealed with high quality quartz glass and metal spiral tubing surrounded by a plastic sleeve for exterior protection.


Connector 20 includes a proximal channel, slot or bore 22 that has an inside dimension or circumference that is slightly greater than the outside diameter or circumference of device 10 at the proximal end portion 10p. A quick release locking mechanism 24 is provided for locking and unlocking device 10 within connector 20. Quick release locking mechanism 24 is biased toward the locking position shown in FIG. 13B, in which the locking portion 24a of mechanism 24 is driven into channel slot or bore 22 and may even abut against the opposite wall of the channel, slot or bore 22, when no guidewire 10 has been inserted. Locking mechanism 24 may be spring-biased toward the locked position, for example. Additionally, locking mechanism 24 may include a ball and detent arrangement, or other temporary locking means to maintain the mechanism 24 in the locked configuration. An additional, similar mechanism may be provided to temporarily fix locking mechanism 24 in the unlocked configuration shown in FIG. 13A. Alternative locking mechanisms may be employed, such as a pivoting lock arm, for example, that is manually pivotable between the locked and unlocked orientations, or other mechanism that would be apparent to one of ordinary skill in the mechanical arts, such as a collapsible silicone valve that grips the device, for example.


Light cable 1032 generally has a much larger inside diameter than the inside diameter or combined inside diameters of the illumination fibers 10i. Accordingly, the proximal end portion of connector 20 provides a tapering or funnel shaped pathway 26 having a proximal inside diameter that is substantially equivalent to the inside diameter of cable 1032 or greater, and which tapers to a distal inside diameter that is about the same or only slightly greater than the inside diameter or combined inside diameters of the illumination fiber(s), or alternatively, that is about the same or only slightly greater than the outside diameter of the proximal end of device 10. The light cable 1032 generally has a larger diameter bundle of illumination fibers than that contained within the illuminating guidewire 10. Accordingly, the taper 26 is used to transition between the larger bundle in the light cable 1032 and the smaller bundle in the guidewire 10 With this arrangement, light delivered through light cable 1032 is concentrated or focused down to a pathway where most of the light can be transmitted through the illumination fibers.


To insert device 10 into connector 20, an operator retracts quick connect locking mechanism 24 to the open position shown in FIG. 13A. If quick connect mechanism 24 is provided with a temporary locking mechanism as referred to above, then quick connect locking mechanism 24 can be temporarily fixed in the orientation shown in FIG. 13A, without the operator having to hold it open. Otherwise, the operator will hold connector 20 open in the position shown in FIG. 13A. The proximal end of device 10 is next inserted into the open channel, slot or bore 22 and slid proximally with respect to connector 20 until the proximal end of device 10 abuts against the proximal end of channel, slot or bore 22. Quick release mechanism is next released by the operator (in embodiments when there is no temporary locking mechanism to maintain the quick release in the open configuration) or released from the temporary locked open configuration, so that the locking arm 24a is advanced toward the proximal end portion 10p of device 10, by the biasing of quick connect locking mechanism 24 described above. Locking arm 24a contacts device 10 and holds device 10 under compression between locking arm 24a and the opposite inner wall of channel, slot or bore 22, with sufficient force to prevent device 10 from sliding out of connector 20 even if the distal tip of device 10 is pointed straight down in a vertical direction. Optionally, locking arm 24a may be additionally temporarily locked in place by a ball and detent mechanism, or other temporary locking mechanism, as mentioned above. To remove device 10 from connector 20, quick connect locking mechanism 24 is repositioned to the open or unlocked orientation shown in FIG. 13A and the device is slid distally with respect to the connector until it is free from the connector 20.



FIGS. 14A-14B illustrate an alternative connector 20 that includes a quick release locking mechanism 24. In this example, two or more locking arms 24a are provided circumferentially about the distal end of connector 20. Arms 24a are biased to the closed or locked configuration as shown in FIG. 14A. For example, arms 24a may be made from resilient spring steel, nickel-titanium alloy or resilient plastic and formed to assume the configuration shown in 14A when mounted to connector 20 and when in an unbiased state. Installation of device 10 into connector 20 is simplified by the automatic grasping and temporary locking functions provided by quick release locking mechanism 24. The proximal end of device 10 is simply inserted between the two or more arms 24a. Arms 24a include ramped or cammed surfaces 24b that guide the proximal end of device 10 into connector 20, and, as device 10 is pushed against these surfaces 24b, arms 24a are deflected into the opened, biased configuration shown in FIG. 14B. The biasing/resiliency of arms 24a imparts compressive forces to the shaft of device 10 via temporary locking surfaces 24a, so that device 10 is gripped and held in position as shown in FIG. 14B. To remove device 10, the operator need simply pull on device 10, while holding connector 20 relatively immobile, with a force sufficient to overcome the compressive and frictional forces imparted by arms 24a. The resilient arms 24a then return to the unbiased configuration shown in FIG. 14A. Optionally, arms 24a may be coated with, or include a friction enhancing surface, such as rubber or other elastomer, and/or be roughened, such as by knurling or other surface roughening technique.


In the example shown in FIGS. 14A-14B, the light cable 1032 that is provided has an inside diameter that is about the same as the diameter of the proximal end of device 10 and thus, no tapering channel 26 is required. However, for arrangements where the light cable 1032 is much larger, as is usually the case when using a conventional endoscope light source 1030, connector 20 may be provided with a tapering light channel 26 in the same manner as described above with regard to the embodiment of FIGS. 13A-13B.



FIG. 15 illustrates a longitudinal sectional view of a connector 20 that is quickly connectable and releasable from a guidewire device 10 and is also connectable to and releasable from standard light source cables that are typically found in operating rooms. Thus, this connector 20 functions both as an adapter to connect to a conventional endoscope light source channel or cable, and as a quick release locking connector to connect to and release from a proximal end portion of guidewire 10.


The proximal end of connector 20 is provided with a light post 28 that is configured to mate with a connector on the distal end of a light cable extending from a conventional endoscope light source. For example, light post 28 may be an ACMI light post (ACMI Corporation) or other standard connector typically used to connect endoscopes to operating room light sources. Because the cable extending from an operating room light source generally has a much larger inside diameter than the inside diameter or combined inside diameters of the illumination fibers of device 10, and larger than the diameter of the proximal end of guidewire 10, the proximal end portion of connector 20 includes a light tapering or funnel-shaped pathway 26 like that described above with regard to FIG. 13A.


The quick release locking mechanism 24 in this example includes a collet 24c that is configured to center the proximal end of device 10 with the distal end of tapering pathway 26. A threaded cap 24d is threaded over mating threads 24t on the body of connector 20, so that when cap 24d is torqued in a direction to advance cap 24d proximally with respect to the body of connector 20, inner ramped or cammed surfaces 24e of cap 24d ride over outer ramped or cammed surfaces 24f of collet 24c, thereby functioning as a pin vise and clamping collet 24c against the proximal end portion of device 10 to clamp and maintain device 10 in its current position relative to connector 20. To insert device 10, cap 24d is rotated in a reverse direction from that described above to open the distal opening of the inner channel 24g of collet 24c to a dimension larger than the outside diameter of the proximal end of device 10, so that device 10 can be easily slid through the channel 24g until the proximal end of device 10 abuts the proximal end portion of collet 24c, or approximates the same. The cap 24d is then turned with respect to the body of connector 20 to clamp device 10 into position, as described above. Removal of device 10 can be performed by turning cap 24d in a reverse direction relative to connector body 20, thereby loosening the grip of collet 24c on device 10, after which device 10 can be easily slid out from connection with connector 20. Components of connector 20 may be made from metal, such as stainless steel or other biocompatible metals, or temperature-resistant thermosetting polymer, for example.


Light post 28 is rotatable with respect to the light cable 1032 of the light source 1030 when connector 20 is connected to the distal end connector of the light cable 1032. This allows device 10, when connected to connector 20 in this arrangement, to be rotated during use without building up significant twisting or rotational counter forces within the light cable 1032. For example, in the light post 28 shown, the female receptacle (not shown) of the light cable 1032 couples over light post 28 and engages in groove 28g, about which the female receptacle is then rotatable relative to light post 28. FIG. 16 is a longitudinal sectional view of a connector 20 that is similar to the connector 20 described with regard to FIG. 15 above. One difference in the example of FIG. 16 is that the tapered light guide 26 is provided in the light post 28, as contrasted with being provided in the proximal end portion of the main body of connector 20 in FIG. 15. However, in both cases, the function is the same.


Turning now to FIGS. 17A-17E, illustrations of partial coronal sectional views through a human head showing various steps of a method for treating an ostium that opens to a frontal sinus are shown. The methods described here, and all other methods disclosed herein may also comprise a step of cleaning or lavaging anatomy within the nose, paranasal sinus, nasopharynx or nearby structures including but not limited to irrigating and suctioning. The step of cleaning the target anatomy can be performed before or after a diagnostic or therapeutic procedure. The methods of the present invention may also include one or more preparatory steps for preparing the nose, paranasal sinus, nasopharynx or nearby structures for the procedure, such as spraying or lavaging with a vasoconstricting agent (e.g., 0.025-0.5% phenylephyrine or Oxymetazoline hydrochloride (NEO-SYNEPHRINE or AFRIN) to cause shrinkage of the nasal tissues, an antibacterial agent (e.g., povodine iodine (BETADINE), etc. to cleanse the tissues, etc.


In FIG. 17A, a first introducing device in the form of a sinus guide 1002 is introduced through a nostril and through a nasal cavity 1012 to a location close to an ostium 1034 of a frontal sinus 1036. Sinus guide 1002 may be as described previously herein, or as described in the applications incorporated herein by reference. The advancement of sinus guide 1002 can be visualized with a scope inserted into the nasal cavity 1012 and advanced as close to the ostium 1034 as possible without causing significant trauma to the tissues therein.


Once the surgeon is satisfied that the distal end of the sinus guide 1002 is positioned close enough to the appropriate ostium 1034, illuminating guidewire 10, connected to a light source as described by any of the techniques mentioned above, is inserted through sinus guide 1002 and advanced therethrough, see FIG. 17B. There may be some transillumination from the light emitted from the scope which can be used to confirm that the sinus guide 1002 is positioned in the correct general area, which confirmation can be made even before the distal tip of guidewire 10 exits the distal end of sinus guide 1002. However, much more specific transillumination effects are produced when the tip of guidewire 10 exits the distal end of guide 1002 and especially when the light emitting portion of guidewire 10 touches or approximates an intended target surface, such as an inner wall of a sinus, for example. As the guidewire 10 is advanced, transillumination on the face of the patient can be observed as a glowing spot that moves as the distal end portion of device 10 moves, thereby making it possible to visibly track the location of the light emitting portion of device 10 without the need to use radiographic imaging, such as by fluoroscopy, for example.


As shown in FIG. 17C, a light activated drug 1037 can be injected into the patient's body. The drug 1037 can be inserted into any of the available spaces within a patient to facilitate transillumination. In one approach, the drug is injected within the sinuses for this purpose. Shining a light source upon the drug enhances the effect of the illumination device.


While there may be some diffuse transillumination on the forehead of the patient overlying the frontal sinus 1036 as the light emitting portion of device 10 approaches the ostium 1034, the glow on the forehead becomes brighter and smaller in dimension (more focused) as the light emitting portion passes through the ostium 1034 and enters the frontal sinus 1036, FIG. 17D. As device 10 is further advanced, the glowing spot becomes most defined and brightest as the light emitting portion approaches and contacts a wall of the frontal sinus 1036. Further, as noted, the movement of the transilluminated spot can be visibly followed to confirm that the guidewire 10 is indeed moving within the location of the frontal sinus, as can be confirmed by the surgeon's knowledge of the particular anatomy of the patient being treated. In this regard, a CAT scan or other image of the sinus anatomy can be performed prior to this procedure and studied by the surgeon, to apprise the surgeon of any distinctive or unusual patterns in the individual patient's sinus anatomy which might be useful in tracking and confirmation of where the guidewire is located, as indicated by the transillumination.


Once properly positioned, the proximal end of device 10 is disconnected from connector 20, while leaving guidewire 10 in its current position. A working device 1006, for example a balloon catheter, is the introduced over guidewire 10 and advanced thereover so that the proximal end of device 10 extends proximally beyond a proximal end of device 1006. Device 10 is then reconnected to connector 20 so that light is again emitted from the light emission portion of the distal end portion of device 10 Thus it can be visually confirmed, without radiography, that the distal end portion of the guidewire 10 remains properly in the frontal sinus 1036 as the working device 1006 is advanced toward ostium 1034 and the balloon of working device 1006 is extended across the ostium, FIG. 17D. The proper positioning of the working end (distal end portion) of working device 1006 can be visualized with the scope and/or fluoroscopy.


Once proper placement of the working device 1006 has been confirmed, working device 1006 is used to perform a diagnostic or therapeutic procedure. In this particular example, the procedure is dilatation of the frontal sinus ostium 1034 by expansion of the balloon thereagainst, to enlarge the opening of the ostium 1034. However, it will be appreciated that the present invention may also be used to dilate or modify any sinus ostium or other man-made or naturally occurring anatomical opening or passageway within the nose, paranasal sinuses, nasopharynx or adjacent areas. Further, other working tools may be inserted and used according to these same techniques. After the completion of the procedure, sinus guide 1002, guidewire 10 and working device 1006 are withdrawn and removed, completing the procedure, see FIG. 17E.


Illuminating guidewire device 10 can also be used to facilitate visualization and placement of the sinus guide 1002 in the procedure described above with regard to FIGS. 17A-17E, or in another procedure in which a sinus guide, guide catheter or guide tube is placed in the sinus pathways. FIG. 18 illustrates a situation, like that described above with regard to FIG. 3, where scope 1008 has been inserted as far as possible without causing significant trauma to the patient. The range of visibility in this case does not extend all the way to ostium 1034, as indicated schematically by the rays 1009 shown extending distally from scope 1008. In this case, adequate visualization of sinus guide 1002 by scope 1008 is possible only up to the extent of the rays 1009 shown. Thus, if sinus guide 1002 is flexible enough to be advanced more closely to ostium 1034, then adequate visualization of this movement would not be possible via scope 1008. That is, if sinus guide 1002 is physically capable of being extended further distally to place the distal end thereof at the approach to ostium 1034, scope 1008 would not be capable of adequately visualizing this. However, by inserting illuminating guidewire through sinus guide 1002 as shown in FIG. 18, additional illumination can be provided distally of the illuminating range of scope 1008. This additional illumination can be received by scope 1008 to enable visualization up to the illumination portion of device 10 and potentially even extending the illumination range of device 10, as long as there is a straight pathway of the field of view. Thus, advancement of the sinus guide 1002 can be visualized further distally by the scope 1008 using this technique, and potentially all the way up to the ostium 1034.


Additionally, this technique can be used to visualize placement of the guidewire 10 up to and into the desired ostium 1034. Alternatively, this can be carried out without the sinus guide 1002, wherein the guidewire 10 is inserted and the scope 1008 can be used to visualize placement of guidewire 10 into the target ostium with the assistance of the light emitted by the scope 1008 in addition to the light emitted by guidewire 10.


In any of these procedures where a scope 1008 is used for visualization and an illuminating guidewire is inserted, some transillumination of the target sinus may occur from the light emitted by the scope 1008 alone. However, this transillumination will be diffuse and show a rather dim, large area of transillumination on the patient's skin. When the illumination guidewire is inserted and advanced, as noted earlier, a smaller, brighter transillumination spot will be visible when the illuminating portion of the guidewire has entered the sinus. Additionally, even before entering the sinus, the light emitted from the guidewire will produce a moving transillumination spot at guidewire 10 is advance, which also helps distinguish the location of the distal portion of the guidewire, relative to any diffuse transillumination produced by the scope light.


If the guidewire 10 is advanced into an ostium other than the target ostium (e.g., ostium 1035 shown in FIG. 18), this may be possible to be viewed by scope 1008, depending upon the line of sight. However, even if it is not, the transillumination resulting from entrance into a different sinus than the target sinus will be evident by the different location on the patient's face. Also, in the example shown, guidewire 10 would not be able to be advanced very far through ostium 1035 before it was diverted and curled by the relatively small sinus space that ostium 1035 leads into. Thus, by tracking the movement of the illumination spot produced by guidewire 10, the surgeon could confirm that guidewire 10 was misplaced as the guidewire would be diverted by a much smaller space then that characterized by the target frontal sinus 1036.


Thus, by using an illuminating guidewire device 10 in the methods as described above, the use of fluoroscopy or other X-ray visualization can be reduced and is not required to confirm proper placement of the guidewire in some cases.


Similar procedures may be carried out in other sinuses. For example, a similar procedure to that described above with regard to FIGS. 17A-17E may be carried out to open or expand an opening of an ostium leading to a maxillary sinus. In this case, when illuminating guidewire device 10 passes through the ostium that opens to the target maxillary sinus and enters the maxillary sinus, a relatively bright, relatively small, defined transillumination spot can be observed to move across the cheek region of the patient. As guidewire 10 is advance further distally along the maxillary sinus, the maxillary sinus typically tends to track in an inferior direction relative to the skull, and the bottom wall of the maxillary sinus is very close to the palate of the patient. Therefore as the illuminating portion of guidewire approaches and/or touches the bottom wall of the maxillary sinus, a transillumination spot can be observed on the roof of the patient's mouth by looking into the mouth of the patient. At the same time, the transillumination spot on the cheek that was caused by the guidewire will diminish, or not be visible at all at this time. This viewability on the roof of the mouth is further confirmation that the guidewire has entered the maxillary sinus. Movement of the transillumination spot on the roof of the mouth can also be observed as the guidewire 10 is advanced and/or retracted.


It is further noted that some wavelengths of light may be more effective in producing the transillumination effects described herein, for the purpose of locating the position of the guidewire. In this regard, particular wavelengths of visible light can be selected for this purpose. Alternatively, or in addition, infrared wavelengths may be particularly effective. In this regard, guidewires that employ illuminating fibers may be provided with a filter 12 to define the color/wavelength of the light emitted by device 10. As schematically shown in FIG. 19, filter 12 may be provided distally of the illumination fibers, such as at the distal tip of device 10, proximally of the illumination fibers, such as at the proximal end of device 10, or in the light pathway at a location within connector 20, for example. Multiple filters may be placed at one or more of these locations. For devices 10 that employ an LED light emitting component, different color LEDs may be employed to emit different wavelengths of light. For devices 10 that employ laser fibers, different types of lasers may be used that emit different wavelengths of light.


Another optional feature that guidewire 10 may be provided with is the ability to emit strobed, flashing or flickering light. The transillumination produced by a flashing light can be further distinguished from diffuse transillumination produced by other light sources, such as endoscopes, for example, since the transillumination produced by the guidewire 10 in this case will flicker or vary in intensity between bright and dim. To produce this type of light, either a light source having strobing capability could be connected to the device 10, or connector 20 may be provided with this capability. When using a laser light source or an LED as the light emitter, as described in embodiments above, a blinking or strobing effect can be electronically generated according to techniques known in the electronics and lighting arts. FIG. 20A schematically illustrates a connector 20 having a rotating shutter 27 rotatably mounted therein so that the vanes 27v and gaps 27g between the vanes (see plane view in FIG. 20B) become successively aligned with the light pathway through the connector 20 to alternate emission and blocking of light transmission out of the connector 20 and ultimately through device 10 when a device 10 is connected thereto. Shutter 27 can be powered by a motor 29 that is either battery powered or connectable to an operating room power source, and motor 29 can be operated by the user via actuator 31, which can be configured to turn the motor on and off, and optionally can be configured to vary the speed of rotation.


Alternatively, shutter 27 can be configured so that vanes 27v extend through a slot in connector 20 whereby a user can manually rotate the shutter to cause the light emitted from device 10 to flicker.


Other instruments that are designed to be inserted into a sinus, or at least to be positioned at the ostium of a sinus can also be provided with illumination capability according to any or all of the features described above with regard to illumination guidewires. FIG. 21 shows a frontal ostium seeker 100 instrument that can be used to access a sinus ostium. For example, seeker 100 may be provided with a length of about 175 mm to about 250 mm (about 208 mm in the example shown) and a ball tip at one or both ends of the instrument. In FIG. 21, seeker 100 is also provided with a light emitter 104 at one or both ends of the device 100 that can be used to locate an end of device 100 as it is being advanced to seek an ostium, by the transillumination effects as discussed above. Light emitters 104 may be provided by LED, light illumination fibers or laser illumination fibers, for example. One or both end portions of the instrument may include a light fiber bundle or electrical wires for connection to a light source or power source in a manner as described above.



FIG. 22 shows a suction sinus instrument 110 that is configured to evacuate blood and/or other fluids from a target surgical site, such as the frontal sinus, sphenoid sinus or other sinus, to improve visibility of a surgical procedure. Instrument 110 includes an elongated shaft 116 with a distal end that opens to deliver suction via a suction lumen end 112. Additionally, a light emitter 114 is provided at the distal end of shaft 116, which may be an LED or one or more illumination fibers configured to transmit light in a manner as described above. Shaft 116 is configured and dimensioned to be inserted into the sinus passageways and sinuses. The proximal end portion of instrument 110 may include a light fiber bundle 118 or electrical wires for connection to a light source or power source in a manner as described above.



FIG. 23 shows an integrated wire dilatation catheter 120 that includes an elongate, flexible catheter shaft 126 having a balloon 128 mounted thereon. A proximal Luer hub 122 is attached to the proximal end of the catheter shaft 126. An inflation device (not shown) may be attached to the Luer hub 122 and used to inflate and deflate the balloon 128. A non-removable, integrated guide member 124 extends out of and beyond the distal end of the catheter shaft 126. Guide member 124 can extend through the length of catheter shaft 126 and extend proximally thereof as shown in FIG. 23. The proximal end portion may be configured with a polished proximal end containing illumination fibers, as described previously, or may have one or more electrical wires extending proximally thereof for connection with an electrical power source to deliver electrical power to an LED, for example. A light emitter 125 may be provided at the distal tip of integrated guide member 124, as shown in FIG. 23 and may be one or more LEDs or one or more illumination fibers, according to any of the different embodiments described above. Alternatively, light emitter 125 may be provided proximally of the distal tip of guide member 124, in a manner like that described with regard to FIG. 10, for example. Further alternatively, guide member may not extend through the entire length of catheter 126 or may not extend proximally of balloon member 128 at all. In these examples, light emitter may be an LED, wherein wires can be threaded through or alongside of catheter 126 and into guide member 124 to connect with the LED. Further alternatively, if light emitter 125 comprises one or more illumination fibers, the illumination fibers may extend proximally of the proximal end of the guide member 124, and proximally through catheter 126 where they are not surrounded by an external sheath in a guidewire formation.


In one preferred embodiment for adult applications, balloon catheter 120 has an overall length of approximately 43.5 cm and its shaft 126 has an outer diameter of about 0.058 inches. Further details about integrated wire dilatation catheters that may be configured with a light emitter in a manner as described herein can be found in co-pending application Ser. No. 11/438,090 filed May 18, 2006 and titled “Catheters with Non-Removable Guide Members Useable for Treatment of Sinusitis. Application Ser. No. 11/438,090 is hereby incorporated herein, in its entirety, by reference thereto.


Turning now to FIGS. 24-31, an illuminating guidewire 210 according to another embodiment of the present invention is depicted. Illuminating guidewire 210 may include an elongate flexible housing (or “body”), including a distal end portion 210d and a proximal end portion 210p. The housing (210d and 210p) of guidewire 210 may be coupled proximally with a connector 20, which is described further below.


Generally, distal end portion 210d may be more flexible than proximal end portion 210p to provide a desired degree of flexibility for leading the device to a site within a paranasal sinus or other location in the body. The distal end portion 210d may include a coil 210c as an exterior portion thereof, to help provide the desired flexibility to this portion. A proximal end portion 210p of illuminating guidewire 210 provides a sufficient length so that the device extends proximally out of the patient (and, when inserted through another device, such as a sinus guide, proximally out of the device into which illuminating guidewire 210 is inserted), at all times, including the deepest contemplated location into which the distal end of device is placed. As before, the proximal end portion 210p can have visible markings, preferably spaced at equal intervals, which can be observed by the user to confirm how far the illuminating guidewire 210 has been placed into the patient. Proximal end portion 210p generally provides: torquability, i.e., the ability to torque the proximal end portion 210p from a location outside of the patient and have that torque transmitted to the distal end portion 210p; pushability, i.e., sufficient rigidity, so that when an operator pushes on the proximal end portion 210p from a location outside of the patient, the pushing force transmits to the distal portion 210d to advance the distal portion 210p without buckling the device 210; and tensile strength so that an operator can pull on the proximal end portion 210p from a location outside of the patient and withdraw the device from the patient without significant plastic deformation or any destruction of the device.


The coil 210c formed at the distal end portion 210d of the illuminating device 210 may be formed from a stainless steel wire. The diameter of the coil wire can be between about 0.004 and about 0.008 inches, typically about 0.006 inches. Alternative materials from which coil 210c may be formed include, but are not limited to: ELGILOY®, CONICHROME® or other biocompatible cobalt-chromium-nickel alloys; nickel-titanium alloys; or other known biocompatible metal alloys having similar characteristics. In one approach, the coil is formed from a 0.006 inch stainless steel wire defining a 0.034 inch outer diameter (0.035 inch maximum) and a 0.021 inch inner diameter.


In one embodiment, the proximal portion 210p can be made from a cable tube 211 (See also FIG. 26). “Cable tube,” as used in the present application, means any tubular structure other than a tube made from a single coil (such as coil 210c). The cable tube 211 can define an approximate 0.021 inch constant inner diameter to match the inner diameter of the coil 210c. Also, the cable tube 211 can be formed from 12-13 filars of steel wire wound to achieve maximum stiffness. A distal portion of the cable tube 211 can be tapered to provide a smooth connection to the coil 210c. This tapered profile can be formed by grinding an exterior of the cable tube 211. In one embodiment, proximal portion 210p, made of cable tube 211, may provide significantly more torquability and pushability than distal end portion 210d, made of coil 210c. Conversely, distal end portion 210d may be more flexible than proximal portion 210p. As shown in FIG. 25, coil 210c is joined to proximal portion 210p by solder, epoxy or other adhesive or mechanical joint. In one approach, coil 210c has a length in the range of 5-8 cm and the cable tube (i.e., proximal portion 210p) is 60-100 cm in length. One or more illumination channels for an illumination fiber 210i are provided in guidewire 210 and extend the length thereof. The illumination channels are configured to transport light from the proximal end of illumination guidewire 210 to and out of the distal end of device. One or more illumination channels can be provided, each comprising a plastic illumination fiber. As previously described, the plastic used to make the illumination fibers is compounded for light transmission properties according to techniques known and available in the art. Accordingly, ESKA™ (Mitsubishi Rayon), a high performance plastic optical fiber may be used, which has a concentric double-layer structure with high-purity polymethyl methacrylate (PMMA) core and a thin layer of specially selected transparent fluorine polymer cladding. In a preferred approach, the assembly includes two illumination fibers each having an outside diameter of about 0.010″. It is to be noted, however, that the illumination fibers can have an outside diameter in the range of about 0.005 inches to about 0.010 inches. Alternatively, a single plastic illumination fiber may be used that has an outside diameter of about 0.020″. Moreover, glass illumination fibers may be substituted which are much smaller in outside diameter, e.g., about 0.002″. In this case, more illumination fibers may be provided in a bundle, e.g., about six to fifty glass fibers may be provided.


The distal end of the illumination guidewire 210 is sealed by a transparent (or translucent) seal 210s which may be in the form of epoxy or other transparent or translucent adhesive or sealing material. The seal 210s maintains the distal ends of illumination fibers 210i coincident with the distal end of the device and provides a lens 213 to provide an atraumatic tip. In one approach, an UV adhesive is employed to bond the illumination fibers 210i to the coiled wire 210c as well as to a core wire. Further, the seal 210s prevents entrance of foreign materials into the device. The lens 213 formed at the distal end can be designed to either focus or distribute the light as it emanates therefrom, to achieve maximum transillumination effects. Moreover, the distal end can also include a prism or diffracting element.


Still referring to FIG. 25, in some embodiments, guidewire 210 may further include an inner core wire 210cw (or “core wire”). In one embodiment, as shown in FIG. 25, core wire 210cw may extend from the distal end of distal portion 210d to the proximal end of proximal portion 210p of guidewire 210 and may be attached to coil 210c and cable tube 211 at the distal end, at a junction between coil 210c and cable tube 211, and at a proximal end. In various embodiments, core wire 210cw may be attached by any suitable means, such as by laser welding, epoxy or other adhesive or mechanical fixture. In one embodiment, core wire 210cw may be formed from NITINOL (nickel-titanium alloy) metal alloys that are biocompatible and provide the necessary rigidity and torquability.


Core wire 210cw particularly increases the pushability and the torquability of coil 210c which, by itself, is quite flexible and twistable. Combined with the core wire 210cw, distal portion 210d is much more effective at transferring pushing and torquing forces without buckling or twisting. Additionally, core wire 210cw may be plastically deformed or memory set into a bent shape, an example of which is shown in FIG. 5. Bend 10b provides a steerability function, allowing an operator to direct the distal end of device 10 in different directions by torquing the device about the longitudinal axis of the device, as indicated by the arrows in FIG. 5.


As shown in FIGS. 27 and 28, core wire 210cw may be formed as an elongate member. When so formed, core wire 210cw may be ground to different diameters to provide varying amounts of rigidity and torquability along illumination guidewire 210. As part of an illuminating guidewire 210 assembly, core wire 210cw is configured to provide a space for the light fibers 210i. Thus, the major dimension of the core wire 210cw must be less than an inner diameter of the proximal portion 210p.


With reference to FIG. 27, in one embodiment, core wire 210cw may include a distal end portion 219 having a nominal diameter of 0.003 inches and a length of approximately 1.0 centimeters. A proximally adjacent section 221 can have a diameter of approximately 0.006 inches and a length extending about 4.0 centimeters from the terminal end of the member. A tapered region 223 is configured proximally of this structure, increasing in size to a nominal diameter of about 0.008 inches approximately 7 centimeters from the terminal end. The remaining proximally oriented section 225 of core wire 210cw can embody a constant 0.008 inch diameter. In this way, the various dimensional sections of core wire 210cw can provide desirable flexibility.


In an alternative embodiment, referring now to FIG. 28, core wire 210cw may include structures which accommodate a transition from coil 210c to proximal portion 210p. A short terminal end portion 231 of this embodiment (approximately 0.2 cm in length), is flattened for attachment (such as soldering) purposes. The support 210cw then forms a 0.005 inch diameter 233 for approximately 1.3 cm and from about 1.5 cm to 5.0 cm from the terminal end, the support 210cw has a tapered profile 235 increasing to a maximum diameter of about 0.008 inches. Between approximately 5.0 cm and 8.0 cm from the terminal end, core wire 210cw includes a distal enlarged section with a proximally oriented taper section 237 that assumes the diameter of about 0.008 inches then tapers down to about 0.006 inches in a proximally oriented section 239. This section 239 then increases in diameter to a maximum of approximately 0.008 inches at about 12.0 cm for the terminal end. The section 241 proximal to this maintains a diameter of about 0.008 inches.


Turning now to FIG. 29, core wire 210cw can be fixed within an illuminating guidewire 210 by attaching a terminal end 251 of the support 210cw to the coil 210c. At a junction 253 between the proximal the proximal portion 210p of the device 210 and the coil 210c, the proximal taper of the distal enlarged section 238 of core wire 210cw can be configured. This juxtapositional relationship of core wire 210cw and the coil 210c and proximal portion 210p facilitates easing stiffness in the region at the junction 253.


In an alternate embodiment, as shown in FIG. 30, the 0.006 inch section 239 of core wire 210cw can be configured and welded or otherwise attached to the junction 253 between the proximal portion 210p and coil 210c, as well as at the terminal end 251. It is to be recognized that a weld at the junction 253 may require additional material (i.e., steel ring) to complete a bond between the pieces. If a soldering approach is used, the inner diameter of the coil can be kept open by inserting a Teflon coated mandrel to fill the inner diameter. In this way, the torque between the proximal portion 210p and the distal end of the illuminating guidewire 210 can be substantially enhanced through torque transfer because there is a relatively shorter length of core wire 210cw to transfer a rotation force. This approach can also involve removing a connection between the proximal portion 210p and core wire 210cw at a proximal end of core wire 210cw.


With reference to FIG. 31, another embodiment of an illuminating guidewire 210 is depicted. Here, core wire 210cw is attached at its distal end 251 to a coil 210c and is also attached along a midsection at the junction 253 between the proximal portion 210p of illuminating guidewire 210 and coil 210c. Core wire 210cw can also have a length substantially less than that of the illuminating device 210. Thus configured, core wire 210cw can have a terminal point 261 which terminates along a midsection of the illuminating guidewire 210. The space unoccupied by core wire 210cw provides an area for light fibers 210i to move. In one embodiment, a 40-60 cm section can be provided for the winding up of the fibers 210i distal to a connector assembly 20. This can help to prevent damage to the fibers 210i during rotation of the illuminating guidewire 210.


It has been observed that the illuminating fibers 210i can be subjected to thermal cycling. This is due to sterilization, aging, shipping, illumination of the fibers, and other factors. Such thermal cycling can result in longitudinal shrinkage of the illuminating fibers 210i. In fact, shrinkage of from 0.5 to 1% can occur when illuminating fibers are heated above 40° C. In conventional approaches, illuminating fiber shrinkage can result in damage where the fibers are anchored in a manner which does not compensate for shrinkage. Ends of the fibers can become shredded or frayed which thereby adversely affects the functioning of the fibers. Various approaches are contemplated to address shrinkage of illuminating fibers. In one approach, a fiber can be pre-heat treated at approximately 70° C. for 48 hours. By doing so, the fiber can be pre-shrunk. This can minimize or eliminate further shrinkage at lower temperatures.


In other approaches, referring now to FIGS. 31 and 32, structures can be incorporated into the illuminating guidewire assembly 210 to accommodate changes in length. As previously stated, a connector 20 is attached at a proximal end of illuminating guidewire 210. Connector 20 can in turn be operatively associated with a power source or other light activation system. As shown in FIGS. 32 and 33, a first embodiment of a connector 220 incorporating structures that accommodate light fiber length changes includes a luer connector 224 that receives a cable tube 226 of a proximal end portion 210p of an illuminating guidewire 210.


The connector 220 further includes an internal bore 227 having first 229, second 232, and third 234 sections, the first 229 and third 234 having generally equal diameter and the second section 232 having a diameter less than first 229 and third 234. The first bore section 229 is formed at a front end of the connector 220 and is diametrically sized to receive a centering sleeve 236. The sleeve 236 includes a bore sized to accept the cable tube 226 and functions to center the cable tube 236 within the first section 229.


The third bore section 234 of the connector 220 extends distally from a proximal end of the connector 220. Received at a back end of the third bore section 229 is a centering grommet 240 which attachingly engages the illuminating fibers 210i. The grommet 240 centers the light fiber 210i through a connection point 242.


Further, attached to a proximal portion of the cable tube 226 is a collet 244. The collet 244 is sized and shaped to slide within the third bore section 234 which has a length substantially larger than a length of the collet. Through its smaller diameter when compared to the adjacently arranged first and third bore sections 229, 234, the second bore section 232 acts as a stop for both the distally arranged centering sleeve 236 and the proximally positioned collet 244.


As stated, a proximal end of the illuminating fiber 210i is attached to the centering grommet. Its distal end is bonded to a distal end of guidewire 210 The cable tube 226, however, has a floating proximal end by way of its connection to slidable collet 244. Should the illuminating fiber 210i shrink in length, such length shrinkage is taken up by collet 241 (and cable tube 226, which is connected to collet 244) moving proximally within the third bore section 234 of the connector 220. In this way, structural damage to the shorter length illuminating fiber 210i is avoided.


Referring now to FIG. 34, in an alternate embodiment of connector 220, the centering sleeve (236 in the embodiment of FIG. 33) may be omitted. Turning now to FIGS. 35 and 36, yet another alternative approach is shown. A proximal end of the illuminating fiber 210i is affixed to a light fiber connector 243 configured in a proximal end of an internal bore 245 extending through the connector 220. In this embodiment, the internal bore includes a first larger diameter section which tapers down to a second smaller, constant diameter bore section. The illuminating fiber 210i is received in a third bore section 243 which has a diameter smaller than the first and second sections.


Additionally, slidably configured within the first bore section is a rigid grommet 247 including a first component of a rotational stop 249. Also disposed in the first bore section is a second component of a rotational stop 252 formed therein. The grommet 247 is thus keyed with the connector 220 to control the degree to which the components can rotate with respect to each other. In one approach, rotation can be limited to 220 degrees or to 150 degrees where two rotational stops 249 and 252 are configured within the connector 220. A cap 253 retains the grommet 247 within the connector bore 245. As so configured, the cap 253 prevents the grommet 247 from moving in response to a tension applied on the illuminating guidewire 210 Additionally, the bore 245 permits longitudinal translation of the cable tube which is attached to the grommet 247. Moreover, as stated, the keyed grommet relationship of the connector 220 controls the permissible rotation of the cable tube 226 and thus the fiber 210i. Accordingly, the illuminating fiber 210i is protected should it tend to shrink as well as when tension and rotational forces are placed on the device.


Turning now to FIGS. 37-38 inclusive, an illuminating guidewire 310 according to another embodiment of the present invention is depicted. Illuminating guidewire 310 may include an elongate flexible housing (or “body”), including a distal end portion 310d and a proximal end portion 310p.


Generally, distal end portion 310d may be more flexible than proximal end portion 310p to provide a desired degree of flexibility for leading the device to a site within a paranasal sinus or other location in the body. The distal end portion 310d may include a coil 310c as an exterior portion thereof, to help provide the desired flexibility to this portion. A proximal end portion 310p of illuminating guidewire 310 provides a sufficient length so that the device extends proximally out of the patient (and, when inserted through another device, such as a sinus guide, proximally out of the device into which illuminating guidewire 310 is inserted), at all times, including the deepest contemplated location into which the distal end of device is placed. As before, the proximal end portion 310p can have visible markings, preferably spaced at equal intervals, which can be observed by the user to confirm how far the illuminating guidewire 310 has been placed into the patient. Proximal end portion 310p generally provides: torquability, i.e., the ability to torque the proximal end portion 310p from a location outside of the patient and have that torque transmitted to the distal end portion 310d; pushability, i.e., sufficient rigidity, so that when an operator pushes on the proximal end portion 310p from a location outside of the patient, the pushing force transmits to the distal portion 310d to advance the distal portion 310d without buckling the device 310; and tensile strength so that an operator can pull on the proximal end portion 310p from a location outside of the patient and withdraw device from the patient without significant plastic deformation or any destruction of the device.


Again referring to FIG. 37, coil 310c forms the distal end portion 310d of illuminating device 310 and may be formed from a stainless steel wire. The diameter of the coil wire can be between about 0.004 and about 0.008 inches, typically about 0.006 inches. Alternative materials from which coil 310c may be formed include, but are not limited to: ELGILOY®, CONICHROME® or other biocompatible cobalt-chromium-nickel alloy; nickel-titanium alloys; or other known biocompatible metal alloys having similar characteristics. In one approach, the coil is formed from a 0.006 inch stainless steel wire defining a 0.034 inch outer diameter (0.035 inch maximum) and a 0.021 inch inner diameter.


In one embodiment, the proximal portion 310p can be made from a cable tube 311. “Cable tube,” as used in the present application, means any tubular structure other than a tube made from a single coil (such as coil 310c). The cable tube 311 can define an approximate 0.021 inch constant inner diameter to match the inner diameter of the coil 310c. Also, cable tube 311 can be formed from 5-20 filars of steel wire wound together with 12-13 filars selected to achieve a preferred stiffness. A distal portion of the cable tube 311 can be tapered to provide a smoother connection to the coil 310c. This tapered profile can be formed by grinding an exterior of cable tube 311. In one embodiment, proximal portion 310p, made of cable tube 311, may provide significantly more torquability and pushability than distal end portion 310d, made of coil 310c. Conversely, distal end portion 310d may be more flexible than proximal portion 310p.


In some embodiments, coil 310c has a length in the range of 5-15 cm and the cable tube (i.e., proximal portion 310p) is 60-100 cm in length. One or more illumination channels for an illumination fiber 310i are provided in guidewire 310 and extend the length thereof. The illumination channels are configured to transport light from the proximal end of illumination guidewire 310 to and out of the distal end of device. One or more illumination channels can be provided, each comprising a plastic illumination fiber. As previously described, the plastic used to make the illumination fibers is compounded for light transmission properties according to techniques known and available in the art. Accordingly, ESKA™ (Mitsubishi Rayon), a high performance plastic optical fiber may be used, which has a concentric double-layer structure with high-purity polymethyl methacrylate (PMMA) core and a thin layer of specially selected transparent fluorine polymer cladding. In a preferred approach, the assembly includes two illumination fibers each having an outside diameter of about 0.010″. It is to be noted, however, that the illumination fibers can have an outside diameter in the range of about 0.005 inches to about 0.010 inches. Alternatively, a single plastic illumination fiber may be used that has an outside diameter of about 0.020″. Moreover, glass illumination fibers may be substituted which are much smaller in outside diameter, e.g., about 0.002″. In this case, more illumination fibers may be provided in a bundle, e.g., about six to fifty glass fibers may be provided.


In some embodiments, guidewire 310 may further include an inner core wire 310cw (or “core wire”) in certain sections and may extend from the distal end of distal portion 310d to the proximal end of proximal portion 310p of guidewire 310 and may be attached to coil 310c and cable tube 311 at the distal end, at a junctions between coil 310c and cable tube 311, and at a proximal end. In various embodiments, core wire 310cw may be attached by any suitable means, such as by laser welding, epoxy or other adhesive or mechanical fixture. In one embodiment, core wire 310c w may be formed from NITINOL (nickel-titanium alloy) metal alloys that are biocompatible and provide the necessary rigidity and torquability. In a preferred embodiment discussed hereinafter, core wire 310cw terminates at a point approximately midway through device 310 with a fixed distal end and a floating (i.e., not fixed or bonded) proximal end. As noted in the ensuing description, core wire 310cw may be bonded at various other points along device 310 such as those identified as 301sj1, 301sj1 and 301sj3.


Core wire 310cw particularly increases the pushability and the torquability of coil 310c which, by itself, is quite flexible and twistable. Combined with the core wire 310cw, distal portion 310d is much more effective at transferring pushing and torquing forces without buckling or twisting. Additionally, core wire 310cw may be plastically deformed or memory set into a bent shape allowing an operator to direct the distal end of device 310 in different directions by torquing device about the longitudinal axis of the device.


Analogous to FIGS. 27 and 28, core wire 310cw may be formed as an elongate member. When so formed, core wire 310cw may be ground to different diameters to provide varying amounts of rigidity and torquability along illumination guidewire 310. As part of an illuminating guidewire 310 assembly, core wire 310cw is configured to provide a space for the illumination fibers 310i. Thus, the major dimension of the core wire 310cw must be less than an inner diameter of the proximal portion 310p.


More particularly, FIGS. 37A-A through 37F-F illustrate axial cross sectional views of guidewire 310 along various points along the length of the device and describe components contained within the various points of guidewire 310.


As shown in FIG. 37A-A, which represents the distal coil region of guidewire 310, illumination fibers 310i and core wire 310cw are housed within coil 310c. As a note and again referring to FIG. 37, the distal end of the illumination guidewire 310 is sealed by a transparent (or translucent) seal 310s which may be in the form of epoxy or other transparent or translucent adhesive or sealing material. The seal 310s maintains the distal ends of illumination fibers 310i coincident with the distal end of the device and provides a lens 313 to provide an atraumatic tip. In one approach, an UV adhesive is employed to bond the illumination fibers 310i to coil 310c as well as to a core wire 310cw. Further, the seal 310s prevents entrance of foreign materials into the device. The lens 313 formed at the distal end can be designed to either focus or distribute the light as it emanates therefrom, to achieve maximum transillumination effects. Moreover, the distal end may also include a prism or diffracting element. Additionally 310sj1 represents a soldering joint where the same types of soldering materials previously describes herein are suitable for use for 310sj1. The joining of core wire 310cw with coil 310c may be made by epoxy (or other adhesive), by mechanical joint, or laser welding.


Referring to FIG. 37B-B and FIG. 37C-C which represent regions of illuminated guidewire 310 which include the transition zone from the coil 310c to cable tube 311, one sees stranded wire 310sw. As will be seen in the discussion of the ensuing figures, stranded wire 310sw functions to provide stress relief within the system and absorb loads that would otherwise be transferred to the more delicate illumination fibers 310i. Stranded wire 310sw may be made of any flexible, medically safe material that can be braided together yet provide sufficient strength in tension to withstand abrupt pulling or jerking Such materials include stainless steel and nitinol.


In a preferred embodiment, the stranded wire 310sw has an overall diameter of approximately 0.005 inches. By varying the number and thickness of the strands comprising stranded wire 310sw, flexibility and ability to wind (twist) illuminating guidewire 310 is achieved. In most preferred embodiments, seven strands of stainless steel having a diameter of approximately 0.002 inches or 19 strands of stainless steel having approximately a diameter of approximately 0.001 inches, provide satisfactory strength and flexibility to withstand abrupt jerking or pulling and the ability to twist during use.



FIG. 37D-D represents a portion of illuminating device 310 near the proximal end of the device. In this view, core wire 310cw is no longer present since in this embodiment it terminates at a location before reaching the proximal end of the device. The termination point is analogous to terminal point 261 of the previously described embodiment shown in FIG. 31.



FIG. 37E-E and FIG. 37F-F illustrate another region of transition in the proximal region of illuminating device 310. Particularly, cable tube 311 is shown to be within floating tube 310ft. of FIG. 37E-E which then transitions to no cable tube 311 being present in FIG. 37 F-F and bonding tube 310bt is present as shown in FIG. 37F-F.


Floating tube 310ft functions to provide a surface where illuminating guidewire 310 is grasped or otherwise engaged by a locking or securing mechanism of a light connector. Floating tube 310ft is fixably bonded at its proximal end (as described in FIG. 38C) but allowed to “float” at its distal end (i.e., not fixably bonded to cable tube 311, as described in FIG. 38B). Floating tube 310ft thus permits stranded wire 310sw and illumination fibers 310i to twist within illuminating device 310. The ability of stranded wire 310sw and illumination fibers 310i to twist is quite advantageous as the device in use will typically be turned as it is advanced in the oftentimes tortuous bodily cavities such as those present in the paranasal sinuses.


Floating tube 310ft may be made of any suitable, medically safe material that imparts sufficient rigidity and strength to house the various internal elements of illuminating guidewire 310 and sustain engagement by a light connector. Examples of such materials are those used to manufacture hypotubes for medical applications and include stainless steel, titanium, elgiloy, and PEEK tubing.


Bonding tube 310bt functions to fixably bond all of illuminating guidewire 310's elements that are present at the proximal end of the device as explained in the discussion of FIG. 38C.


Bonding tube 310bt may be any suitable, medically safe material that imparts sufficient rigidity and strength to house the various internal elements of illuminating guidewire 310 and provide a surface for bonding materials (such as epoxy or other medically safe adhesives) to join the internal elements in the proximal end of the device. Examples of such medically safe materials including block copolymers such as those sold under the tradename PEBAX, nylon, polycarbonates, polyimides and other plastics such as acrylonitrile-butadiene-styrene copolymer (ABS).



FIG. 38 provides an overall view where major transitions occur along the length of illuminating device 310FIG. 38A, FIG. 38B and FIG. 38C show the details for specific zones or regions of the device.


Referring to FIG. 38A, the transitional between coil 310c and cable tube 311 is shown. In this embodiment, illumination fibers 310i pass through this region. Cable tube 311 is bonded to coil 310c, stranded wire 310sw and core wire 310cw by solder joint 310sj3. In addition, solder joint 310sj2 joins coil 310c, stranded wire 310sw and core wire 310cw. The significance of having these two bonding points not only has been demonstrated to insure a smooth transition between cable tube 311 and coil 310c but enhances the bendability across this region by forming a near natural bending curve, i.e., one without any severe kinking. Desirably the distance between solder joint 310sj2 and solder joint 310sj3 ranges from 0.020 to 0.060 inches. It has been found that if the distance between solder joint 310sj2 and solder joint 310sj3 is less than 0.020 inches, this section becomes too stiff and possesses less of a natural bend when flexed. If the distance is greater than 0.060 inches, the region becomes too flexible and not stiff enough to advance the guidewire without kinking. Generally, bending of this region without severe kinking have been determined to range from a distance about ½ to 4 times the outside diameter of the housing portions to be joined, more preferably no more than 3 times the outside diameter of the housing portions to be joined.



FIG. 38B illustrates the transition between cable tube 311 and floating tube 310ft. Of particular importance in this view is that cable tube 311 (and hence its contents, i.e., illumination fibers 310i and stranded wire 310sw ) are not fixably bonded to floating tube 310ft. Therefore, cable tube 311 and its contents are free to rotate with respect to floating tube 310ft which is a desirable feature when navigating the tortuous cavities of the paranasal sinuses.


Finally, FIG. 38C shows the configuration of the proximal end of illumination device 310 In this figure, proximal end of illumination guidewire 310 is sealed by a transparent (or translucent) seal 310s (similar to the one on the distal end) which may be in the form of epoxy or other transparent or translucent adhesive or sealing material. The seal 310s maintains the proximal ends of illumination fibers 310i coincident with the proximal end of the device and provides a lens 310pl to provide an atraumatic tip. In one approach, an UV adhesive is employed and applied into adhesive region 310ad1 to bond illumination fibers 310i, bonding tube 310bt as well as to bond stranded wire 310sw to seal 310s. Further, the seal 310s prevents entrance of foreign materials into the device. The lens 310pl formed at the proximal end can be designed to either focus or distribute the light as it enters from a light cable or other light source, to achieve maximum transillumination effects. FIG. 38C also shows the proximal end of floating tube 310ft which is fixably bonded to bonding tube 310bt. While any suitable bonding method may be used to bond floating tube 310ft to bonding tube 310bt, use of a medically safe adhesive is preferred and provided to adhesion region 310ad2 and in fact may be bonded at the same time and with the bonding materials used in adhesion region 310ad1.


It has been observed that illumination connectors, i.e., devices that join an illumination guidewire device to a light cable of a light source, are prone to heating which could be detrimental to components of an illuminated guidewire as well as to the illumination device's effectiveness to provide adequate lighting at the distal end. In some instance temperatures of greater than 250° F. have been observed. The illumination connector hereinafter described helps to better control heat buildup.



FIG. 39 represents illumination connector 320 comprising body 322, button 330 and button springs 332. Body 332 overall comprises conical distal bore 328, center bore 326, light cable connection receiver 324. Button 330 further comprises bore 334. In use, connector 320 receives illumination guidewire 310 through distal bore 328. While depressing button 330 downwardly and further advancing illumination guidewire 310 through button bore 334 until it reaches proximal aperture 340. Illumination guidewire 310 is secured in connector 320 once button 330 is released and springs 332 move button bore 334 to secure floating tube 310ft as button bore 334 is urged from axial alignment with center bore 326. As noted earlier, with floating tube 310ft being the section of illumination device 310 that is secured within connector 320, cable tube 311 and its contents are able to rotate.



FIG. 39A contains further detail of the proximal end of connector 320. In particular, illumination device 310 rests in aperture 340. It is significant that the diameter of aperture 340 is less than the diameter of the proximal end of illuminated device 310 It has been determined that aperture outer diameters that range from about 60 to 80% (preferably about 70%) of the outer diameter of the proximal end of the illumination device provide satisfactory light dissipation while maintaining sufficient light transmission through the illumination fibers to the distal end of the device. Further noteworthy features of connector 320 are that proximal lens 310pl does not protrude out of aperture 340 (so as not to come into direct contact with a light source) and that there is slope 342 inside center bore 326. These features further help to maintain reliable operation of the illuminated guidewire by dissipating errant light transmitted through light cables of powerful light sources preventing the excess light from turning to heat. These features also allow for consistent light output from light sources that produce a low amount of light.


It should be noted that having body 320 made of a translucent material aids in errant light dissipation. Preferably, body 320 is made of a translucent material that has a translucency of greater or equal to 70%. These levels of translucency are easily obtained with medically safe plastics and may be adjusted incorporating varying levels of dye to achieve a desired translucency.


It has been observed that the illuminating fibers 310i can be subjected to thermal cycling. This is due to sterilization, aging, shipping, illumination of the fibers, and other factors. Such thermal cycling can result in longitudinal shrinkage of the illuminating fibers 310i. In fact, shrinkage of from 0.5 to 1% can occur when illuminating fibers are heated above 40° C. In conventional approaches, illuminating fiber shrinkage can result in damage where the fibers are anchored in a manner which does not compensate for shrinkage. Ends of the fibers can become shredded or frayed which thereby adversely affects the functioning of the fibers.


Various approaches are contemplated to address shrinkage of illuminating fibers. In one approach, a fiber can be pre-heat treated at approximately 70° C. for 48 hours. By doing so, the fiber can be pre-shrunk. This can minimize or eliminate further shrinkage at lower temperatures.


In still other contemplated approaches to compensate for changes in illuminating fiber length, the core wire can be alternatively or additionally collapsible and include such structure as a spring or corrugated section. The core wire can also be severed in places to accommodate length changes.


The disclosed illuminating guidewire assembly can be used in a myriad of applications. In addition to use in the sinuses, the assembly can be employed in vascular applications such as by providing a way to map or help diagnose anatomy while it is advanced therethrough. Also, the device can be useful in illuminating deep tissue or can be used in the gastrointestinal track for similar purposes.


Moreover, while the present invention has been described with reference to the specific embodiments thereof, various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

Claims
  • 1. A proximal assembly of an illuminating guidewire comprising: a first tube having a lumen extending therethrough; an elongate flexible housing having a lumen extending therethrough, the housing being received within the first tube but not extending proximally beyond the proximal end of the first tube; a second tube having a lumen therethrough and positioned within the lumen of the first tube at the proximal end and extending beyond the proximal end of the first tube, but not beyond the distal end of the first tube; at least one illuminating fiber extending through and proximally beyond the lumen of the housing and the lumen of the first tube and into the lumen of the second tube; and wherein the housing is not fixably attached to the first tube and is free to rotate within the first tube and the distal end of the second tube and the proximal end of the first tube are fixably attached.
  • 2. The assembly of claim 1, wherein the housing is a cable tube.
  • 3. The assembly of claim 2, wherein the first tube is a hypotube.
  • 4. The assembly of claim 3, wherein the second tube is made of a block copolymer resin.
  • 5. The assembly of claim 4 further comprising a stranded wire extending through and proximally beyond the lumen of the housing and the lumen of the first tube and into the lumen of the second tube.
  • 6. The assembly of claim 5 further comprising an adhesive lens which is fixable attached to the proximal end of the second tube and is fixably attached to the at least one illuminating fiber.
  • 7. The assembly of claim 6 wherein the at least one illuminating fiber comprises at least two illuminating fibers.
US Referenced Citations (902)
Number Name Date Kind
446173 Hancock Feb 1891 A
504424 De Pezzer Sep 1893 A
513667 Buckingham Jan 1894 A
705346 Hamilton Jul 1902 A
798775 Forsyth Sep 1905 A
816792 Green et al. Apr 1906 A
1080934 Shackleford Dec 1913 A
1200267 Sunnergren Oct 1916 A
1650959 Pitman Nov 1927 A
1735519 Vance Nov 1929 A
1828986 Stevens Oct 1931 A
2201749 Vandegrift May 1940 A
2525183 Robison Mar 1947 A
2493326 Trinder Jan 1950 A
2847997 Tibone Aug 1958 A
2899227 Gschwend Aug 1959 A
2906179 Bower Sep 1959 A
2995832 Alderson Aug 1961 A
3009265 Bezark Nov 1961 A
3037286 Bower Jun 1962 A
3173418 Baran Mar 1965 A
3347061 Stuemky Oct 1967 A
3376659 Asin et al. Apr 1968 A
3384970 Avalear May 1968 A
3435826 Fogarty Apr 1969 A
3469578 Bierman Sep 1969 A
3481043 Esch Dec 1969 A
3486539 Jacuzzi Dec 1969 A
3506005 Gilio et al. Apr 1970 A
3509638 Macleod May 1970 A
3515888 Lewis Jun 1970 A
3527220 Summers Sep 1970 A
3531868 Stevenson Oct 1970 A
3552384 Pierie et al. Jan 1971 A
3624661 Shebanow et al. Nov 1971 A
3731963 Pond May 1973 A
3766924 Pidgeon Oct 1973 A
3792391 Ewing Feb 1974 A
3800788 White Apr 1974 A
3802096 Matern Apr 1974 A
3804081 Kinoshita Apr 1974 A
3834394 Hunter et al. Sep 1974 A
3847145 Grossan Nov 1974 A
3850176 Gottschalk Nov 1974 A
3856000 Chikama Dec 1974 A
3859993 Bitner Jan 1975 A
3871365 Chikama Mar 1975 A
3889776 Postma Jun 1975 A
3894538 Richter Jul 1975 A
3903893 Scheer Sep 1975 A
3910617 Scalza et al. Oct 1975 A
3921636 Zaffaroni Nov 1975 A
3948254 Zaffaroni Apr 1976 A
3948262 Zaffaroni Apr 1976 A
3967618 Zaffaroni Jul 1976 A
3993069 Buckles et al. Nov 1976 A
3993072 Zaffaroni Nov 1976 A
3993073 Zaffaroni Nov 1976 A
4016251 Higuchi et al. Apr 1977 A
4052505 Higuchi et al. Oct 1977 A
4053975 Olbrich et al. Oct 1977 A
4069307 Higuchi et al. Jan 1978 A
4102342 Akiyama et al. Jul 1978 A
4138151 Nakao Feb 1979 A
4184497 Kolff et al. Jan 1980 A
4192317 Munnerlyn Mar 1980 A
4198766 Camin et al. Apr 1980 A
4207890 Mamajek et al. Jun 1980 A
4209919 Kirikae et al. Jul 1980 A
4213095 Falconer Jul 1980 A
4217898 Theeuwes Aug 1980 A
4268115 Slemon et al. May 1981 A
4299226 Banka Nov 1981 A
4299227 Lincoff Nov 1981 A
4306715 Sutherland Dec 1981 A
4338941 Payton Jul 1982 A
D269204 Trepp May 1983 S
4388941 Riedhammer Jun 1983 A
RE31351 Falconer Aug 1983 E
4435716 Zandbergen Mar 1984 A
4437856 Valli Mar 1984 A
4450150 Sidman May 1984 A
4459977 Pizon et al. Jul 1984 A
4464175 Altman et al. Aug 1984 A
4471779 Antoshkiw et al. Sep 1984 A
4499899 Lyons, III Feb 1985 A
4554929 Samson et al. Nov 1985 A
4564364 Zaffaroni et al. Jan 1986 A
4571239 Heyman Feb 1986 A
4571240 Samson et al. Feb 1986 A
4581017 Sahota Apr 1986 A
4585000 Hershenson Apr 1986 A
D283921 Dyak May 1986 S
4589868 Dretler May 1986 A
4596528 Lewis et al. Jun 1986 A
D284892 Glassman Jul 1986 S
3393073 Reutenauer et al. Jul 1986 A
4603564 Kleinhany et al. Aug 1986 A
4606346 Berg et al. Aug 1986 A
4607622 Fritch et al. Aug 1986 A
4637389 Heyden Jan 1987 A
4639244 Rizk et al. Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4669469 Gifford, III Jun 1987 A
4672961 Davies Jun 1987 A
4675613 Naegeli et al. Jun 1987 A
4691948 Austin, Jr. et al. Sep 1987 A
4705801 Martin et al. Nov 1987 A
4708434 Tsuno Nov 1987 A
4708834 Cohen et al. Nov 1987 A
4726772 Amplatz Feb 1988 A
4736970 McGourty et al. Apr 1988 A
4737141 Spits Apr 1988 A
4748869 Ohtsuka Jun 1988 A
4748969 Wardle Jun 1988 A
4748986 Morrison et al. Jun 1988 A
4755171 Tennant Jul 1988 A
4771776 Powell et al. Sep 1988 A
4795439 Guest Jan 1989 A
4796629 Grayzel Jan 1989 A
4803076 Ranade Feb 1989 A
4811743 Stevens Mar 1989 A
4815478 Buchbinder et al. Mar 1989 A
4819619 Augustine et al. Apr 1989 A
4846186 Box et al. Jul 1989 A
4847258 Sturm et al. Jul 1989 A
4851228 Zentner et al. Jul 1989 A
4854330 Evans, III et al. Aug 1989 A
4862874 Kellner Sep 1989 A
4867138 Kubota et al. Sep 1989 A
4883465 Brennan Nov 1989 A
4897651 DeMonte Jan 1990 A
4898577 Badger et al. Feb 1990 A
4917419 Mora, Jr. et al. Apr 1990 A
4917667 Jackson Apr 1990 A
4919112 Siegmund Apr 1990 A
4920967 Cottonaro et al. May 1990 A
4925445 Sakamoto et al. May 1990 A
4940062 Hampton et al. Jul 1990 A
4943275 Stricker Jul 1990 A
4946466 Pinchuk et al. Aug 1990 A
4961433 Christian Oct 1990 A
4966163 Kraus et al. Oct 1990 A
4984581 Stice Jan 1991 A
4994033 Shockey et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
4998917 Gaiser et al. Mar 1991 A
5001825 Halpern Mar 1991 A
5002322 Fukumoto Mar 1991 A
5009655 Daignault, Jr. et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5019372 Folkman et al. May 1991 A
5020514 Heckele Jun 1991 A
5021043 Becker et al. Jun 1991 A
5024650 Hagiwara et al. Jun 1991 A
5024658 Kozlov et al. Jun 1991 A
5026384 Farr et al. Jun 1991 A
5030227 Rosenbluth et al. Jul 1991 A
5041089 Mueller et al. Aug 1991 A
5044678 Detweiler Sep 1991 A
5053007 Euteneuer Oct 1991 A
5055051 Duncan Oct 1991 A
5060660 Gambale et al. Oct 1991 A
5067489 Lind Nov 1991 A
5069226 Yamauchi et al. Dec 1991 A
5087244 Wolinsky et al. Feb 1992 A
5087246 Smith Feb 1992 A
5090595 Vandoninck Feb 1992 A
5090910 Narlo Feb 1992 A
5102402 Dror et al. Apr 1992 A
5112228 Zouras May 1992 A
5116311 Lofstedt May 1992 A
5127393 McFarlin et al. Jul 1992 A
5137517 Loney et al. Aug 1992 A
5139510 Goldsmith, III et al. Aug 1992 A
5139832 Hayashi et al. Aug 1992 A
D329496 Wotton Sep 1992 S
5152747 Olivier Oct 1992 A
5163989 Campbell et al. Nov 1992 A
5167220 Brown Dec 1992 A
5168864 Shockey Dec 1992 A
5169043 Catania Dec 1992 A
5169386 Becker et al. Dec 1992 A
5171233 Amplatz et al. Dec 1992 A
5180368 Garrison Jan 1993 A
5183470 Wettermann Feb 1993 A
5189110 Ikematu et al. Feb 1993 A
5195168 Yong Mar 1993 A
5197457 Adair Mar 1993 A
5207695 Trout, III May 1993 A
5211952 Spicer et al. May 1993 A
5215105 Kizelshteyn et al. Jun 1993 A
5221260 Burns et al. Jun 1993 A
5226302 Anderson Jul 1993 A
5230348 Ishibe et al. Jul 1993 A
5236422 Eplett, Jr. Aug 1993 A
5238004 Sahatjian et al. Aug 1993 A
5243996 Hall Sep 1993 A
D340111 Yoshikawa Oct 1993 S
5250059 Andreas et al. Oct 1993 A
5251092 Brady et al. Oct 1993 A
5252183 Shaban et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263926 Wilk Nov 1993 A
5264260 Saab Nov 1993 A
5267965 Deniega Dec 1993 A
5269752 Bennett Dec 1993 A
5270086 Hamlin Dec 1993 A
5273052 Kraus et al. Dec 1993 A
5275593 Easley et al. Jan 1994 A
5286254 Shapland et al. Feb 1994 A
5295694 Levin Mar 1994 A
5300085 Yock Apr 1994 A
5304123 Atala et al. Apr 1994 A
5308326 Zimmon May 1994 A
5312430 Rosenbluth et al. May 1994 A
5313967 Lieber et al. May 1994 A
5314408 Salmon et al. May 1994 A
5314417 Stephens et al. May 1994 A
5315618 Yoshida May 1994 A
5333620 Moutafis et al. Aug 1994 A
5334167 Cocanower Aug 1994 A
5334187 Fischell et al. Aug 1994 A
5335671 Clement Aug 1994 A
5336163 DeMane et al. Aug 1994 A
5341818 Abrams et al. Aug 1994 A
5342296 Persson et al. Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345945 Hodgson et al. Sep 1994 A
5346075 Nichols et al. Sep 1994 A
5346508 Hastings Sep 1994 A
5348537 Wiesner et al. Sep 1994 A
5350396 Eliachar Sep 1994 A
5356418 Shturman Oct 1994 A
5368049 Raman et al. Nov 1994 A
5368558 Nita Nov 1994 A
5368566 Crocker Nov 1994 A
5372138 Crowley et al. Dec 1994 A
5372584 Zink et al. Dec 1994 A
D355031 Yoshikawa Jan 1995 S
5386817 Jones Feb 1995 A
5391147 Imran et al. Feb 1995 A
5391179 Mezzoli Feb 1995 A
5402799 Colon et al. Apr 1995 A
5409444 Kensey Apr 1995 A
5411475 Atala et al. May 1995 A
5411476 Abrams et al. May 1995 A
5411477 Saab May 1995 A
5415633 Lazarus et al. May 1995 A
5425370 Vilkomerson Jun 1995 A
5439446 Barry Aug 1995 A
5441494 Ortiz Aug 1995 A
5441497 Narciso, Jr. Aug 1995 A
5445646 Euteneuer et al. Aug 1995 A
5450853 Hastings et al. Sep 1995 A
5451221 Cho et al. Sep 1995 A
5454817 Katz Oct 1995 A
5458572 Campbell et al. Oct 1995 A
5459700 Jacobs Oct 1995 A
5465717 Imran et al. Nov 1995 A
5465733 Hinohara et al. Nov 1995 A
5478565 Geria Dec 1995 A
5486181 Cohen et al. Jan 1996 A
5496338 Miyagi et al. Mar 1996 A
5497783 Urick et al. Mar 1996 A
5507301 Wasicek et al. Apr 1996 A
5507725 Savage et al. Apr 1996 A
5507766 Kugo et al. Apr 1996 A
5507795 Chiang et al. Apr 1996 A
5512055 Domb et al. Apr 1996 A
5514128 Hillsman et al. May 1996 A
5519532 Broome May 1996 A
5531676 Edwards et al. Jul 1996 A
5533985 Wang Jul 1996 A
5538008 Crowe Jul 1996 A
5546964 Stangerup Aug 1996 A
5549542 Kovalcheck Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5558652 Henke Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5568809 Ben-Haim Oct 1996 A
5578007 Imran Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5582575 Heckele et al. Dec 1996 A
5584827 Korteweg et al. Dec 1996 A
5591194 Berthiaume Jan 1997 A
5599284 Shea Feb 1997 A
5599304 Shaari Feb 1997 A
5599576 Opolski Feb 1997 A
5601087 Gunderson et al. Feb 1997 A
5601594 Best Feb 1997 A
5607386 Flam Mar 1997 A
5617870 Hastings et al. Apr 1997 A
5626374 Kim May 1997 A
5633000 Grossman et al. May 1997 A
5634908 Loomas Jun 1997 A
5638819 Manwaring et al. Jun 1997 A
5643251 Hillsman et al. Jul 1997 A
5645789 Roucher, Jr. Jul 1997 A
5647361 Damadian Jul 1997 A
5656030 Hunjan et al. Aug 1997 A
5662674 Debbas Sep 1997 A
5664567 Linder Sep 1997 A
5664580 Erickson et al. Sep 1997 A
5665052 Bullard Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5673707 Chandrasekaran Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5682199 Lankford Oct 1997 A
5685838 Peters et al. Nov 1997 A
5685847 Barry Nov 1997 A
5690373 Luker Nov 1997 A
5693065 Rains, III Dec 1997 A
5694945 Ben-Haim Dec 1997 A
5697159 Linden Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5707376 Kavteladze et al. Jan 1998 A
5707389 Louw et al. Jan 1998 A
5708175 Koyanagi et al. Jan 1998 A
5711315 Jerusalmy Jan 1998 A
5713839 Shea Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5718702 Edwards Feb 1998 A
5720300 Fagan et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5722984 Fischell et al. Mar 1998 A
5729129 Acker Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5733248 Adams et al. Mar 1998 A
5752513 Acker et al. May 1998 A
5762604 Kieturakis Jun 1998 A
5766158 Opolski Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776158 Chou Jul 1998 A
5779699 Lipson Jul 1998 A
5789391 Jacobus et al. Aug 1998 A
5792100 Shantha Aug 1998 A
5797878 Bleam Aug 1998 A
5803089 Ferre et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5819723 Joseph Oct 1998 A
5820568 Willis Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5824048 Tuch Oct 1998 A
5824173 Fontirroche et al. Oct 1998 A
5827224 Shippert Oct 1998 A
5830188 Abouleish Nov 1998 A
5833608 Acker Nov 1998 A
5833645 Lieber et al. Nov 1998 A
5833650 Imran Nov 1998 A
5833682 Amplatz et al. Nov 1998 A
5836638 Slocum Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843113 High Dec 1998 A
5846259 Berthiaume Dec 1998 A
5857998 Barry Jan 1999 A
5862693 Myers et al. Jan 1999 A
5865767 Frechette et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5873835 Hastings Feb 1999 A
5879324 von Hoffmann Mar 1999 A
5887467 Butterweck et al. Mar 1999 A
5902247 Coe et al. May 1999 A
5902333 Roberts et al. May 1999 A
5904701 Daneshvar May 1999 A
5908407 Frazee et al. Jun 1999 A
5916193 Stevens et al. Jun 1999 A
5928192 Maahs Jul 1999 A
5931811 Haissaguerre et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5932035 Koger et al. Aug 1999 A
5935061 Acker et al. Aug 1999 A
5941816 Barthel et al. Aug 1999 A
D413629 Wolff et al. Sep 1999 S
5947988 Smith Sep 1999 A
5949929 Hamm Sep 1999 A
5954693 Barry Sep 1999 A
5954694 Sunseri Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5968085 Morris et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5979290 Simeone Nov 1999 A
5980503 Chin Nov 1999 A
5980551 Summers et al. Nov 1999 A
5984945 Sirhan Nov 1999 A
5985307 Hanson et al. Nov 1999 A
5997562 Zadno-Azizi Dec 1999 A
6006126 Cosman Dec 1999 A
6006130 Higo et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6007991 Sivaraman et al. Dec 1999 A
6010511 Murphy Jan 2000 A
6013019 Fischell et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6016429 Khafizov et al. Jan 2000 A
6016439 Acker Jan 2000 A
6019736 Avellanet et al. Feb 2000 A
6019777 Mackenzie Feb 2000 A
6021340 Randolph et al. Feb 2000 A
6022313 Ginn et al. Feb 2000 A
6027461 Walker et al. Feb 2000 A
6027478 Katz Feb 2000 A
6039699 Viera Mar 2000 A
6042561 Ash et al. Mar 2000 A
6048299 von Hoffmann Apr 2000 A
6048358 Barak Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056702 Lorenzo May 2000 A
6059752 Segal May 2000 A
6063079 Hovda et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6079755 Chang Jun 2000 A
6080190 Schwartz Jun 2000 A
6083148 Williams Jul 2000 A
6083188 Becker et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6092846 Fuss et al. Jul 2000 A
6093150 Chandler et al. Jul 2000 A
6093195 Ouchi Jul 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113567 Becker Sep 2000 A
6122541 Cosman et al. Sep 2000 A
6123697 Shippert Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6142957 Diamond et al. Nov 2000 A
6146415 Fitz Nov 2000 A
6148823 Hastings Nov 2000 A
6149213 Sokurenko et al. Nov 2000 A
6159170 Borodulin et al. Dec 2000 A
6171298 Matsuura et al. Jan 2001 B1
6171303 Ben-Haim Jan 2001 B1
6174280 Oneda et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6179788 Sullivan Jan 2001 B1
6179811 Fugoso et al. Jan 2001 B1
6183433 Bays Feb 2001 B1
6183461 Matsuura et al. Feb 2001 B1
6183464 Sharp et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6193650 Ryan, Jr. Feb 2001 B1
6195225 Komatsu et al. Feb 2001 B1
6200257 Winkler Mar 2001 B1
6206870 Kanner Mar 2001 B1
6206900 Tabatabaei et al. Mar 2001 B1
6213975 Laksin Apr 2001 B1
6221042 Adams Apr 2001 B1
6231543 Hegde et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6238364 Becker May 2001 B1
6238391 Olsen et al. May 2001 B1
6241519 Sedelemayer Jun 2001 B1
6249180 Maalej et al. Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6268574 Edens Jul 2001 B1
6270477 Bagaoisan et al. Aug 2001 B1
6290689 Delaney et al. Sep 2001 B1
6293957 Peters et al. Sep 2001 B1
6295990 Lewis et al. Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6306105 Rooney et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450382 Nestenborg Nov 2001 S
6322495 Snow et al. Nov 2001 B1
6328564 Thurow Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332891 Himes Dec 2001 B1
6340360 Lyles et al. Jan 2002 B1
6344028 Barry Feb 2002 B1
6348041 Klint Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6364856 Ding et al. Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375629 Muni et al. Apr 2002 B1
6383146 Klint May 2002 B1
6386197 Miller May 2002 B1
6389313 Marchitto et al. May 2002 B1
6390993 Cornish et al. May 2002 B1
6393312 Hoyns May 2002 B1
6394093 Lethi May 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6409863 Williams et al. Jun 2002 B1
6423012 Kato et al. Jul 2002 B1
6425877 Edwards Jul 2002 B1
6432986 Levin Aug 2002 B2
6440061 Wenner et al. Aug 2002 B1
6443947 Marko et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6450975 Brennan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6464650 Jafari et al. Oct 2002 B2
6468202 Irion et al. Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6485475 Chelly Nov 2002 B1
6488653 Lombardo Dec 2002 B1
6491940 Levin Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500130 Kinsella et al. Dec 2002 B2
6500189 Lang et al. Dec 2002 B1
6503087 Eggert et al. Jan 2003 B1
6503185 Waksman et al. Jan 2003 B1
6511418 Shahidi et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6517478 Khadem Feb 2003 B2
6524129 Cote et al. Feb 2003 B2
6524299 Tran et al. Feb 2003 B1
6526302 Hassett Feb 2003 B2
6527753 Sekine et al. Mar 2003 B2
6529756 Phan et al. Mar 2003 B1
6533754 Hisamatsu et al. Mar 2003 B1
6536437 Dragisic Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6543452 Lavigne Apr 2003 B1
6544223 Kokish Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6569146 Werner et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6571131 Nguyen May 2003 B1
6572538 Takase Jun 2003 B2
6572590 Stevens et al. Jun 2003 B1
6573984 Jung et al. Jun 2003 B2
6579285 Sinofsky Jun 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6585717 Wittenberger et al. Jul 2003 B1
6585718 Hayzelden et al. Jul 2003 B2
6585794 Shimoda et al. Jul 2003 B2
6589164 Flaherty Jul 2003 B1
6596009 Jelic Jul 2003 B1
6607546 Murken Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6616601 Hayakawa Sep 2003 B2
6616659 de la Torre et al. Sep 2003 B1
6616678 Nishtala et al. Sep 2003 B2
6616913 Mautone Sep 2003 B1
6619085 Hsieh Sep 2003 B1
6634684 Spiessl Oct 2003 B2
6638233 Corvi et al. Oct 2003 B2
6638268 Niazi Oct 2003 B2
6638291 Ferrera et al. Oct 2003 B1
6652472 Jafari et al. Nov 2003 B2
6652480 Imran et al. Nov 2003 B1
6659106 Hovda et al. Dec 2003 B1
6663589 Halevy Dec 2003 B1
6669689 Lehmann et al. Dec 2003 B2
6669711 Noda Dec 2003 B1
6672773 Glenn et al. Jan 2004 B1
6673025 Richardson et al. Jan 2004 B1
6685648 Flaherty et al. Feb 2004 B2
6689096 Loubens et al. Feb 2004 B1
6689146 Himes Feb 2004 B1
6702735 Kelly Mar 2004 B2
6712757 Becker et al. Mar 2004 B2
6714809 Lee et al. Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716813 Lim et al. Apr 2004 B2
6719749 Schweikert et al. Apr 2004 B1
6738656 Ferre et al. May 2004 B1
6755812 Peterson et al. Jun 2004 B2
6776772 Vrijer et al. Aug 2004 B1
6780168 Jellie Aug 2004 B2
6783522 Fischell Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6786864 Matsuura et al. Sep 2004 B2
6796960 Cioanta et al. Sep 2004 B2
6817364 Garibaldi et al. Nov 2004 B2
6817976 Rovegno Nov 2004 B2
6832715 Eungard et al. Dec 2004 B2
D501677 Becker Feb 2005 S
6851290 Meier et al. Feb 2005 B1
6855136 Dorros et al. Feb 2005 B2
6860264 Christopher Mar 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6890329 Carroll et al. May 2005 B2
6899672 Chin et al. May 2005 B2
6902556 Grimes et al. Jun 2005 B2
6927478 Paek Aug 2005 B2
6939361 Kleshinski Sep 2005 B1
6955657 Webler Oct 2005 B1
6966906 Brown Nov 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6991597 Gellman et al. Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997941 Sharkey et al. Feb 2006 B2
7011654 Dubrul et al. Mar 2006 B2
7022105 Edwards Apr 2006 B1
7043961 Pandey May 2006 B2
7044964 Jang et al. May 2006 B2
7052474 Castell et al. May 2006 B2
7056284 Martone et al. Jun 2006 B2
7056303 Dennis et al. Jun 2006 B2
7074197 Reynolds et al. Jul 2006 B2
7074426 Kochinke Jul 2006 B2
7097612 Bertolero et al. Aug 2006 B2
7108706 Hogle Sep 2006 B2
7128718 Hojeibane et al. Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7140480 Drussel et al. Nov 2006 B2
D534216 Makower et al. Dec 2006 S
7160255 Saadat Jan 2007 B2
7169140 Kume Jan 2007 B1
7169163 Becker Jan 2007 B2
7172562 McKinley Feb 2007 B2
7174774 Pawar et al. Feb 2007 B2
7182735 Shireman et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7207981 Quinn et al. Apr 2007 B2
7233820 Gilboa Jun 2007 B2
7235099 Duncavage et al. Jun 2007 B1
7237313 Skujins et al. Jul 2007 B2
7252677 Burwell et al. Aug 2007 B2
7282057 Surti et al. Oct 2007 B2
7294345 Haapakumpu et al. Nov 2007 B2
7294365 Hayakawa et al. Nov 2007 B2
7303533 Johansen et al. Dec 2007 B2
7316168 van der Knokke et al. Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7326235 Edwards Feb 2008 B2
7338467 Lutter Mar 2008 B2
7361168 Makower et al. Apr 2008 B2
7366562 Dukesherer Apr 2008 B2
7371210 Brock et al. May 2008 B2
7381205 Thommen Jun 2008 B2
7410480 Muni et al. Aug 2008 B2
7419497 Muni et al. Sep 2008 B2
7442191 Hovda et al. Oct 2008 B2
7452351 Miller et al. Nov 2008 B2
7454244 Kassab et al. Nov 2008 B2
7462175 Chang et al. Dec 2008 B2
D586465 Faulkner et al. Feb 2009 S
D586916 Faulkner et al. Feb 2009 S
7488313 Segal et al. Feb 2009 B2
7493156 Manning et al. Feb 2009 B2
7500971 Chang et al. Mar 2009 B2
D590502 Geisser et al. Apr 2009 S
7520876 Ressemann et al. Apr 2009 B2
7532920 Ainsworth et al. May 2009 B1
7559925 Goldfarb et al. Jul 2009 B2
7625335 Deichmann et al. Dec 2009 B2
7641644 Chang et al. Jan 2010 B2
7641668 Perry et al. Jan 2010 B2
7645272 Chang et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7654997 Makower et al. Feb 2010 B2
7717933 Becker May 2010 B2
7736301 Webler et al. Jun 2010 B1
7740642 Becker Jun 2010 B2
7753929 Becker Jul 2010 B2
7785315 Muni et al. Aug 2010 B1
7799048 Hudson et al. Sep 2010 B2
7799337 Levin Sep 2010 B2
7837672 Intoccia Nov 2010 B2
D630321 Hamilton, Jr. Jan 2011 S
D632791 Murner Feb 2011 S
7881769 Sobe Feb 2011 B2
7988705 Galdonik et al. Aug 2011 B2
8146400 Goldfarb et al. Apr 2012 B2
8172828 Chang et al. May 2012 B2
8197552 Mandpe Jun 2012 B2
8249700 Clifford et al. Aug 2012 B2
8414473 Jenkins et al. Apr 2013 B2
8425457 John et al. Apr 2013 B2
20010005785 Sachse Jun 2001 A1
20010016684 Shahidi Aug 2001 A1
20010023332 Hahnen Sep 2001 A1
20010027307 Dubrul et al. Oct 2001 A1
20010029317 Hayakawa Oct 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010051761 Khadem Dec 2001 A1
20020002349 Flaherty et al. Jan 2002 A1
20020006961 Katz et al. Jan 2002 A1
20020010384 Shahidi et al. Jan 2002 A1
20020010426 Clayman et al. Jan 2002 A1
20020016564 Courtney et al. Feb 2002 A1
20020026155 Mangosong Feb 2002 A1
20020029030 Lurie et al. Mar 2002 A1
20020031941 Cote et al. Mar 2002 A1
20020055746 Burke et al. May 2002 A1
20020062133 Gilson et al. May 2002 A1
20020077593 Perkins et al. Jun 2002 A1
20020077852 Ford et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020082583 Lerner Jun 2002 A1
20020090388 Humes et al. Jul 2002 A1
20020103459 Sparks et al. Aug 2002 A1
20020107475 Maginot Aug 2002 A1
20020116011 Chung et al. Aug 2002 A1
20020116043 Garibaldi et al. Aug 2002 A1
20020165521 Cioanta et al. Nov 2002 A1
20030013985 Saadat Jan 2003 A1
20030014008 Jacques Jan 2003 A1
20030014036 Varner et al. Jan 2003 A1
20030017111 Rabito Jan 2003 A1
20030018291 Hill et al. Jan 2003 A1
20030032942 Theeuwes et al. Feb 2003 A1
20030040697 Pass et al. Feb 2003 A1
20030069521 Reynolds et al. Apr 2003 A1
20030069549 MacMahon et al. Apr 2003 A1
20030073900 Senarith et al. Apr 2003 A1
20030073955 Otawara Apr 2003 A1
20030073972 Rosenman et al. Apr 2003 A1
20030083608 Evans et al. May 2003 A1
20030083613 Schaer May 2003 A1
20030100886 Segal et al. May 2003 A1
20030109810 Brennan et al. Jun 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120339 Banik et al. Jun 2003 A1
20030130598 Manning et al. Jul 2003 A1
20030163154 Miyata et al. Aug 2003 A1
20030164952 Deichmann et al. Sep 2003 A1
20030171650 Tartaglia et al. Sep 2003 A1
20030181827 Hojeibane et al. Sep 2003 A1
20030185872 Kochinke Oct 2003 A1
20030208194 Hovda et al. Nov 2003 A1
20030209096 Pandey et al. Nov 2003 A1
20030212446 Kaplan et al. Nov 2003 A1
20030220551 Kimball et al. Nov 2003 A1
20030225329 Rossner et al. Dec 2003 A1
20040015150 Zadno-Azizi Jan 2004 A1
20040018980 Gurney et al. Jan 2004 A1
20040020492 Dubrul et al. Feb 2004 A1
20040034311 Mihakcik Feb 2004 A1
20040043052 Hunter et al. Mar 2004 A1
20040058992 Marinello et al. Mar 2004 A1
20040064083 Becker Apr 2004 A1
20040064105 Capes et al. Apr 2004 A1
20040064150 Becker Apr 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040098017 Saab et al. May 2004 A1
20040116958 Gopferich et al. Jun 2004 A1
20040122471 Toby et al. Jun 2004 A1
20040127820 Clayman et al. Jul 2004 A1
20040158229 Quinn Aug 2004 A1
20040167440 Sharrow Aug 2004 A1
20040167442 Shireman et al. Aug 2004 A1
20040167443 Shireman et al. Aug 2004 A1
20040181175 Clayman et al. Sep 2004 A1
20040193073 DeMello et al. Sep 2004 A1
20040193139 Armstrong et al. Sep 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230131 Kassab et al. Nov 2004 A1
20040230156 Schreck et al. Nov 2004 A1
20040236231 Knighton et al. Nov 2004 A1
20040249243 Kleiner Dec 2004 A1
20040249267 Gilboa Dec 2004 A1
20040254625 Stephens et al. Dec 2004 A1
20040267347 Cervantes Dec 2004 A1
20050027249 Reifart et al. Feb 2005 A1
20050043706 Eaton et al. Feb 2005 A1
20050049486 Urquhart et al. Mar 2005 A1
20050055077 Marco et al. Mar 2005 A1
20050059930 Garrison et al. Mar 2005 A1
20050059931 Garrison et al. Mar 2005 A1
20050089670 Large et al. Apr 2005 A1
20050107720 Burmeister et al. May 2005 A1
20050107738 Slater et al. May 2005 A1
20050113686 Peckham May 2005 A1
20050113687 Herweck et al. May 2005 A1
20050113850 Tagge May 2005 A1
20050119590 Burmeister et al. Jun 2005 A1
20050124856 Fujikura et al. Jun 2005 A1
20050131316 Flagle et al. Jun 2005 A1
20050143687 Rosenblatt et al. Jun 2005 A1
20050182319 Glossop Aug 2005 A1
20050228260 Burwell et al. Oct 2005 A1
20050228412 Surti Oct 2005 A1
20050234507 Geske et al. Oct 2005 A1
20050240147 Makower et al. Oct 2005 A1
20050244472 Hughes et al. Nov 2005 A1
20050245906 Makower et al. Nov 2005 A1
20050273132 Shluzas et al. Dec 2005 A1
20050283221 Mann et al. Dec 2005 A1
20050288549 Mathis Dec 2005 A1
20050288759 Jones et al. Dec 2005 A1
20060004286 Chang et al. Jan 2006 A1
20060004323 Chang et al. Jan 2006 A1
20060047261 Joshi Mar 2006 A1
20060063973 Makower et al. Mar 2006 A1
20060067982 Haapakumpu et al. Mar 2006 A1
20060074318 Ahmed et al. Apr 2006 A1
20060085027 Santin et al. Apr 2006 A1
20060095066 Chang et al. May 2006 A1
20060106361 Muni et al. May 2006 A1
20060107957 Djupesland May 2006 A1
20060116749 Willink et al. Jun 2006 A1
20060149310 Becker Jul 2006 A1
20060161255 Zarowski et al. Jul 2006 A1
20060173291 Glossop Aug 2006 A1
20060173382 Schreiner Aug 2006 A1
20060189844 Tien Aug 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060210605 Chang et al. Sep 2006 A1
20060211752 Kohn et al. Sep 2006 A1
20060271024 Gertner et al. Nov 2006 A1
20060284428 Beadle et al. Dec 2006 A1
20070005094 Eaton et al. Jan 2007 A1
20070020196 Pipkin et al. Jan 2007 A1
20070049929 Catanese et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070112358 Abbott May 2007 A1
20070129751 Muni et al. Jun 2007 A1
20070135789 Chang et al. Jun 2007 A1
20070167682 Goldfarb et al. Jul 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208252 Makower Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070233036 Mandpe Oct 2007 A1
20070250105 Ressemann et al. Oct 2007 A1
20070269385 Yun et al. Nov 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070293946 Gonzales et al. Dec 2007 A1
20080015540 Muni et al. Jan 2008 A1
20080015544 Keith et al. Jan 2008 A1
20080033519 Burwell et al. Feb 2008 A1
20080051804 Cottler et al. Feb 2008 A1
20080082045 Goldfarb et al. Apr 2008 A1
20080097154 Makower et al. Apr 2008 A1
20080097239 Chang et al. Apr 2008 A1
20080097295 Makower et al. Apr 2008 A1
20080097400 Chang et al. Apr 2008 A1
20080097514 Chang et al. Apr 2008 A1
20080097515 Chang et al. Apr 2008 A1
20080097516 Chang et al. Apr 2008 A1
20080103361 Makower et al. May 2008 A1
20080103521 Makower et al. May 2008 A1
20080119693 Makower et al. May 2008 A1
20080125046 Deng et al. May 2008 A1
20080125626 Chang et al. May 2008 A1
20080154250 Makower et al. Jun 2008 A1
20080154345 Taylor Jun 2008 A1
20080172033 Keith et al. Jul 2008 A1
20080187098 Gertner et al. Aug 2008 A1
20080188803 Jang Aug 2008 A1
20080188870 Andre et al. Aug 2008 A1
20080195041 Goldfarb et al. Aug 2008 A1
20080208242 Becker Aug 2008 A1
20080208243 Becker Aug 2008 A1
20080214959 Miyata et al. Sep 2008 A1
20080215082 Becker Sep 2008 A1
20080215083 Becker Sep 2008 A1
20080228085 Jenkins et al. Sep 2008 A1
20080234720 Chang et al. Sep 2008 A1
20080262508 Clifford et al. Oct 2008 A1
20080262509 Clifford et al. Oct 2008 A1
20080275483 Makower et al. Nov 2008 A1
20080281156 Makower et al. Nov 2008 A1
20080287908 Muni et al. Nov 2008 A1
20080319424 Muni et al. Dec 2008 A1
20090017090 Arensdorf et al. Jan 2009 A1
20090028923 Muni et al. Jan 2009 A1
20090030274 Goldfarb et al. Jan 2009 A1
20090030409 Goldfarb et al. Jan 2009 A1
20090047326 Eaton et al. Feb 2009 A1
20090088677 Cohen Apr 2009 A1
20090088728 Dollar et al. Apr 2009 A1
20090093823 Chang et al. Apr 2009 A1
20090156980 Eaton et al. Jun 2009 A1
20090163890 Clifford et al. Jun 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187098 Makower et al. Jul 2009 A1
20090192492 Eaton et al. Jul 2009 A1
20090198216 Muni et al. Aug 2009 A1
20090227945 Eaton et al. Sep 2009 A1
20090240112 Goldfarb et al. Sep 2009 A1
20090240237 Goldfarb et al. Sep 2009 A1
20090312745 Goldfarb et al. Dec 2009 A1
20100042046 Chang et al. Feb 2010 A1
20100087811 Herrin et al. Apr 2010 A1
20100114066 Makower et al. May 2010 A1
20100121308 Muni et al. May 2010 A1
20100174138 Chang et al. Jul 2010 A1
20100174308 Chang et al. Jul 2010 A1
20100174366 Avior Jul 2010 A1
20100198191 Clifford et al. Aug 2010 A1
20100198247 Chang et al. Aug 2010 A1
20100198302 Shalev Aug 2010 A1
20100210901 Makower et al. Aug 2010 A1
20100268245 Chang et al. Oct 2010 A1
20100274188 Chang et al. Oct 2010 A1
20100290244 Nath Nov 2010 A1
20100298862 Chang et al. Nov 2010 A1
20110004057 Goldfarb et al. Jan 2011 A1
20110015482 Carrillo, Jr. Jan 2011 A1
20110060214 Makower Mar 2011 A1
20110112512 Muni et al. May 2011 A1
20110166190 Anderson et al. Jul 2011 A1
20120071710 Gazdzinski Mar 2012 A1
20120071824 Chang et al. Mar 2012 A1
20120136207 Goldfarb et al. May 2012 A1
20120184983 Chang et al. Jul 2012 A1
20120245419 Makower et al. Sep 2012 A1
20120265094 Goldfarb et al. Oct 2012 A1
20130231529 John et al. Sep 2013 A1
20130245608 Muni et al. Sep 2013 A1
20130261388 Jenkins et al. Oct 2013 A1
Foreign Referenced Citations (116)
Number Date Country
2013323 Sep 1990 CA
668188 Dec 1988 CH
2151720 Jan 1994 CN
2352818 Dec 1999 CN
101209365 Jul 2008 CN
101563019 Oct 2009 CN
101766469 Jul 2010 CN
03202878 Aug 1983 DE
04032096 Apr 1992 DE
04406077 Sep 1994 DE
19707740 Sep 1998 DE
08810044 Nov 1998 DE
29923582 Dec 2000 DE
10104663 Aug 2002 DE
10105592 Aug 2002 DE
0129634 Jan 1985 EP
0257605 Mar 1988 EP
0355996 Feb 1990 EP
0418391 Mar 1991 EP
0427852 May 1991 EP
0623582 Nov 1994 EP
0624349 Nov 1994 EP
0744400 Nov 1996 EP
0585757 Jun 1997 EP
0893426 Jan 1999 EP
0920882 Jun 1999 EP
0974936 Jan 2000 EP
1042998 Oct 2000 EP
1086664 Mar 2001 EP
1166710 Jan 2002 EP
1413258 Apr 2004 EP
1944053 Jul 2008 EP
2859377 Mar 2005 FR
2916144 Nov 2008 FR
2125874 Mar 1984 GB
2305174 Apr 1997 GB
53-067935 Jun 1978 JP
10-24098 Jan 1989 JP
3-503011 Jul 1991 JP
3-504935 Oct 1991 JP
4-221313 Aug 1992 JP
5-211985 Aug 1993 JP
6-277296 Oct 1994 JP
7-327916 Dec 1995 JP
8-317989 Dec 1996 JP
11-507251 Jun 1999 JP
2000-501634 Feb 2000 JP
2001-501846 Feb 2001 JP
2001-095815 Apr 2001 JP
2001-526077 Dec 2001 JP
2002-028166 Jan 2002 JP
2002-508214 Mar 2002 JP
2002-537908 Nov 2002 JP
2002-538850 Nov 2002 JP
2003-507140 Feb 2003 JP
2003-062080 Mar 2003 JP
2003-521327 Jul 2003 JP
2004-357728 Dec 2004 JP
2005-532869 Nov 2005 JP
4-224766 Feb 2009 JP
2213530 Oct 2003 RU
1662571 Jul 1991 SU
WO 9011053 Oct 1990 WO
WO 9014865 Dec 1990 WO
WO 9117787 Nov 1991 WO
WO 9215286 Sep 1992 WO
WO 9222350 Dec 1992 WO
WO 9412095 Jun 1994 WO
WO 9502430 Jan 1995 WO
WO 9629071 Sep 1996 WO
WO 9724161 Jun 1997 WO
WO 9855174 Dec 1998 WO
WO 9900064 Jan 1999 WO
WO 9924106 May 1999 WO
WO 9926692 Jun 1999 WO
WO 9930655 Jun 1999 WO
WO 9932041 Jul 1999 WO
WO 9959649 Nov 1999 WO
WO 0009190 Feb 2000 WO
WO 0009192 Feb 2000 WO
WO 0023009 Apr 2000 WO
WO 0051672 Sep 2000 WO
WO 0053252 Sep 2000 WO
WO 0105462 Jan 2001 WO
WO 0145572 Jun 2001 WO
WO 0154558 Aug 2001 WO
WO 0156481 Aug 2001 WO
WO 0170325 Sep 2001 WO
WO 0174266 Oct 2001 WO
WO 0197895 Dec 2001 WO
WO 02062269 Aug 2002 WO
WO 02089899 Nov 2002 WO
WO 03049603 Jun 2003 WO
WO 03063703 Aug 2003 WO
WO 03105657 Dec 2003 WO
WO 2004006788 Jan 2004 WO
WO 2004018980 Mar 2004 WO
WO 2004026391 Apr 2004 WO
WO 2004082525 Sep 2004 WO
WO 2004082525 Sep 2004 WO
WO 2005018730 Mar 2005 WO
WO 2005077450 Aug 2005 WO
WO 2005089670 Sep 2005 WO
WO 2005117755 Dec 2005 WO
WO 2006034008 Mar 2006 WO
WO 2006078884 Jul 2006 WO
WO 2006107957 Oct 2006 WO
WO 2006116597 Nov 2006 WO
WO 2006118737 Nov 2006 WO
WO 2006135853 Dec 2006 WO
WO 2007111636 Oct 2007 WO
WO 2007124260 Nov 2007 WO
WO 2008036149 Mar 2008 WO
WO 2008045242 Apr 2008 WO
WO 2008051918 May 2008 WO
WO 2008134382 Nov 2008 WO
Non-Patent Literature Citations (333)
Entry
Argon Medical. Maxxim Medical. Ad for Sniper EliteTM Hydrophilic Ni-Ti Alloy Guidewire (2001).
Aust, R., et al ‘The Functional Size of the Human Maxillary Ostium in Vivo’ Acta. Otolaryn. (1978) vol. 78 pp. 432-435.
Baim, D.S., MD Grossman's Cardiac Catheterization, Angiography, and Intervention (2000) Lippincott Williams & Wilkins pp. 76, 84 & 214.
Barrett, S. ‘Be Wary of Neurocranial Restructuring (NCR)’ Chirobase (available at: http://www.chirobase.org/06DD/ncr.html) (Jul. 2003.).
Bartal, N. ‘An Improved Stent for Use in the Surgical Management of Congenital Posterior Choanal Atresia’ J. Laryngol. Otol. (1988) vol. 102 pp. 146-147.
Becker, A.E. ‘Restenosis After Angioplasty’ The Lancet (1988) vol. 331, No. 8584 p. 532.
Bellis, M. History of the Catheter-Balloon Catheter—Thomas Fogarty. http://inventors.about.com/library/inventors/blcatheter.htm?p=1.
Benninger et al. Adult Chronic Rhinosinusitis: Definitions, Diagnosis, Epidemiology, and Pathophysiology Arch Otolarygol Head and Neck Surg. (Sep. 2003) vol. 129 pp. S1-S32.
Bent et al. ‘The Frontal Cell as a Cause of Frontal Sinus Obstruction’ American Journal of Rhinology. (1994) vol. 8, No. 4 pp. 185.
Binner et al. ‘Fibre-Optic Transillumination of the Sinuses: A Comparison of the Value of Radiography and Transillumination in Antral Disease’ Clinical Otolaryngology. (1978) vol. 3 pp. 1-11.
Brown, C.L. et al ‘Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation’ Annals of Otology, Rhinology & Laryngology (2006) vol. 115, No. 4 pp. 293-299.
Bumm, P., H. Kaiser et al ‘Cortizontherapie, Corticoide in Klinik and Praxis’ Thieme, Stuggart (1992) pp. 390-401 [Summary of textbook].
Casiano et al. ‘Endoscopic Lothrop Procedure: The University of Miami Experience’ American Journal of Rhinology (1998) vol. 12, No. 5 pp. 335-339.
Casserly, I.P. et al Chapter 7. ‘Guides and Wires in Percutaneous Coronary Intervention’ Strategic Approaches in Coronary Intervention (2006) Lippincott Williams & Wilkins pp. 91-99.
Chien, Y.W. et al. Nasal Systemic Drug Delivery, Drugs and the Pharmaceutical Sciences (1989) Marcel Dekker, Inc. Chapter 3, pp. 39-88.
Cohen et al ‘Endoscopic Sinus Surgery: Where we are and where we're going’ Current Opinion in Otolaryngology & Head and Neck Surgery (2005) vol. 13 pp. 32-38.
Colla, A. et al ‘Trihaloacetylated Enol Ethers—General Synthetic Procedure and Heterocyclic Ring Closure Reactions with Hydroxylamine’ Synthesis. (Jun. 1991) pp. 483-486.
Costa, M.N. et al ‘Endoscopic Study of the Intranasal Ostium in External Dacryocystorhinostomy Postoperative. Influence of Saline Solution and 5-Flurorouracil’ Clinics. (2007) vol. 62, Issue 1 pp. 41-46. http://www.scielo.br/scielo.php?pid=S1807-59322007000100007&script=sci—arttext.
Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems Cambridge University Press (1996) [Summary of textbook].
Davis, G.E. et al., ‘A Complication From Neurocranial Restructuring’ Arch Otolaryngology Head Neck Surg. (Apr. 2003) vol. 129 pp. 472-474.
Deutschmann, R. et al. ‘A Contribution to the Topical Treatment of [Maxillary] Sinusitis Preliminary Communication’ Stomat DDR 26, (1976) pp. 585-592.
Domb, A. et al Handbook of Biodegradable Polymers Harwood Academic Publishers.(1997) [Summary of textbook].
Draf, W. ‘Endonasal Micro-Endoscopic Frontal Sinus Surgery: the Fulda Concept’ Op Tech Otolaryngol Head Neck Surg. (1991) vol. 2 pp. 234-240.
Edmond et al ‘ENT Surgical Stimulator’ Nov. 1998 Final Report Cooperative Agreement No. DAMD17-95-2-5023.
ENT Checklist; Physical Examination Performance Checklist [date of publication unknown].
Eremychev, V.A. ‘Needles for Puncture and Drainage of the Maxillary Sinus’ Meditsinskaya Tekhnika, No. 5 (1974) pp. 54-55.
Feldman, R.L. et al ‘New Steerable, Ultra-Low-Profile, Fixed Wire Angioplasty Catheter: Initial Experience With the Cordis Orion™ Steerable PTCA Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1990) vol. 19, No. 2 pp. 142-145.
Ford, C.N. ‘Multipurpose Laryngeal Injector Device’ Otolaryngol. Head Neck Surg. (1990) vol. 103, No. 1 pp. 135-137.
Friedman, M. M.D., et al ‘Frontal Sinus Surgery: Endoscopic Technique’ Operative Techniques in Otolarynology—Head and Neck Surgery. (Jun. 2001) vol. 12, No. 2 pp. 60-65.
Friedman, et al ‘Intraoperative and Postoperative Assessment of Frontal Sinus Patency by Transillumination’ Laryngoscope. (Apr. 2000) vol. 110 pp. 683-684.
Friedman et al ‘Middle Turbinate Medialization and Preservation in Endoscopic Surgery’ Otolaryngol. Head Neck Surg. (2000) vol. 123, No. 1, Part 1. pp. 76-80.
Fung, M.K.T. ‘How I Do It—Head and Neck and Plasic Surgery. A Targeted Problem and its Solution. Template for Frontal Osteoplastic Flap’ Laryngoscope. (1986) vol. 96 pp. 578-579.
Gatot, A. et al., ‘Early Treatment of Orbital Floor Fractures with Catheter Balloon in Children’ Int. J. Pediatric Otorhinolaryngol (1991) vol. 21 pp. 97-101.
Gerus, I.I. et al ‘β-Ethoxyvinyl Polyfluroroalkyl Ketones—Versatile Synthones in Fluoroorganic Chemistry’ Journal of Fluorine Chemistry. (1994) vol. 69 pp. 195-198. Elsevier Science S.A.
Good, R.H. ‘An Intranasal Method for Opening the Frontal Sinus Establishing the Largest Possible Drainage’ Laryngoscope. (1908) vol. 18 pp. 266-274.
Gopferich ‘Polymer Degradation and Erosion: Mechanisms and Applications’ Eur. J. Pharm. Biophar. (1996) vol. 42 pp. 1-11.
Gorlov, D.V. et al ‘Acylation of 2-Methoxypropene with Anhydrides and Halides of Perflurocarboxylic Acids in the Presence of Tertiary Amines’ Russian Chemical Bulletin. (Sep. 1999) vol. 48 No. 9 pp. 1791-1792. Kluwer Academic/Plenum Publishers.
Gottman, et al. ‘Balloon Dilatation in the Nasal Cavity and Paranasal Sinuses’ CIRSE. (Sep. 25, 2004) pp. 1-27.
Gottman, et al. ‘Balloon Dilatation of Recurrent Ostial Occlusion of the Front Sinus’ Abstract No. B-04353. European Congress of Radiology. (Mar. 2, 2001).
Gottman, et al. ‘Successful Treatment of Recurrent Post-Operative Frontal Sinus Stenoses by Balloon Dilatation’ CIRSE. (Oct. 5, 2002).
Gupta, D. et al ‘Dacryocystitis Secondary to an Iatrogenic Foreign Body in the Lacrimal Apparatus’ Ear, Nose & Throat Journal (2009) http://findarticles.com/p/articles/mi—m0BUM/is—7—88/ai—n32428620/.
Hashim, et al ‘Balloon Compression of the Intermaxillary Sinus for Intractable Post Traumatic Bleeding from the Maxillary Artery’ Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery (1999) vol. 33 pp. 321-324.
Hojo, M. et al ‘Electrophilic Substitutions of Olefinic Hydrogens II. Acylation of Vinyl Ethers and N Vinyl Amides’ Chemistry Letters (1976) pp. 499-502.
Hopf, J.U.G. et al ‘Miniature Endoscopes in Otorhinolaryngologic Applications’ Min Invas Ther & Allied Technol. (1998) vol. 7, No. 3 pp. 209-218.
Hosemann, W. et al A Dissection Course on Endoscopic Endonasal Sinus Surgery (2005) Endo-Press, Tuttlingen pp. 4-37.
Hosemann, W. et al ‘Endonasal Frontal Sinusotomy in Surgical Management of Chronic Sinusitis: A Critical Evaluation’ American Journal of Rhinology (1997) vol. 11, No. 1 pp. 1-9.
Hosemann, M.E. et al ‘Experimentelle Untersuchungen zur Wundheilung in den Nasennebenholhlen. II. Spontaner Wundschluss and medikamentose Effekte im standardisierten Wundmodell.’ HNO 39 (1991) pp. 48-54.
Hosemann W.G. et al Minimally Invasive Endonasal Sinus Surgery Thieme, Stuttgart, New York (2000) [Summary of textbook].
Hosemann, M.E. et al ‘Normal Wound Healing of the Paranasal Sinuses—Clinical and Experimental Investigations’ Eur Arch Otorhinolarygol. (1991) vol. 248 pp. 390-394.
Hosemann, W. et al ‘Weiterbehandlung nach Nasennebenhohleneingriffen, Part 2: Theapeutische Maβnahmen’ HNO akutell 7 (1999) pp. 291-302.
Hospital Corpsman Sickcall Screener's Handbook. Naval Hospital Great Lakes (Apr. 1999) http://www.brooksidepress.org/Products/Operationa.Medicine/DATA. 2001 pp. 1-6.
Hybels, R.L. ‘Transillumination During Osteoplastic Frontal Sinusotomy’ The Laryngoscope (Sep. 1981) vol. 91 pp. 1560.
Ijaduola, T.G.A. ‘Use of a Foley Catheter for Short-Term Drainage in Frontal Sinus Surgery’ The Journal of Laryngology and Otology. (1989) vol. 103 pp. 375-378.
Ingals, F. ‘New Operation and Instruments for Draining the Frontal Sinus’ Ann. Otol Rhinol Laryngol. (1905) vol. 14 pp. 515-519.
Iro, H. et al ‘A New Device for Frontal Sinus Endoscopy: First Clinical Report’ Otolaryngol. Head Neck Surg. (2001) vol. 125 No. 6 pp. 613-616.
Jacobs, J.B. ‘100 Years of Frontal Sinus Surgery’ Laryngoscope. (1997) vol. 107 pp. 1-36.
Kennedy, D.W., M.D. et al Diseases of the Sinuses Diagnosis and Management (Copyright 2001) by B.C. Decker Inc.
Khomutov, S.M. et al ‘Dissolution of a Mixture of Steroids in Cyclodextrin Solutions: a Model Description’ Pharmaceutical Chemistry Journal. (Nov. 2001) vol. 35, No. 11 pp. 627-629.
Kingdom, T.T. et al ‘Image-Guided Surgery of the Sinuses: Current Technology and Applications’ Otolaryngol. Clin. North Am. (Apr. 2004) vol. 37, No. 2 pp. 381-400.
Klossek, J.M. et al ‘Local Safety of Intranasal Triamcinolone Acetonide: Clinical and Histological Aspects of Nasal Mucosa in the Long-Term Treatment of Perennial Allergic Rhinitis’ Rhinology (2001) vol. 39, No. 1 pp. 17-22.
Kozlov et al ‘Diagnosis and Treatment of Sinusitis by YAMIK Sinus Catheters’ Rhinology (1996) vol. 34. pp. 123-124.
Kuhn, et al. ‘The Agger Nasi Cell in Frontal Recess Obstruction: An Anatomic, Radiology and Clinical Correlation’ Operative Techniques in Otolaryngology—Head and Neck Surgery (1991) vol. 2, No. 4 pp. 226-231.
Laliberte F. et al ‘Clinical and Pathologic Methods to Assess the Long-Term Safety or Nasal Corticosteroids’ Allergy (2000) vol. 55, No. 8 pp. 718-722.
Lang, E.V. et al ‘Access Systems for Puncture at an Acute Angle’ J. Vasc. Interv. Radiol. (1995) vol. 6, No. 5 pp. 711-713.
Lanza, D.C. ‘Postoperative Care and Avoiding Frontal Recess Stenosis’ International Advanced Sinus Symposium. General Session Abstracts. (1993) Jul. 21-24.
Large, G.C. ‘Crystalline Tetracycline Hydrochloride in the Treatment of Acute and Chronic Maxillary Sinusitis’ Canad. M. A. J. (1958) vol. 79 pp. 15-16.
Lund, V.J. ‘Maximal Medical Therapy for Chronic Rhinosinusitis’ Otolaryngol Clin N Am. (2005) vol. 38 pp. 1301-1310.
Maran, A.G.D. et al ‘The Use of the Foley Catheter in the Tripod Fracture’ J. Laryngol. Otol (1971) vol. 85, Issue 9 pp. 897-902.
May, M. et al ‘Frontal Sinus Surgery: Endonasal Drainage Instead of an External Osteopolstic Approach’ Op Tech Otolaryngo Head Neck Surgery (1995) vol. 6, No. 3 pp. 184-192.
Medtronic, xomed.com-MicroFrance Catalog Browser. http://www.xomcat.com/xomfrance/index.php?zone=both&cat=18&sub=58&prodline=1272 (Dec. 31, 2003) pp. 1-2.
Mehan, V.K. et al ‘Coronary Angioplasty through 4 French Diagnostic Catheters’ Cathet. Cardiovasc. Diagn. (1993) vol. 30, No. 1 pp. 22-26.
Mellor, J.M. et al ‘Synthesis of Trifluromethylnaphthalenes’ Tetrahedron (2000) vol. 56 pp. 10067-10074. Elseview Science Ltd.
Metson, R. et al ‘Endoscopic Treatment of Sphenoid Sinusitis’ Otolaryngol. Head Neck Surg. (1996) vol. 114, No. 6 pp. 736-744.
Metson, R. ‘Holmium: YAG Laser Endoscopic Sinus Surgery: A Randomized Controlled Study’ Laryngoscope (Jan. 1996) vol. 106, Issue 1, Supplement 77 pp. 1-18.
Miller et al. ‘Management of Fractures of the Supraorbital Rim’ Journal of Trauma (Jul. 1978) vol. 18, No. 7 pp. 507-512.
Min, Y-G et al. ‘Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxilary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer’ Laryngoscope (Aug. 1995) vol. 105 pp. 835-842.
Mols, B. ‘Moveable Tool Tip for Keyhole Surgery’ Delft Outlook (2005) vol. 3 pp. 13-17.
Mooney, M.R. et al ‘Monorail™ Piccolino Catheter: A New Rapid Exchange/Ultralow Profile Coronary Angioplasty System’ Cathet. Cardiovasc. Diagn. (1990) vol. 20, No. 2 pp. 114-119.
Moriguchi, T. et al ‘Addition-Elimination Reaction in the Trifluoroacetylation of Electron-Rich Olefins’ J. Org. Chem. (1995) vol. 60, No. 11 pp. 3523-3528. American Chemical Society.
Park, K. et al Biodegreadable Hydrogels for Medicinal Substance Delivery (1993) Technomic Publishing Inc. Lancaster.
Piccirillo, J.F. et al ‘Psychometric and Clinimetric Validity of the 20-Item Sino-Nasal Outcome Test (SNOT-20)’ Otolaryngol. Head Neck Surg (2002) vol. 126, No. 1 pp. 41-47.
Piers, et al ‘A Flexible Distal Tip with Two Degrees of Freedom for Enhanced Dexterity in Endoscopic Robot Surgery’ Proceedings 13th Micromechanics Europe Workshop (2002) pp. 271-274.
Podoshin, L. et al ‘Balloon Technique for Treatment of Frontal Sinus Fractures’ The Journal of Laryngology & Otology (1967), vol. 81. pp. 1157-1161.
Pownell, P.H. et al ‘Diagnostic Nasal Endoscopy’ Plastic & Reconstructive Surgery (1997) vol. 99, Iss. 5 pp. 1451-1458.
Prince et al ‘Analysis of the Intranasal Distribution of Ointment’ J Otolaryngol. (1997) vol. 26 pp. 357-360.
Ramsdale, D.R. Illustrated Coronary Intervention A case-oriented approach (2001) Martin Dunitz Ltd. pp. 1-5.
Ritter, F.N. et al Atlas of Paranasal Sinus Surgery (1991) Igaku-Shoin Medical Pub. pp. 1-81.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Maxillary Sinusitis’ J.A.M.A. (May 31, 1952) pp. 436-440.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Purulent Maxillary Sinusitis’ Texas State Journal of Medicine. (May 1951) pp. 281-288.
Sama, A. et al ‘Current Opinions on the Surgical Management of Frontal Sinus Disease’ ENT News. www.pinpointmendical.com/ent-news (2009) vol. 17 No. 6 pp. 60-63.
Sanborn, T.A., et al ‘Percutaneous Endocardial Transfer and Expression of Genes to the Myocardium Utilizing Fluropscopic Guidance’ Catheter Cardiovasc. Interv. (2001) vol. 52, No. 2 pp. 260-266.
Sawbones Catalog 2001, Pacific Research Laboratories, Inc., Vashon, Washington 98070 USA.
Saxon, R.R., et al ‘Technical Aspects of Accessing the Portal Vein During the TIPS Procedure’ J. Vasc. Interv. Radiol. (1997) vol. 8, No. 5 pp. 733-744.
Schaefer, S.D., M.D. Rhinology and Sinus Disease a Problem-Oriented Approach (Copyright 1988) by Mosby, Inc.
Schneider. Pfizer Ad for Softip [date of publication unknown].
Shah, N.J. et al ‘Endoscopic Pituitary Surgery—A Beginner's Guide’ Indian Journal of Otolaryngology and Head and Neck Surgery (2004) vol. 56, No. 1 pp. 71-78.
Shah, N.J. ‘Functional Endoscopic Sinus Surgery’ (1999); found at www.bhj.org/journal/1999—4104—oct99/sp—659.htm.
Single-Pole and Multi-Pole Lightguides for UV Spot Light Curing Systems. http://www.dymax.com/products/curing—equipment/lightguids/light. (2004) pp. 1-2.
Sobol, et al ‘Sinusitis, Maxillary, Acute Surgical Treatment.’ eMedicine. Retrieved from the Internet: <<http://emedicine.medscape.com/article/862030-print>> (Nov. 16, 2010) pp. 1-11.
St. Croix, et al ‘Genes Expressed in Human Tumor Endothelium’ Science (May 15, 2000) vol. 289 pp. 1197-1202.
Stammberger H. ‘Komplikationen entzundlicher Nasennebenhohlenerkrankungen eischlieβlich iatrogen bedingter Komplikationen.’ Eur Arch Oti-Rhino-Laryngol Suppl. (Jan. 1993) pp. 61-102.
Stammberger, et al ‘Special Endoscopic Anatomy of the Lateral Nasal Wall and Ethmoidal Sinuses’ Functional Endoscopic Sinus Surgery. (1991) Ch. 3, pp. 49-87.
Strohm et al ‘Die Behandlung von Stenosen der oberen Luftwege mittels rontgenologisch gesteuerter Ballondilation (Sep. 25, 1999).
Strohm, et al ‘Le Traitenment Des Stenoses Voies Aeriennes Superieures Par Dilation Au Balloon’ Sep. 25, 1999.
Strohm, et al ‘Treatment of the Stenoses of the Upper Air Routes by Balloon Dilation’ Sudwestdeutscher (Sep. 25, 1999) Abstract 45 pp. 1-3.
SurgTrainer Product Information ‘Incisive Human Nasal Model for ESS Training’ Surg Trainer, Ltd. Ibaraki, Japan (2004) http://www1.accsnet.net.jp/˜juliy/st/en/partslist.html.
Tabor, M.H. et al ‘Symptomatic Bilateral Nasolacrimal Duct Cysts in a Newborn-Rhinoscopic Clinic’ Ear, Nost & Throat Journal (2003) http://findarticles.com/p/articles/mi—m0BUM/is—2—82/ai—98248244 pp. 1-3.
Tarasov, D.I. et al. ‘Application of Drugs Based on Polymers in the Treatment of Acute and Chronic Maxillary Sinusitis’ Vestn Otorinolaringol. (1978) vol. 6 pp. 45-47.
Terumo. Medi-Tech. Boston Scientific. (1993) Ad for Glidewire.
The Operating Theatre Journal (www.otjonline.com) ‘Disposable Medical Device for Wound Disclosure/The Tristel Purple Promotion—A Collaboration between Tristel plc and Karl Storz Endoscopy (UK) Ltd.’ pp. 4 [retrieved on Nov. 30, 2010]. Retrieved from the Internet.
Weber, R. et al ‘Endonasale Stirnhohlenchirugie mit Langzeiteinlage eines Platzhalters’ Laryngol. Rhinol. Otol. (1997) vol. 76 pp. 728-734. (English Abstract).
Weber, R. et al ‘Videoendscopic Analysis of Nasal Steroid Distribution’ Rhinology (1999) vol. 37 pp. 69-73.
Weiner, R.I., D.O. et al ‘Development and Application of Transseptal Left Heart Catheterization’ Cathet. Cardiovasc. Diagn. (1988) vol. 15, No. 2 pp. 112-120.
Wiatrak, B.J. et al ‘Unilateral Choanal Atresia: Initial Presentation and Endoscopic Repair’ International Journal of Pediatric Otorhinolaryngology (1998) vol. 46 pp. 27-35.
Woog, et al. ‘Paranasal Sinus Endoscopy and Orbital Fracture Repair’ Arch Ophthalmol. (May 1998) vol. 116 pp. 688-691.
Wormald, P.J. et al ‘The ’Swing-Door‘ Technique for Uncinectomy in Endoscopic Sinus Surgery’ The Journal of Laryngology and Otology (1998) vol. 112 pp. 547-551.
Xomed-Treace. Bristol-Myers Squibb. Ad for Laser Shield II. Setting the Standards for Tomorrow [date of publication unknown].
Yamauchi, Y. et al ‘Development of a Silicone Model for Endoscopic Sinus Surgery’ proc International Journal of Computer Assisted Radiology and Surgery (1999) vol. 99 pp. 1039.
Yamauchi, Y. et al ‘A Training System for Endoscopic Sinus Surgery with Skill Evaluation’ Computer Assisted Radiology and Surgery (2001) with accompanying poster presentation.
Yanagisawa et al ‘Anterior and Posterior Fontanelles.’ Ear, Nose & Throat Journal (2001) vol. 80. p. 10-12.
Zimarino, M., MD et al ‘Initial Experience with the Europass™: A New Ultra-Low Profile Monorail Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1994) vol. 33, No. 1 pp. 76-79.
http://www.invotec.net/rhinology/ksplint.html. K-Splint Internal Nasal Splints; Jan. 25, 2007.
http://www.doylemedical.com/nasalsplints.htm; Doyle Nasal Splints; Jan. 25, 2007.
http://www.technologyforlife.com.au/ent/nasal.html; Nasal Surgery and Accessories; Jan. 25, 2007.
EP Communication dated Sep. 4, 2008 re: EP 05773189.
EP Communication dated Jun. 19, 2009 re: EP 05773189.
Examination Report dated Feb. 22, 2006 re: 02716734.5.
Examination Report dated Feb. 8, 2007 re: 02716734.5.
Examiners First Report dated Apr. 8, 2010 re: AU2005274794.
European Search Report and Search Opinion dated Sep. 11, 2009 from EP06815174.
European Search Report dated Sep. 27, 2011 re: EP10182961.
International Preliminary Report on Patentability dated Aug. 25, 2006 from PCT/US05/25371.
International Preliminary Report on Patentability dated Oct. 4, 2007 from PCT/US06/002004.
International Preliminary Report on Patentability dated Nov. 27, 2008 from PCT/US07/11449.
International Preliminary Report on Patentability dated Apr. 16, 2009 from PCT/US07/021170.
International Preliminary Report on Patentability dated May 14, 2009 from PCT/US06/36960.
International Preliminary Report on Patentability dated Oct. 22, 2009 from PCT/US08/059786.
International Preliminary Report on Patentability dated Nov. 5, 2009 from PCT/US08/061343.
International Search Report dated May 23, 2002 from PCT/EP02/01228.
International Search Report and Written Opinion dated Apr. 10, 2006 from PCT/US05/25371.
International Search Report dated May 8, 2007 from PCT/US2006/16026.
International Search Report and Written Opinion dated Aug. 17, 2007 from PCT/US05/13617.
International Search Report and Written Opinion dated Aug. 29, 2007 from PCT/US06/002004.
International Search Report dated Sep. 25, 2007 from PCT/US06/37167.
International Search Report dated Oct. 19, 2007 from PCT/US07/03394.
International Search Report and Written Opinion dated May 29, 2008 from PCT/US07/021170.
International Search Report dated May 29, 2008 from PCT/US07/21922.
International Search Report and Written Opinion dated Jul. 1, 2008 from PCT/US06/22745.
International Search Report dated Jul. 3, 2008 from PCT/US2006/029695.
International Search Report dated Jul. 7, 2008 from PCT/US07/16213.
International Search Report dated Jul. 8, 2008 from PCT/US07/11474.
International Search Report and Written Opinion dated Jul. 17, 2008 from PCT/US06/36960.
International Search Report and Written Opinion dated Jul. 21, 2008 from PCT/US05/33090.
International Search Report dated Aug. 25, 2008 from PCT/US2008/000911.
International Search Report dated Sep. 10, 2008 dated PCT/US07/16212.
International Search Report and Written Opinion dated Sep. 12, 2008 from PCT/US07/16214.
International Search Report and Written Opinion dated Sep. 17, 2008 from PCT/US08/059786.
International Search Report and Written Opinion dated Sep. 17, 2008 from PCT/US08/061343.
International Search Report and Written Opinion dated Oct. 1, 2008 from PCT/US07/11449.
International Search Report dated Oct. 15, 2008 from PCT/US2008/061048.
International Search Report dated Nov. 30, 2009 re: PCT/US2009/057203.
International Search Report from PCT Application No. PCT/US2009/057203 dated Nov 30, 2009 as issued by the European Patent Office as searching authority.
International Search Report dated Dec. 10, 2009 re: PCT/US2009/052236.
International Search Report dated Dec. 16, 2009 re: PCT/US2009/050800.
International Search Report dated Mar. 31, 2010 re: PCT/US2009/069143.
International Search Report dated Jul. 8, 2010 re: PCT/US2010/027837.
International Search Report dated Oct. 6, 2010 re: PCT/US2010/040548.
International Search Report dated Mar. 25, 2011 re: PCT/US2010/062161.
International Search Report dated Mar. 28, 2011 re: PCT/US2010/061850.
International Search Report dated Mar. 31, 2011 re: PCT/US2010/060898.
International Search Report dated Aug. 9, 2011 re: PCT/US2011/038751.
Partial European Search Report dated Sep. 20, 2007 re: 07252018.
Partial European Search Report dated Mar. 25, 2008 re: 07252018.
Supplemental European Search Report dated Jun. 2, 2008 re: EP05773189.
Supplemental European Search Report dated Jul. 1, 2009 re: EP06815285.
Supplemental European Search Report dated Jan. 29, 2010 from EP07836108.
Supplemental European Search Report dated Feb. 2, 2010 re: EP07836109.
Supplemental European Search Report dated Feb. 17, 2010 re: EP07836110.
Supplemental European Search Report dated Mar. 1, 2010 re: EP05778834.
Supplemental European Search Report dated Mar. 16, 2010 from EP06718986.
Supplemental European Search Report dated Jun. 22, 2010 re: EP06784759.
Supplemental European Search Report dated Sep. 23, 2010 re: EP08746715.
Supplemental Partial European Search Report dated Nov. 19, 2010 re: EP06751637.
Supplemental European Search Report dated Jan. 28, 2011 re: 07777004.
Supplemental European Search Report dated Mar. 31, 2011 re: EP05798331.
Supplemental European Search Report dated Aug. 30, 2011 re: EP06800540.
Supplemental European Search Report dated Sep. 29, 2011 re: EP07750248.
U.S. Appl. No. 10/259,300, filed Sep. 30, 2002.
U.S. Appl. No. 10/259,630, filed Sep. 30, 2002.
U.S. Appl. No. 10/470,881, filed Feb. 4, 2004.
U.S. Appl. No. 10/829,917, filed Apr. 21, 2004.
U.S. Appl. No. 10/912,578, filed Aug. 4, 2004.
U.S. Appl. No. 10/944,270, filed Sep. 17, 2004.
U.S. Appl. No. 11/037,548, filed Jan. 18, 2005.
U.S. Appl. No. 11/116,118, filed Apr. 26, 2005.
U.S. Appl. No. 11/150,847, filed Jun. 10, 2005.
U.S. Appl. No. 11/193,020, filed Jul. 29, 2005.
U.S. Appl. No. 11/234,395, filed Sep. 23, 2005.
U.S. Appl. No. 11/347,147, filed Feb. 2, 2006.
U.S. Appl. No. 11/355,512, filed Feb. 16, 2006.
U.S. Appl. No. 11/436,892, filed May 17, 2006.
U.S. Appl. No. 11/436,897, filed May 17, 2006.
U.S. Appl. No. 11/438,090, filed May 18, 2006.
U.S. Appl. No. 11/522,497, filed Sep. 15, 2006.
U.S. Appl. No. 11/527,773, filed Sep. 25, 2006.
U.S. Appl. No. 11/544,009, filed Oct. 4, 2006.
U.S. Appl. No. 11/647,530, filed Dec. 27, 2006.
U.S. Appl. No. 11/648,159, filed Dec. 29, 2006.
U.S. Appl. No. 11/655,794, filed Jan. 18, 2007.
U.S. Appl. No. 11/725,151, filed Mar. 15, 2007.
U.S. Appl. No. 11/789,704, filed Apr. 24, 2007.
U.S. Appl. No. 11/789,705, filed Apr. 24, 2007.
U.S. Appl. No. 11/803,695, filed May 14, 2007.
U.S. Appl. No. 11/925,540, filed Oct. 26, 2007.
U.S. Appl. No. 11/926,326, filed Oct. 29, 2007.
U.S. Appl. No. 11/926,565, filed Oct. 29, 2007.
U.S. Appl. No. 11/928,097, filed Oct. 30, 2007.
U.S. Appl. No. 12/011,100, filed Jan. 23, 2008.
U.S. Appl. No. 12/100,361, filed Apr. 9, 2008.
U.S. Appl. No. 12/117,582, filed May 8, 2008.
U.S. Appl. No. 12/117,672, filed May 8, 2008.
U.S. Appl. No. 12/117,961, filed May 9, 2008.
U.S. Appl. No. 12/118,931, filed May 12, 2008.
U.S. Appl. No. 12/120,902, filed May 15, 2008.
U.S. Appl. No. 12/122,884, filed May 19, 2008.
U.S. Appl. No. 12/340,226, filed Dec. 19, 2008.
U.S. Appl. No. 12/341,602, filed Dec. 22, 2008.
U.S. Appl. No. 12/502,101, filed Jul. 13, 2009.
U.S. Appl. No. 60/844,874, filed Sep. 15, 2006.
U.S. Appl. No. 60/922,730, filed Apr. 9, 2007.
U.S. Appl. No. 61/052,413, filed May 12, 2008.
U.S. Appl. No. 61/084,949, filed Jul. 30, 2008.
USPTO Office Action dated Sep. 16, 2005 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jul. 7, 2006 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Feb. 13, 2007 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated May 29, 2007 in U.S. Appl. No. 10/912,578.
USPTO Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 18, 2007 in U.S. Appl. No. 11/037,548.
USPTO Office Action dated Nov. 14, 2007 in U.S. Appl. No. 10/912,578.
USPTO Office Action dated Nov. 28, 2007 in U.S. Appl. No. 11/234,395.
USPTO Office Action dated Dec. 6, 2007 in U.S. Appl. No. 11/037,548.
USPTO Office Action dated Dec. 10, 2007 in U.S. Appl. No. 10/912,578.
USPTO Office Action dated Jan. 24, 2008 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Apr. 9, 2008 in U.S. Appl. No. 11/037,548.
USPTO Office Action dated Sep. 12, 2008 in U.S. Appl. No. 10/829,917.
USPTO Office Action dated Oct. 6, 2008 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 29, 2008 in U.S. Appl. No. 11/347,147.
USPTO Office Action dated Nov. 7, 2008 in U.S. Appl. No. 10/944,270.
USPTO Office Action dated Nov. 17, 2008 in U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 17, 2008 in U.S. Appl. No. 12/117,582.
USPTO Office Action dated Nov. 17, 2008 in U.S. Appl. No. 12/118,931.
USPTO Office Action dated Nov. 25, 2008 in U.S. Appl. No. 12/117,961, filed May 9, 2008.
USPTO Office Action dated Dec. 5, 2008 in U.S. Appl. No. 12/120,902, filed May 15, 2008.
USPTO Office Action dated Jan. 28, 2009 in U.S. Appl. No. 10/944,270.
USPTO Office Action dated Feb. 4, 2009 in U.S. Appl. No. 11/347,147.
USPTO Office Action dated Mar. 3, 2009 in U.S. Appl. No. 12/117,582.
USPTO Office Action dated Mar. 4, 2009 in U.S. Appl. No. 12/118,931.
USPTO Office Action dated Mar. 17, 2009 in U.S. Appl. No. 11/690,127.
USPTO Office Action dated Mar. 18, 2009 in U.S. Appl. No. 10/829,917.
USPTO Office Action dated Mar. 23, 2009 in U.S. Appl. No. 11/804,309.
USPTO Office Action dated Mar. 23, 2009 in U.S. Appl. No. 11/926,326.
USPTO Office Action dated Apr. 21, 2009 in U.S. Appl. No. 10/944,270.
USPTO Office Action dated Jul. 30, 2009 in U.S. Appl. No. 12/118,931.
USPTO Office Action dated Aug. 6, 2009 in U.S. Appl. No. 11/347,147.
USPTO Office Action dated Aug. 6, 2009 in U.S. Appl. No. 12/117,582.
USPTO Office Action dated Aug. 6, 2009 in U.S. Appl. No. 12/117,961.
USPTO Office Action dated Aug. 28, 2009 in U.S. Appl. No. 11/150,847.
USPTO Office Action dated Oct. 21, 2009 in U.S. Appl. No. 12/120,902.
USPTO Office Action dated Nov. 9, 2009 in U.S. Appl. No. 10/829,917.
Doyle Nasal Splints, Jan. 25, 2007, www.doylemedical.com/nasalsplints.htm, 1 pg.
Gottman, et al., Balloon Dilatation of Recurrent Ostial Occlusion of the Front Sinus Oasis-Online Abstract Submission and Invitation System, 1996-2006, Coe Truman Technologies, Inc., all pages.
K-Splint Internal Nasal Splints, Jan. 25, 2007, www.invotec.net/rhinology/ksplint.html, 1 pg.
Nasal Surgery and Accessories, Jan. 25, 2007, www.technologyforlife.com.au/en/nasal.html, pp. 1-5.
Polly Oates: “The Tristel Purple Promotion—a collaboration between Tristel plc and Karl Storz Endoscopy (UK) Ltd”, The Operating Theatre Journal, [Online], vol. 179, Aug. 2005, p. 4, XP002569002, ISSN: 1747-728X, Retrieved from the Internet: URL:http://www.otjonline.com/download/august05.pdf [retrieved on Feb. 16, 2010] * the whole document *.
Sinusitus, Maxillary, Acute Surgical Treatment. Http://www.emedicine.com/ent/topic340.htm. Aug. 29, 2006, pp. 1-11.
SurgTrainer Product Information 2003, Surg Trainer, Ltd., Ibaraki, Japan, pp. 1-5.
Australian Office Action, Examiners First Report dated Dec. 9, 2011 for Application No. AU 2006292818; pp. 1-2.
Australian Office Action, Examiners First Report dated Mar. 5, 2014 for Application No. AU 2011305612; pp. 1-4.
Chinese Office Action, Second Office Action dated Jun. 15, 2011 for Application No. CN 200780042221.3, pp. 1-7.
Chinese Office Action, First Office Action dated Nov. 5, 2012 for Application No. CN 200980137396.1; pp. 1-8.
Chinese Office Action, First Office Action dated Jan. 29, 2013 for Application No. CN 200980152995.1; pp. 1-7.
Chinese Search Report dated Oct. 29, 2012 for Application No. CN 200980137396.1; pp. 1-2.
Chinese Search Report dated Jan. 11, 2013 for Application No. CN 200980152995.0; pp. 1-2.
European Communication dated Sep. 4, 2008 for Application No. EP 05773189; all pages.
European Communication dated Jun. 19, 2009 for Application No. EP 05773189; all pages.
European Communication dated Jun. 29, 2010 for Application No. EP 0783610934, 1 pg.
European Communication dated Jul. 20, 2010 for Application No. EP 07836110, 1 pg.
European Communication dated Aug. 1, 2012 for Application No. EP 06784759.0; pp. 1-5.
European Communication dated Aug. 24, 2012 for Application No. EP 05798331.4; pp. 1-4.
European Communication dated Nov. 9, 2012 for Application No. EP 07750248.2; pp. 1-5.
European Communication dated Apr. 19, 2012 for Application No. EP 08746715.5; pp. 1-4.
European Communication dated Jan. 7, 2013 for Application No. EP 08746715.5; pp. 1-4.
European Communication dated Apr. 11, 2013 for Application No. EP 05778834.1; pp. 1-4.
European Communication dated May 10, 2013 for Application No. EP 06751637.7; pp. 1-5.
European Search Report dated Mar. 16, 2010 for Application No. EP 06718986; pp. 1-4.
European Search Report dated Sep. 27, 2011 for Application No. EP 10182961; pp. 1-3.
European Search Report dated Sep. 29, 2011 for Application No. EP 10182893; pp. 1-5.
European Search Report dated Jul. 23, 2012 for Application No. EP 12162709; pp. 1-10.
European Search Report dated Jul. 24, 2012 for Application No. EP 12162712; pp. 1-9.
European Search Report dated Aug. 31, 2012 for Application No. EP 12173295; pp. 1-6.
European Search Report dated Oct. 10, 2012 for Application No. EP 12175607; pp. 1-8.
European Search Report dated Oct. 10, 2012 for Application No. EP 12175585; pp. 1-12.
European Search Report dated Nov. 22, 2012 for Application No. EP 12182993; pp. 1-7.
European Search Report dated Dec. 5, 2012 for Application No. EP 12182998; pp. 1-5.
European Search Report dated Jan. 9, 2013 for Application No. EP 12183000; pp. 1-5.
European Search Report dated Jan. 11, 2013 for Application No. EP 12183002; pp. 1-5.
European Search Report dated Aug. 13, 2013 for Application No. EP 13172140; pp. 1-7.
European Search Report dated Sep. 9, 2013 for Application No. EP 13179223; pp. 1-7.
International Preliminary Report on Patentability dated Feb. 15, 2008 for Application No. PCT/US05/13617; pp. 1-5.
International Preliminary Report on Patentability dated Apr. 16, 2009 for Application No. PCT/US07/021170; all pages.
International Preliminary Report on Patentability dated Jun. 29, 2011 for Application No. PCT/US2009/069143; pp. 1-6.
International Preliminary Report on Patentability dated Mar. 26, 2013 for Application No. PCT/US2011/052321; pp. 1-11.
International Search Report dated Mar. 31, 2011 for Application No. PCT/US2009/069143.
International Search Report dated May 18, 2012, International Application No. PCT/US2011/052321; pp. 1-5.
Japanese Office Action, Notification of Reasons for Refusal, dated Apr. 26, 2011 for Application No. JP 2007-532485; pp. 1-3.
Japanese Office Action, Notification for Reasons for Refusal, dated Aug. 16, 2011 for Application No. JP 2008-516013; pp. 1-10.
Japanese Office Action, Examiner's Decision of Refusal, dated Oct. 18, 2011 for Application No. JP 2007-509632; pp. 1-2.
Japanese Office Action, Notification of Reasons for Refusal, dated Nov. 8, 2011 for Application No. JP 2008-524250; pp. 1-3.
Japanese Office Action, Notification of Reasons for Refusal, dated Jan. 24, 2012 for Application No. JP 2007-532485; pp. 1-3.
Japanese Office Action, Notice of Reasons for Refusal, dated Jun. 25, 2013 for Application No. JP 2012-131840; pp. 1-8.
Partial European Search Report dated Sep. 20, 2007 for Application No. EP 07252018.
Partial European Search Report dated Oct. 10, 2012, Application No. EP 12 17 5585.
Partial International Search Report dated Feb. 7, 2012 for Application No. PCT/US2011/052321; pp. 1-2.
PCT Search Report dated Nov. 30, 2009 for Application No. PCT/US2009/057203; pp. 1-4.
Russian Office Action dated Sep. 28, 2012 for Application No. RU 2011130530; pp. 1-10.
Russian Office Action dated Mar. 19, 2013 for Application No. RU 2011130530; pp. 1-8.
Supplementary European Search Report dated Feb. 17, 2010, Application No. EP 07 83 6110 (PCT/US2007/016214).
USPTO Office Action dated Dec. 29, 2008 for Application No. 11/193,020.
USPTO Office Action dated May 13, 2009 for Application No. 11/193,020.
U.S. Appl No. 11/648,158 filed Dec. 29, 2006.
U.S. Appl. No. 11/804,308 filed May 16, 2007.
U.S. Appl. No. 11/804,309 filed May 16, 2007.
U.S. Appl. No. 13/840,430 filed Mar. 15, 2013.
Related Publications (1)
Number Date Country
20120078118 A1 Mar 2012 US