This invention relates to a SIP (Symmetrical-in-Parallel) Induction Coil is made of winding two conductive wires symmetrically around a magnetic core and connecting them in parallel (refer to four figures in four pages). Such SIP Induction Coils can be applied to construct electromagnetic devices which have unique outstanding features of reduced magnetization current, reduced cupper loss, higher power efficiency, lower temperature-rise and reduced size (volume) of the electromagnetic devices.
Any prior-art induction coil is made of winding a single conductive wire around the magnetic core from one end to the other end and winding back, and repeating winding cycles until the required number of turns are completed. When two prior-art induction coils (single-wire coils) are connected in parallel, it can induce voltage difference to cause internal circulating current within two coils which incurs additional cupper loss. Because any prior-art induction coils (single wire wound coils) are unbalanced, it would induce additional cupper loss, higher temperature-rise and lower efficiency.
The invention of a SIP (Symmetrical-In-Parallel) Induction Coil is made of winding two conductive wires symmetrically around a magnetic core from the center of the core toward the two ends and winding back to the center, and repeating winding cycles until the required number of turns are completed and the wound coils are connected in parallel to form a SIP Induction Coil. The invention of a SIP Induction Coil is not limited to an induction coil constructed from the above of two identical coils wound symmetrically and connected in parallel but also includes any combination of a pair of SIP Induction Coils or more pairs of SIP Induction Coils. The invention of SIP Induction Coils can be applied to various electromagnetic devices. These SIP Electromagnetic Devices include inductors, transformers, motors and generators with many great benefits of reduced cupper loss, lower temperature-rise, better performance, higher efficiency, and reduced size (volume) of the devices based on the same output power as the prior-art devices.
Research and development of electromagnetic devices has long been focused on the designs of magnetic circuits for improvement. It has reached to a point where the optimal designs of magnetic circuits in the prior-art electromagnetic devices have almost been achieved. The invention of the SIP Induction Coils is also aimed to achieve another unique feature of “balance” concept in designing SIP Electromagnetic Devices. To further improve future electric Power utilization and power transmission, the invention of SIP Induction Coils and SIP Electromagnetic Devices can provide many great benefits of reduced magnetization current, less cupper loss, lower temperature-rise, better performance, higher efficiency and reduced size (volume) of electromagnetic devices (inductors, transformers, motors and generators) for more energy savings and reduced harmfulness to animals and plants from less intensity of electromagnetic fields.
The invention can provide designers more freedom (fewer constraints) of selecting electromagnetic parameters in designing electromagnetic devices.
The foregoing objectives and summary provide only a brief introduction to the present invention. To fully appreciate these and other objects of the present invention as well as the invention itself, all of which will become apparent to those skilled in the art, the following detailed description of the invention and the claims should be read in conjunction with the accompanying drawings. Throughout the specification and drawings identical reference numerals refer to identical or similar parts.
Many other advantages and features of the present invention will become manifest to those versed in the art upon making reference to the detailed description and the accompanying sheets of drawings in which a preferred structural embodiment incorporating the principles of the present invention is shown by way of illustrative example.
The following descriptions are exemplary embodiments only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description provides a convenient illustration for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims.
A. Description of Making SIP Induction Coils
B. Theoretical Principle:
C. SIP Electromagnetic Devices Description:
(1) SIP Inductors
(2) SIP Transformers
(3) SIP Induction Motors
(4) SIP Generators
D. Some Test Data of a SIP Transformer and Two Traditional Transformers (Prior Art)
(1) A 3-Volt SIP Transformer and a Traditional 3-Volt Transformer (Prior Art)
(2) Performance of a SIP Transformer and Two Traditional Transformers
From the above tests (Tables 1a-3b) on the SIP Transformer and two traditional transformers (prior art), they clearly show that the SIP Transformer has better performance, higher efficiency and many great benefits of reduced magnetization current, lower input current, lower input power, lower temperature-rise, higher inductances and higher leakage inductances across the primary coil and secondary coil than those of the traditional transformers (prior art). The invention of SIP Electromagnetic Devices can contribute greatly to the industries of electromagnetic devices in making electromagnetic devices with better performance & higher efficiency and many great benefits of more energy savings, reduced size (volume) of the electromagnetic devices and reduced cooling systems if needed.
With the 3.3 Ohm load on the Square D Transformer, the power required exceeded the power supply of the AT3600 used (50 W).
While certain novel features of this invention have been shown and described and are pointed out in the annexed claim, it is not intended to be limited to the details above, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without departing in any way from the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
098134775 | Oct 2009 | TW | national |