The present disclosure relates to venting structures for tire molds. More particularly, the present disclosure relates to a venting structure for a sipe blade region of a tire mold.
Tire molds include vent structures that allow the air in a tire mold to be displaced when rubber is compressed or injected into the mold. Sipe blades are sometimes included in a tire mold to create patterns in the finished tire. When the rubber is injected into the mold, the rubber will form around a sipe blade to create a void in the cured tire matching the shape of the sipe in a finished tire. In prior art structures, sipe blades include holes within the blade to allow air to vent from one side of the sipe blade to the other. The size of the holes, the number of the holes and the location of the holes is an exacting process and due to sipe size, material constraints and sipe placement during mold preparation, can be limiting. This results in less than optimal air flow. These structures degrade the appearance of a finished tire, as sprues may form on either side of the sipe blade, and break when the tire is removed from the mold. This can also result in tire “lightness,” where rubber does not completely fill in the voids of the tire mold and sipe junctions.
In one embodiment, a tire mold has an interior surface and an exterior surface with a conduit connecting the two surfaces in a fluid connection. This embodiment further includes at least one sipe blade extending across an interior opening of the conduit, into an interior of the tire mold. This embodiment further includes a vent insert located within the at least one conduit.
In another embodiment, a system for venting a tire mold includes a tire mold with interior and exterior regions in fluid connection with each other via at least one conduit extending from the exterior region to the interior region. This embodiment further includes at least one sipe blade located in the interior region of the tire mold, that extends across the at least one conduit.
In another embodiment, a tire mold has an interior region and an exterior region with a conduit connecting the two in a fluid connection. This embodiment further includes at least one sipe blade positioned at an interior opening of the conduit, and extending into the interior region of the tire mold. The sipe blade in this embodiment is embedded into the tire mold. This embodiment further includes a vent insert located within the at least one conduit, and positioned between the sipe blade and the exterior region of the tire mold.
In the accompanying drawings, structures are illustrated that, together with the detailed description provided below, describe exemplary embodiments of the claimed invention. Like elements are identified with the same reference numerals. It should be understood that elements shown as a single component may be replaced with multiple components, and elements shown as multiple components may be replaced with a single component. The drawings are not to scale and the proportion of certain elements may be exaggerated for the purpose of illustration.
The following includes definitions of selected terms employed herein. The definitions include various examples or forms of components that fall within the scope of a term and that may be used for implementation. The examples are not intended to be limiting. Both singular and plural forms of terms may be within the definitions.
Directions are stated herein with reference to the tire mold. For example “interior,” “inside,” or “inner” refers to a direction or area towards the center cavity of a tire mold. The terms “exterior,” “outside,” or “outer” refer to a direction or area generally outside of the tire mold.
A sipe blade 120 is secured in an opening in the tire mold 100, such that a bottom of the sipe blade 120 is embedded within the tire mold 100. Any means of securing the sipe blade 120 to the tire mold 100 may be used without departing from the scope of the present disclosure, including but not limited to forming the tire mold with the sipe blade, permanently mounting sipe blade after forming the tire mold, or affixing sipe blade to tire mold in a removable manner.
In this embodiment, the sipe blade 120 is depicted as having a flat rectangular top, having side portions 130 being shorter than the flat rectangular top, extending further than the flat rectangular top in a lengthwise direction, and having rounded outer portions. A bottom edge of the sipe blade 120 is substantially straight, with a notch 125 located in a central region of the bottom edge. The notch 125 is sized such that it is coextensive with the opening 115 in the interior surface 105. Other shapes are possible for the sipe blade 120, and may be substituted without departing from the scope of the present disclosure.
In this embodiment, the notch 125 is located near the center of the sipe blade 120, and the sipe blade 120 is positioned so as to bisect the conduit 110 over a diameter of the conduit 110. In an alternative embodiment, the notch is off-centered. In other alternative embodiments, sipe blade may not bisect the conduit.
With continued reference to
The threaded portion 140 in this exemplary vent insert 135 has an outer diameter approximately equivalent to an inner diameter of the conduit 110 and diameter of the opening 115. In this embodiment, an equal number of intake openings 155 are located on either side of the sipe blade 120 when installed. However, other arrangements of the intake openings 155 may be used without departing from the scope of the present disclosure. For example an unequal number of vent intakes 155 may be located to either side of the sipe blade 120. In alternative embodiments, a different type of vent insert may be used, or the vent insert may be omitted altogether. The diameter of the vent insert 135 can be optimized to accommodate the width of the sipe blade and the available mold surface area available.
In the embodiment shown in
In an alternative embodiment (not shown), the vent insert notch may be located off-center of the vent insert, so that it is not positioned along a diameter of the vent insert. In such an embodiment, the sipe blade would not pass through a diameter of the conduit opening, and instead would pass through a distance less than the diameter of the conduit.
A bottom edge of the sipe blade 315 includes a notch 320. The notch 320 is dimensioned to the receive vent insert 325. A top of the notch 320 is located outside of the interior surface 305. Additionally, the vent insert 325 includes a vent notch 330 located on a top portion thereon, and aligned with the notch 320 of the sipe blade 315. In this embodiment, the vent notch 330 is the same width as the sipe blade 315. The bottom of the vent notch 330 is adjacent to a top of the notch 320 such that the vent notch 330 and the notch 320 form an interlocking engagement. In an alternative embodiment (not shown) a gap may be formed between the bottom of the vent notch 330 and the top of notch 320 of the sipe blade 315. In another alternative embodiment, the vent insert notch 330 may have a width greater than the sipe blade thickness.
In yet another alternative embodiment (not shown), the vent insert notch may be located off-center of the vent insert, so that it is not positioned along a diameter of the vent insert. In such an embodiment, the sipe blade would not pass through a diameter of the conduit opening, and instead would pass through a distance less than the diameter of the conduit.
In the embodiment of
To the extent that the term “includes” or “including” is used in the specification or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed (e.g., A or B) it is intended to mean “A or B or both.” When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See, Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995). Also, to the extent that the terms “in” or “into” are used in the specification or the claims, it is intended to additionally mean “on” or “onto.” Furthermore, to the extent the term “connect” is used in the specification or claims, it is intended to mean not only “directly connected to,” but also “indirectly connected to” such as connected through another component or components.
While the present application has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the application, in its broader aspects, is not limited to the specific details, the representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/061062 | 11/17/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62098439 | Dec 2014 | US |