Situational awareness (SA) in radio silence (spatial awareness)

Information

  • Patent Grant
  • 12316403
  • Patent Number
    12,316,403
  • Date Filed
    Friday, September 9, 2022
    3 years ago
  • Date Issued
    Tuesday, May 27, 2025
    4 months ago
Abstract
A system may include a transmitter node and a receiver node. Each node may include a communications interface including at least one antenna element and a controller operatively coupled to the communications interface, the controller including one or more processors, wherein the controller has information of own node velocity and own node orientation. Each node of the transmitter node and the receiver node may be in motion relative to each other. Each node may be time synchronized to apply Doppler corrections associated with said node's own motions relative to a common reference frame. The common reference frame may be known to the transmitter node and the receiver node prior to the transmitter node transmitting signals to the receiver node and prior to the receiver node receiving the signals from the transmitter node. The receiver node may be configured to be in a state of reduced emissions.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to and claims priority from the following U.S. patent applications:

    • (a) U.S. patent application Ser. No. 17/233,107, filed Apr. 16, 2021, which is incorporated by reference in its entirety;
    • (b) P.C.T. Patent Application No. PCT/US22/24653, filed Apr. 13, 2022, which claims priority to U.S. patent application Ser. No. 17/233,107, filed Apr. 16, 2021, all of which are incorporated by reference in its entirety;
    • (c) U.S. patent application Ser. No. 17/408,156, filed Aug. 20, 2021, which claims priority to U.S. patent application Ser. No. 17/233,107, filed Apr. 16, 2021, all of which are incorporated by reference in its entirety;
    • (d) U.S. patent application Ser. No. 17/541,703, filed Dec. 3, 2021, which is incorporated by reference in its entirety, which claims priority to:
      • 1. U.S. patent application Ser. No. 17/408,156, filed Aug. 20, 2021, which is incorporated by reference in its entirety; and
      • 2. U.S. patent application Ser. No. 17/233,107, filed Apr. 16, 2021, all of which is incorporated by reference in its entirety;
    • (e) U.S. patent application Ser. No. 17/534,061, filed Nov. 23, 2021, which is incorporated by reference in its entirety;
    • (f) U.S. Patent Application No. 63/344,445, filed May 20, 2022, which is incorporated by reference in its entirety;
    • (g) U.S. patent application Ser. No. 17/857,920, filed Jul. 5, 2022, which is incorporated by reference in its entirety;
    • (h) U.S. Patent Application No. 63/400,138, filed Aug. 23, 2022, which is incorporated by reference in its entirety; and
    • (i) U.S. patent application Ser. No. 17/940,898, filed Sep. 8, 2022, which is incorporated by reference in its entirety.


BACKGROUND

Mobile Ad-hoc NETworks (MANET; e.g., “mesh networks”) are known in the art as quickly deployable, self-configuring wireless networks with no pre-defined network topology. Each communications node within a MANET is presumed to be able to move freely. Additionally, each communications node within a MANET may be required to forward (relay) data packet traffic. Data packet routing and delivery within a MANET may depend on a number of factors including, but not limited to, the number of communications nodes within the network, communications node proximity and mobility, power requirements, network bandwidth, user traffic requirements, timing requirements, and the like.


MANETs face many challenges due to the limited network awareness inherent in such highly dynamic, low-infrastructure communication systems. Given the broad ranges in variable spaces, the challenges lie in making good decisions based on such limited information. For example, in static networks with fixed topologies, protocols can propagate information throughout the network to determine the network structure, but in dynamic topologies this information quickly becomes stale and must be periodically refreshed. It has been suggested that directional systems are the future of MANETs, but this future has not as yet been realized. In addition to topology factors, fast-moving platforms (e.g., communications nodes moving relative to each other) experience a frequency Doppler shift (e.g., offset) due to the relative radial velocity between each set of nodes. This Doppler frequency shift often limits receive sensitivity levels which can be achieved by a node within a mobile network.


In telecommunications, radio silence is a status in which some or all fixed or mobile nodes in an area are asked to stop transmitting for safety or security reasons.


SUMMARY

A system may include a transmitter node and a receiver node. Each node may include a communications interface including at least one antenna element and a controller operatively coupled to the communications interface, the controller including one or more processors, wherein the controller has information of own node velocity and own node orientation. Each node of the transmitter node and the receiver node may be in motion relative to each other. Each node may be time synchronized to apply Doppler corrections associated with said node's own motions relative to a common reference frame. The common reference frame may be known to the transmitter node and the receiver node prior to the transmitter node transmitting signals to the receiver node and prior to the receiver node receiving the signals from the transmitter node. The receiver node may be configured to be in a state of reduced emissions.


In a further aspect, a method may include: providing a transmitter node and a receiver node, wherein each node of the transmitter node and the receiver node are time synchronized, wherein each node of the transmitter node and the receiver node are in motion relative to each other, wherein each node of the transmitter node and the receiver node comprises a communications interface including at least one antenna element, wherein each node of the transmitter node and the receiver node further comprises a controller operatively coupled to the communications interface, the controller including one or more processors, wherein the controller has information of own node velocity and own node orientation; based at least on the time synchronization, applying, by the transmitter node, Doppler corrections to the transmitter node's own motions relative to a common reference frame; and based at least on the time synchronization, applying, by the receiver node, Doppler corrections to the receiver node's own motions relative to the common reference frame, wherein the common reference frame is known to the transmitter node and the receiver node prior to the transmitter node transmitting signals to the receiver node and prior to the receiver node receiving the signals from the transmitter node. The receiver node may be configured to be in a state of reduced emissions.


This Summary is provided solely as an introduction to subject matter that is fully described in the Detailed Description and Drawings. The Summary should not be considered to describe essential features nor be used to determine the scope of the Claims. Moreover, it is to be understood that both the foregoing Summary and the following Detailed Description are example and explanatory only and are not necessarily restrictive of the subject matter claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Various embodiments or examples (“examples”) of the present disclosure are disclosed in the following detailed description and the accompanying drawings. The drawings are not necessarily to scale. In general, operations of disclosed processes may be performed in an arbitrary order, unless otherwise provided in the claims.



FIG. 1 is a diagrammatic illustration of a mobile ad hoc network (MANET) and individual nodes thereof according to example embodiments of this disclosure.



FIG. 2A is a graphical representation of frequency shift profiles within the MANET of FIG. 1.



FIG. 2B is a graphical representation of frequency shift profiles within the MANET of FIG. 1.



FIG. 3 is a diagrammatic illustration of a transmitter node and a receiver node according to example embodiments of this disclosure.



FIG. 4A is a graphical representation of frequency shift profiles within the MANET of FIG. 3.



FIG. 4B is a graphical representation of frequency shift profiles within the MANET of FIG. 3.



FIG. 5 is an exemplary graph of sets for covering space.



FIG. 6 is a diagrammatic illustration of a transmitter node and a receiver node according to example embodiments of this disclosure.



FIG. 7 is a flow diagram illustrating a method according to example embodiments of this disclosure.



FIG. 8 is a diagrammatic illustration of nodes in an EMCON DELTA state.



FIG. 9A is a diagrammatic illustration of a primary node and secondary nodes in an EMCON ALPHA state.



FIG. 9B is a diagrammatic illustration of a primary node and secondary nodes in an EMCON ALPHA state with secondary node transmissions, according to example embodiments of this disclosure.





DETAILED DESCRIPTION

Before explaining one or more embodiments of the disclosure in detail, it is to be understood that the embodiments are not limited in their application to the details of construction and the arrangement of the components or steps or methodologies set forth in the following description or illustrated in the drawings. In the following detailed description of embodiments, numerous specific details may be set forth in order to provide a more thorough understanding of the disclosure. However, it will be apparent to one of ordinary skill in the art having the benefit of the instant disclosure that the embodiments disclosed herein may be practiced without some of these specific details. In other instances, well-known features may not be described in detail to avoid unnecessarily complicating the instant disclosure.


As used herein a letter following a reference numeral is intended to reference an embodiment of the feature or element that may be similar, but not necessarily identical, to a previously described element or feature bearing the same reference numeral (e.g., 1, 1a, 1b). Such shorthand notations are used for purposes of convenience only and should not be construed to limit the disclosure in any way unless expressly stated to the contrary.


Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).


In addition, use of “a” or “an” may be employed to describe elements and components of embodiments disclosed herein. This is done merely for convenience and “a” and “an” are intended to include “one” or “at least one,” and the singular also includes the plural unless it is obvious that it is meant otherwise.


Finally, as used herein any reference to “one embodiment”, “in embodiments” or “some embodiments” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment disclosed herein. The appearances of the phrase “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, and embodiments may include one or more of the features expressly described or inherently present herein, or any combination or sub-combination of two or more such features, along with any other features which may not necessarily be expressly described or inherently present in the instant disclosure.


Broadly speaking, embodiments of the inventive concepts disclosed herein are directed to a method and a system for achieving situational awareness during radio silence including a transmitter node and a receiver node, which may be time synchronized to apply Doppler corrections associated with said node's own motions relative to a common reference frame. In embodiments, a primary node (e.g., high value asset) may be configured to cease radio transmissions during a period of radio silence but secondary nodes (e.g., expendable assets) may be allowed to transmit. In this regard, in embodiments, a primary node may gain situational awareness of secondary nodes while maintaining its own radio silence—thereby reducing a risk of being detected or located by adverse nodes.


Further, embodiments may utilize spatial awareness (e.g., doppler nulling) methods including transmitter and receiver nodes being time synchronized to apply Doppler corrections. For example, examples of doppler nulling methods include, but are not limited to, methods and any other descriptions disclosed in U.S. patent application Ser. No. 17/233,107, filed Apr. 16, 2021, which is hereby incorporated by reference in its entirety; and U.S. patent application Ser. No. 17/857,920, filed Jul. 5, 2022, which is hereby incorporated by reference in its entirety. In embodiments, doppler nulling methods allow for benefits such as, but not limited to, relatively quickly and/or efficiently detecting transmitter nodes and determining transmitter node attributes (e.g., transmitter node speed, transmitter node bearing, relative bearing of transmitter node relative to receiver node, relative distance of transmitter node relative to receiver node, and the like).


Some other communication protocols (e.g., typical communication methods) may require a higher signal to noise ratio (SNR) than doppler nulling methods. For example, doppler nulling methods may allow for using relatively less power (e.g., watts) and a weaker signal, while still providing for situational awareness, than other methods. Some other communication protocols, in order to provide for situational awareness, may require two-way communications of both the transmitter node and the receiver node in order to establish a communication link and to send attributes (e.g., location information data) of a transmitting node, thereby breaking radio silence of the receiving node.


At least some of these challenges are addressed by embodiments of the present disclosure.


It is noted that U.S. patent application Ser. No. 17/857,920, filed Jul. 5, 2022, is at least partially reproduced by at least some of the illustrations of FIGS. 1-7 and at least some of the accompanying language below, in accordance with one or more embodiments of the present disclosure. In this regard, at least some examples of doppler nulling methods and systems may be better understood, in a nonlimiting manner, by reference to FIGS. 1-7. However, such embodiments and examples are provided merely for illustrative purposes and are not to be construed as limiting. For instance, in embodiments the transmitter node may be stationary rather than moving.


Moreover, and stated for purposes of navigating the disclosure only and not to be construed as limiting, descriptions that may more directly relate to radio silence are further discussed after FIGS. 1-7.


Referring now to FIGS. 1-7, in some embodiments, a stationary receiver may determine a cooperative transmitter's direction and velocity vector by using a Doppler null scanning approach in two dimensions. A benefit of the approach is the spatial awareness without exchanging explicit positional information. Other benefits include discovery, synchronization, and Doppler corrections which are important for communications. Some embodiment may combine coordinated transmitter frequency shifts along with the transmitter's motion induced Doppler frequency shift to produce unique net frequency shift signal characteristics resolvable using a stationary receiver to achieve spatial awareness. Further, some embodiment may include a three-dimensional (3D) approach with the receiver and the transmitter in motion.


Some embodiments may use analysis performed in a common reference frame (e.g., a common inertial reference frame, such as the Earth, which may ignore the curvature of Earth), and it is assumed that the communications system for each of the transmitter and receiver is informed by the platform of its own velocity and orientation. The approach described herein can be used for discovery and tracking, but the discussion here focuses on discovery which is often the most challenging aspect.


The meaning of the ‘Doppler Null’ can be explained in part through a review of the two-dimensional (2D) case without the receiver motion, and then may be expounded on by a review of adding the receiver motion to the 2D case, and then including receiver motion in the 3D case.


The Doppler frequency shift of a communications signal is proportional to the radial velocity between transmitter and receiver, and any significant Doppler shift is typically a hindrance that should be considered by system designers. In contrast, some embodiments utilize the Doppler effect to discriminate between directions with the resolution dictated by selected design parameters. Furthermore, such embodiments use the profile of the net frequency shift as the predetermined ‘Null’ direction scans through the angle space. The resultant profile is sinusoidal with an amplitude that provides the transmitter's speed, a zero net frequency shift when the ‘Null’ direction aligns with the receiver, and a minimum indicating the direction of the transmitter's velocity. It should be noted that that the transmitter cannot correct for Doppler in all directions at one time so signal characteristics are different in each direction and are different for different transmitter velocities as well. It is exactly these characteristics that the receiver uses to determine spatial awareness. The received signal has temporal spatial characteristics that can be mapped to the transmitter's direction and velocity. This approach utilizes the concept of a ‘Null’ which is simply the direction where the transmitter perfectly corrects for its own Doppler shift. The same ‘Nulling’ protocol runs on each node and scans through all directions. Here we arbitrarily illustrate the scanning with discrete successive steps of 10 degrees but in a real system; however, it should be understood that any suitable step size of degrees may be used for Doppler null scanning.


As already mentioned, one of the contributions of some embodiments is passive spatial awareness. Traditionally, spatial information for neighbor nodes (based on a global positioning system (GPS) and/or gyros and accelerometers) can be learned via data communication. Unfortunately, spatial awareness via data communication, referred to as active spatial awareness is possible only after communication has already been established, not while discovering those neighbor nodes. Data communication is only possible after the signals for neighbor nodes have been discovered, synchronized and Doppler corrected. In contrast, in some embodiments, the passive spatial awareness described herein may be performed using only synchronization bits associated with acquisition. This process can be viewed as physical layer overhead and typically requires much lower bandwidth compared to explicit data transfers. The physical layer overheads for discovery, synchronization and Doppler correction have never been utilized for topology learning for upper layers previously.


Traditionally, network topology is harvested via a series of data packet exchanges (e.g., hello messaging and link status advertisements). The passive spatial awareness may eliminate hello messaging completely and provide a wider local topology which is beyond the coverage of hello messaging. By utilizing passive spatial awareness, highly efficient mobile ad hoc networking (MANET) is possible. Embodiments may improve the functioning of a network, itself.


Referring to FIG. 1, a multi-node communications network 100 is disclosed. The multi-node communications network 100 may include multiple communications nodes, e.g., a transmitter (Tx) node 102 and a receiver (Rx) node 104.


In embodiments, the multi-node communications network 100 may include any multi-node communications network known in the art. For example, the multi-node communications network 100 may include a mobile ad-hoc network (MANET) in which the Tx and Rx nodes 102, 104 (as well as every other communications node within the multi-node communications network) is able to move freely and independently. Similarly, the Tx and Rx nodes 102, 104 may include any communications node known in the art which may be communicatively coupled. In this regard, the Tx and Rx nodes 102, 104 may include any communications node known in the art for transmitting/transceiving data packets. For example, the Tx and Rx nodes 102, 104 may include, but are not limited to, radios (such as on a vehicle or on a person), mobile phones, smart phones, tablets, smart watches, laptops, and the like. In embodiments, the Rx node 104 of the multi-node communications network 100 may each include, but are not limited to, a respective controller 106 (e.g., control processor), memory 108, communication interface 110, and antenna elements 112. (In embodiments, all attributes, capabilities, etc. of the Rx node 104 described below may similarly apply to the Tx node 102, and to any other communication node of the multi-node communication network 100.)


In embodiments, the controller 106 provides processing functionality for at least the Rx node 104 and can include any number of processors, micro-controllers, circuitry, field programmable gate array (FPGA) or other processing systems, and resident or external memory for storing data, executable code, and other information accessed or generated by the Rx node 104. The controller 106 can execute one or more software programs embodied in a non-transitory computer readable medium (e.g., memory 108) that implement techniques described herein. The controller 106 is not limited by the materials from which it is formed or the processing mechanisms employed therein and, as such, can be implemented via semiconductor(s) and/or transistors (e.g., using electronic integrated circuit (IC) components), and so forth.


In embodiments, the memory 108 can be an example of tangible, computer-readable storage medium that provides storage functionality to store various data and/or program code associated with operation of the Rx node 104 and/or controller 106, such as software programs and/or code segments, or other data to instruct the controller 106, and possibly other components of the Rx node 104, to perform the functionality described herein. Thus, the memory 108 can store data, such as a program of instructions for operating the Rx node 104, including its components (e.g., controller 106, communication interface 110, antenna elements 112, etc.), and so forth. It should be noted that while a single memory 108 is described, a wide variety of types and combinations of memory (e.g., tangible, non-transitory memory) can be employed. The memory 108 can be integral with the controller 106, can comprise stand-alone memory, or can be a combination of both. Some examples of the memory 108 can include removable and non-removable memory components, such as random-access memory (RAM), read-only memory (ROM), flash memory (e.g., a secure digital (SD) memory card, a mini-SD memory card, and/or a micro-SD memory card), solid-state drive (SSD) memory, magnetic memory, optical memory, universal serial bus (USB) memory devices, hard disk memory, external memory, and so forth.


In embodiments, the communication interface 110 can be operatively configured to communicate with components of the Rx node 104. For example, the communication interface 110 can be configured to retrieve data from the controller 106 or other devices (e.g., the Tx node 102 and/or other nodes), transmit data for storage in the memory 108, retrieve data from storage in the memory, and so forth. The communication interface 110 can also be communicatively coupled with the controller 106 to facilitate data transfer between components of the Rx node 104 and the controller 106. It should be noted that while the communication interface 110 is described as a component of the Rx node 104, one or more components of the communication interface 110 can be implemented as external components communicatively coupled to the Rx node 104 via a wired and/or wireless connection. The Rx node 104 can also include and/or connect to one or more input/output (I/O) devices. In embodiments, the communication interface 110 includes or is coupled to a transmitter, receiver, transceiver, physical connection interface, or any combination thereof.


It is contemplated herein that the communication interface 110 of the Rx node 104 may be configured to communicatively couple to additional communication interfaces 110 of additional communications nodes (e.g., the Tx node 102) of the multi-node communications network 100 using any wireless communication techniques known in the art including, but not limited to, GSM, GPRS, CDMA, EV-DO, EDGE, WiMAX, 3G, 4G, 4G LTE, 5G, WiFi protocols, RF, LoRa, and the like.


In embodiments, the antenna elements 112 may include directional or omnidirectional antenna elements capable of being steered or otherwise directed (e.g., via the communications interface 110) for spatial scanning in a full 360-degree arc (114) relative to the Rx node 104.


In embodiments, the Tx node 102 and Rx node 104 may both be moving in an arbitrary direction at an arbitrary speed, and may similarly be moving relative to each other. For example, the Tx node 102 may be moving relative to the Rx node 104 according to a velocity vector 116, at a relative velocity VTX and a relative angular direction (an angle α relative to an arbitrary direction 118 (e.g., due east); θ may be the angular direction of the Rx node relative to due east.


In embodiments, the Tx node 102 may implement a Doppler nulling protocol. For example, the Tx node 102 may adjust its transmit frequency to counter the Doppler frequency offset such that there is no net frequency offset (e.g., “Doppler null”) in a Doppler nulling direction 120 (e.g., at an angle θ relative to the arbitrary direction 118). The transmitting waveform (e.g., the communications interface 110 of the Tx node 102) may be informed by the platform (e.g., the controller 106) of its velocity vector and orientation (e.g., α, VT) and may adjust its transmitting frequency to remove the Doppler frequency shift at each Doppler nulling direction 120 and angle θ.


To illustrate aspects of some embodiments, we show the 2D dependence of the net frequency shift for a stationary receiver as a function of Null direction across the horizon, as shown in a top-down view of FIG. 1, where the receiver node 104 is stationary and positioned θ from east relative to the transmitter, the transmitter node 102 is moving with a speed |custom character| and direction α from east and a snapshot of the scanning ϕ which is the ‘Null’ direction, exemplarily shown as 100 degrees in this picture.


The Doppler shift is a physical phenomenon due to motion and can be considered as a channel effect. In this example the transmitter node 102 is the only moving object, so it is the only source of Doppler shift. The Doppler frequency shift as seen by the receiver node 104 due to the transmitter node 102 motion is:









Δ


f
DOPPLER


f

=





"\[LeftBracketingBar]"



V
T





"\[RightBracketingBar]"


c



cos

(

θ
-
α

)



,





where c is the speed of light


The other factor is the transmitter frequency adjustment term that should exactly compensate the Doppler shift when the ‘Null’ direction aligns with the receiver direction. It is the job of the transmitter node 102 to adjust its transmit frequency according to its own speed (|custom character|), and velocity direction (α). That transmitter frequency adjustment (ΔfT) is proportional to the velocity projection onto the ‘Null’ direction (φ) and is:








Δ


f
T


f

=


-




"\[LeftBracketingBar]"



V
T





"\[RightBracketingBar]"


c




cos

(

φ
-
α

)






The net frequency shift seen by the receiver is the sum of the two terms:








Δ


f
net


f

=





"\[LeftBracketingBar]"



V
T





"\[RightBracketingBar]"


c

[


cos

(

θ
-
α

)

-

cos

(

φ
-
α

)


]





It is assumed that the velocity vector and the direction changes slowly compared to the periodic measurement of Δfnet. Under those conditions, the unknown parameters (from the perspective of the receiver node 104) of α, |<|, and θ are constants.


Furthermore, it is assumed that the receiver node 104 has an implementation that resolves the frequency of the incoming signal, as would be understood to one of ordinary skill in the art.



FIG. 2A shows the resulting net frequency shift as a function of the ‘Null’ direction for scenarios where a stationary receiver is East of the transmitter (theta=0), and with a transmitter speed of 1500 meters per second (m/s). FIG. 2B shows the results for a stationary receiver and for several directions with an Eastern transmitter node velocity direction (alpha=0). The frequency shifts are in units of parts per million (ppm). As shown in FIGS. 2A and 2B, the amplitude is consistent with the transmitter node's 102 speed of 5 ppm [|custom character|/c*(1×106)] regardless of the velocity direction or position, the net frequency shift is zero when the ‘Null’ angle is in the receiver direction (when ϕ=8), and the minimum occurs when the ‘Null’ is aligned with the transmitter node's 102 velocity direction (when 1=α).


From the profile, the receiver node 104 can therefore determine the transmitter node's 102 speed, the transmitter node's 102 heading, and the direction of the transmitter node 102 is known to at most, one of two locations (since some profiles have two zero crossings). It should be noted that the two curves cross the y axis twice (0 & 180 degrees in FIG. 2A, and ±90 degrees in FIG. 2B) so there is initially an instance of ambiguity in position direction. In this case the receiver node 104 knows the transmitter node 102 is either East or West of the receiver node 104.


Referring to FIG. 3, a multi-node communications network 100 is disclosed. The multi-node communications network 100 may include multiple communications nodes, e.g., a transmitter (Tx) node 102 and a receiver (Rx) node 104. As shown in FIG. 3 both of the transmitter node 102 and the receiver node 104 are in motion in two dimensions.


The simultaneous movement scenario is depicted in FIG. 3 where the receiver node 104 is also moving in a generic velocity characterized by a speed |custom character| and the direction, β. The protocol for the moving receiver node 104 incorporates a frequency adjustment on the receiver node's 104 side to compensate for the receiver node's 104 motion as well. The equations have two additional terms. One is a Doppler term for the motion of the receiver and the second is frequency compensation by the receiver.


Again, the Doppler shift is a physical phenomenon due to motion and can be considered as a channel effect, but in this case both the transmitter node 102 and the receiver node 104 are moving so there are two Doppler shift terms. The true Doppler shift as seen by the receiver due to the relative radial velocity is:








Δ


f
DOPPLER


f

=






"\[LeftBracketingBar]"



V
T





"\[RightBracketingBar]"


c



cos

(

θ
-
α

)


-





"\[LeftBracketingBar]"



V
R





"\[RightBracketingBar]"


c



cos

(

θ
-
β

)







The other factors are the transmitter node 102 and receiver node 104 frequency adjustment terms that exactly compensates the Doppler shift when the ‘Null’ direction aligns with the receiver direction. It is the job of the transmitter node 102 to adjust the transmitter node's 102 transmit frequency according to its own speed (|custom character|), and velocity direction (α). That transmitter node frequency adjustment is proportional to the velocity projection onto the ‘Null’ direction (custom character) and is the first term in the equation below.


It is the job of the receiver node 104 to adjust the receiver node frequency according to the receiver node's 104 own speed (|custom character|), and velocity direction (β). That receiver node frequency adjustment is proportional to the velocity projection onto the ‘Null’ direction (custom character) and is the second term in the equation below. The receiver node frequency adjustment can be done to the receive signal prior to the frequency resolving algorithm or could be done within the algorithm.








Δ


f


T
&


R



f

=



-




"\[LeftBracketingBar]"



V
T





"\[RightBracketingBar]"


c




cos

(

φ
-
α

)


+





"\[LeftBracketingBar]"



V
R





"\[RightBracketingBar]"


c



cos

(

φ
-
β

)







The net frequency shift seen by the receiver is the sum of all terms:








Δ


f
net


f

=






"\[LeftBracketingBar]"



V
T





"\[RightBracketingBar]"


c

[


cos

(

θ
-
α

)

-

cos

(

φ
-
α

)


]

-





"\[LeftBracketingBar]"



V
R





"\[RightBracketingBar]"


c

[


cos

(

θ
-
β

)

-

cos

(

φ
-
β

)


]






Again, it is assumed that the receiver node 104 has an implementation that resolves the frequency of the incoming signal, as would be understood in the art.


Also, it is assumed that the velocity vector and direction changes slowly compared to the periodic measurement of Δfnet. Again, under such conditions, the unknown parameters (from the perspective of the receiver node 104) α, |custom character|, and θ are constants.


The net frequency shift for the two-dimensional (2D) moving receiver node 104 approach is shown in FIGS. 4A and 4B for several scenario cases of receiver node location, θ, and transmitter node and receiver node speeds (|custom character|& |custom character|), as well as transmitter node and receiver node velocity direction (α and β). FIG. 4A has different speeds for the transmitter node 102 and receiver node 104 as well as the receiver node location of θ=0. FIG. 4B has the same speed for the transmitter node and receiver node. Similarly, there are three concepts to notice here:

    • The amplitude is consistent with the relative velocity between transmitter node 102 and receiver node 104 [|(|custom character|cos(α)−|custom character|cos(β))|/c*(1e6)].


The net frequency shift is zero when the ‘Null’ angle is in the receiver direction (when ϕ=θ).


The minimum occurs when the ‘Null’ is aligned with the relative velocity direction (when ϕ=angle(|custom character|cos(α)−|custom character|cos(β))).


Again, there is an initial dual point ambiguity with the position, θ, but the transmitter node's 102 speed and velocity vector is known.


Referring now to FIG. 5, while the 2D picture is easier to visualize, the same principles apply to the 3D case. FIG. 5 shows a number of direction sets needed to span 3D and 2D space with different cone sizes (cone sizes are full width). Before diving into the equations, it's worth commenting on the size of the space when including another dimension. For example, when a ‘Null’ step size of 10 degrees was used in the previous examples, it took 36 sets to span the 360 degrees in 2D. Thus, if an exemplary detection angle of 10 degrees is used (e.g., a directional antenna with 10-degree cone) it would take 36 sets to cover the 2D space. The 3D fractional coverage can be computed by calculating the coverage of a cone compared to the full 4 pi steradians. The fraction is equal to the integral







FractionCoverage

3

D

=





0

ConeSize
/
2




r
2



sin

(

θ


)


d


θ



d

φ



4

π


r
2



=


1
-

cos

(

ConeSize
/
2

)


2











FractionCoverage

2

D

=

2

π
/
ConeSize






The number of sets to span the space is shown in FIG. 5 for both the 2D and 3D cases which correlates with discovery time. Except for narrow cone sizes, the number of sets is not drastically greater for the 3D case (e.g., approximately 15 times at 10 degrees, 7.3 time at 20 degrees, and around 4.9 times at 30 degrees). Unless systems are limited to very narrow cone sizes, the discovery time for 3D searches is not overwhelming compared to a 2D search.


Referring now to FIG. 6, a multi-node communications network 100 is disclosed. The multi-node communications network 100 may include multiple communications nodes, e.g., a transmitter (Tx) node 102 and a receiver (Rx) node 104. As shown in FIG. 6 both of the transmitter node 102 and the receiver node 104 are in motion in three dimensions.


The 3D approach to Doppler nulling follows the 2D approach but it is illustrated here with angles and computed vectorially for simplicity.


In three dimensions, it is convenient to express the equations in vector form which is valid for 2 or 3 dimensions. FIG. 6 shows the geometry in 3 dimensions where custom character


is the unit vector pointing to the receiver from the transmitter, and custom character is the unit vector pointing in the ‘Null’ direction defined by the protocol.


The true Doppler shift as seen by the receiver node 104 due to the relative radial velocity which is the projection onto the custom character vector:








Δ


f
DOPPLER


f

=



1
c





V
T



·


-


1
c





V
R



·







The nulling protocol adjusts the transmit node frequency and receiver node frequency due to their velocity projections onto the custom character direction








Δ


f
T


f

=



-

1
c






V
T



·


+


1
c





V
R



·







The net frequency shift seen by the receiver node 104 is the sum of all terms:








Δ


f
net


f

=



1
c





V
T



·


-


1
c





V
R



·


-


1
c





V
T



·


+


1
c





V
R



·







The net frequency shift for the 3D moving receiver node 104 approach is not easy to show pictorially but can be inspected with mathematical equations to arrive at useful conclusions. The first two terms are the Doppler correction (DC) offset and the last two terms are the null dependent terms. Since the custom character is the independent variable, the maximum occurs when (custom charactercustom character) and custom character are parallel and is a minimum when they are antiparallel. Furthermore, the relative speed is determined by the amplitude,






Amplitude
=


1
c





"\[LeftBracketingBar]"




V
R



-


V
T






"\[RightBracketingBar]"







Lastly, the net frequency is zero when the custom character is parallel (i.e., parallel in same direction, as opposed to anti-parallel) to custom character.











Δ


f
net


f

=

0


when


,






1
c





V
T



·


-


1
c





V
R



·



=



1
c





V
T



·


+


1
c





V
R



·



or



,






(




V
T



-


V
R




)

·

=


(



V
T



-


V
R




)

·







For the 3D case:

    • The amplitude is consistent with the relative velocity between transmitter node 102 and receiver node 104 [|custom charactercustom character|/c].
    • The net frequency shift is zero when the ‘Null’ angle is in the receiver node direction, (custom charactercustom charactercustom character=(custom charactercustom charactercustom character).
    • The minimum occurs when the ‘Null’ is aligned with the relative velocity direction.


Referring still to FIG. 6, in some embodiments, the system (e.g., the multi-node communications network 100) may include a transmitter node 102 and a receiver node 104. Each node of the transmitter node 102 and the receiver node 104 may include a communications interface 110 including at least one antenna element 112 and a controller operatively coupled to the communications interface, the controller 106 including one or more processors, wherein the controller 106 has information of own node velocity and own node orientation. The transmitter node 102 and the receiver node 104 may be in motion (e.g., in two dimensions or in three dimensions). The transmitter node 102 and the receiver node 104 may be time synchronized to apply Doppler corrections associated with said node's own motions relative to a common reference frame (e.g., a common inertial reference frame (e.g., a common inertial reference frame in motion or a stationary common inertial reference frame)). The common reference frame may be known to the transmitter node 102 and the receiver node 104 prior to the transmitter node 102 transmitting signals to the receiver node 104 and prior to the receiver node 104 receiving the signals from the transmitter node 102. In some embodiments, the system is a mobile ad-hoc network (MANET) comprising the transmitter node 102 and the receiver node 104.


In some embodiments, the transmitter node 102 and the receiver node 104 are time synchronized via synchronization bits associated with acquisition. For example, the synchronization bits may operate as physical layer overhead.


In some embodiments, the transmitter node 102 is configured to adjust a transmit frequency according to an own speed and an own velocity direction of the transmitter node 102 so as to perform a transmitter-side Doppler correction. In some embodiments, the receiver node 104 is configured to adjust a receiver frequency of the receiver node 104 according to an own speed and an own velocity direction of the receiver node 104 so as to perform a receiver-side Doppler correction. In some embodiments, an amount of adjustment of the adjusted transmit frequency is proportional to a transmitter node 102 velocity projection onto a Doppler null direction, wherein an amount of adjustment of the adjusted receiver frequency is proportional to a receiver node 104 velocity projection onto the Doppler null direction. In some embodiments, the receiver node 102 is configured to determine a relative speed between the transmitter node 102 and the receiver node 104. In some embodiments, the receiver node 104 is configured to determine a direction that the transmitter node 102 is in motion and a velocity vector of the transmitter node 102. In some embodiments, a maximum net frequency shift for a Doppler correction by the receiver node 104 occurs when a resultant vector is parallel to the Doppler null direction, wherein the resultant vector is equal to a velocity vector of the receiver node 104 minus the velocity vector of the transmitter node 102. In some embodiments, a minimum net frequency shift for a Doppler correction by the receiver node 104 occurs when a resultant vector is antiparallel to the Doppler null direction, wherein the resultant vector is equal to a velocity vector of the receiver node 104 minus the velocity vector of the transmitter node 102. In some embodiments, a net frequency shift for a Doppler correction by the receiver node 104 is zero when a vector pointing to the receiver node from the transmitter node 102 is parallel to the Doppler null direction.


Referring now to FIG. 7, an exemplary embodiment of a method 700 according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include performing one or more instances of the method 700 iteratively, concurrently, and/or sequentially. Additionally, for example, at least some of the steps of the method 700 may be performed in parallel and/or concurrently. Additionally, in some embodiments, at least some of the steps of the method 700 may be performed non-sequentially.


A step 702 may include providing a transmitter node and a receiver node, wherein each node of the transmitter node and the receiver node are time synchronized, wherein each node of the transmitter node and the receiver node are in motion, wherein each node of the transmitter node and the receiver node comprises a communications interface including at least one antenna element, wherein each node of the transmitter node and the receiver node further comprises a controller operatively coupled to the communications interface, the controller including one or more processors, wherein the controller has information of own node velocity and own node orientation.


A step 704 may include based at least on the time synchronization, applying, by the transmitter node, Doppler corrections to the transmitter node's own motions relative to a common reference frame.


A step 706 may include based at least on the time synchronization, applying, by the receiver node, Doppler corrections to the receiver node's own motions relative to the common reference frame, wherein the common reference frame is known to the transmitter node and the receiver node prior to the transmitter node transmitting signals to the receiver node and prior to the receiver node receiving the signals from the transmitter node.


Further, the method 700 may include any of the operations disclosed throughout.


The null scanning technique discussed herein illustrates a system and a method for spatial awareness from resolving the temporal spatial characteristics of the transmitter node's 102 radiation. This approach informs the receiver node 104 of the relative speed between the transmitter node 102 and receiver node 104 as well as the transmitter node direction and transmitter node velocity vector. This approach includes scanning through all directions and has a high sensitivity (e.g., low net frequency shift) when the null direction is aligned with the transmitter node direction. This approach can be implemented on a highly sensitive acquisition frame which is typically much more sensitive than explicit data transfers which allow for the ultra-sensitive spatial awareness with relatively low power.


Referring now to FIGS. 8-9B, situational awareness during reduced emissions (e.g., radio silence of at least one node) may be achieved in accordance with one or more embodiments of the present disclosure.


For purposes of the present disclosure, radio silence may mean that no radiations/transmissions are permitted by a node in a radio silence state, such as may be referred to as a complete black out (e.g., no communications, no radar, and the like). However, note that, even during radio silence, situational awareness data (e.g., detection, location, and the like) may sometimes be acquired by nodes in such a radio silence state. For example, optical observations (e.g., line of sight observations by personnel, passive optical cameras, and the like) may be used by nodes in radio silence to detect other nodes (e.g., aircraft, boats, UAVs, or any other system). Further, at least for embodiments of the present disclosure, being in a radio silence state may still allow receiving signals from other nodes to acquire situational awareness. In this regard, a node in radio silence may still learn of other nodes' locations and attributes (e.g., velocity, bearing).


A challenge, however, of operating nodes during a state of reduced emissions, is that it may be difficult to maintain security and keep node attributes (e.g., identity, location, speed) secret from adverse listening nodes (e.g., third party nodes, enemy combatants, and the like) while still maintaining situational awareness. For example, identifying friendly nodes (e.g., allied UAVs) during a state of reduced emissions may be impractical if the friendly nodes are not allowed to transmit any signal at all.


It is contemplated herein that allowing secondary nodes (e.g., expendable and/or lower value assets, UAVs, and the like) to transmit during a state of reduced emissions, while reducing (or eliminating) emissions of primary nodes (e.g., high value assets, battleships, and the like) would provide for situational awareness while still protecting primary nodes.


Further, a challenge of transmitting attributes (e.g., location, speed, bearing, and the like) using typical transmission techniques (e.g., non-doppler nulling methods) is that such techniques may require two-way links (which may give away locations of high value assets. Further, or alternatively, such techniques may require relatively high power to increase SNR and travel distance of the signal, which may increase a likelihood of detection. In addition, or alternatively, attributes (e.g., location data) from such techniques may require more bandwidth and/or time to transmit. In embodiments, using doppler nulling methods may allow for a cure or reduction in at least some of the deficiencies of other techniques stated above. For example, time-synchronized doppler nulling scanning techniques may allow for using far lower strength signals that allow a signal to travel much farther than a signal of typical communication techniques. Further, even if such a signal is received and identified as some sort of a signal by an adverse node, an adverse node may be limited in its ability to determine attributes (e.g., speed, bearing) of the node that sent the signal and thereby have less situational awareness than primary nodes configured to use doppler nulling methods. For example, primary nodes may include knowledge of a common reference frame and time-synchronization protocol for calculating attributes of the node that sent the signal using doppler nulling communication protocols but adverse nodes do not necessarily have such knowledge.


For purposes of the present disclosure, a state of reduced emissions includes any communication protocol, limitation, status, state, directive, order, or the like configured to reduce which types of transmissions are allowed to be used for a period that the state of reduced emissions is in effect. For example, limits on the type, number, power level, or the like of allowed signals (e.g., transmissions) may be imposed during the state of reduced emissions.


Any state of reduced emissions may be used in accordance with embodiments of the present disclosure. In embodiments, a state of reduced emissions includes, but is not limited to, radio silence, Emissions Control (EMCON), and the like.


For example, EMCON may include EMCON communication protocols. For instance, EMCON states may include, but are not necessarily limited to, EMCON DELTA, EMCON CHARLIE, EMCON BETA, and EMCON ALPHA states used in the military (e.g., navy). In embodiments, EMCON DELTA may mean no or minimal emission limitations and may be used during normal operations. In embodiments, EMCON CHARLIE may mean only mission-essential equipment is allowed to transmit. For example, sensors unique to the vessel may be turned off to prevent identification or classification by adverse nodes. In embodiments, EMCON BETA may mean even more limitations than EMCON CHARLIE, but some transmissions may still be allowed. In embodiments, EMCON ALPHA may mean complete radio silence, such that no nodes in such a state are allowed to transmit.



FIGS. 8-9A show a primary node 802 and secondary nodes 804 in various states, including EMCON-based reduced emission states. At least some of the depictions of FIGS. 8-9A are in accordance with one or more embodiments of the present disclosure.


For purposes of the present disclosure, a primary node 802 (e.g., high value asset) may include (or be) a receiving node, Rx node, and the like, and vice versa. For purposes of the present disclosure, a secondary node (e.g., expendable asset) may include (or be) a transmitter node, Tx node, and the like, and vice versa.



FIG. 8 shows a diagrammatic illustration of nodes 802, 804 in an EMCON DELTA state. For example, situational awareness 806 may be determined by a primary node 802 of secondary node attributes when all nodes 802, 804 are permitted to transmit. For instance, the situational awareness 806 may be determined using doppler nulling methods. Note that an advantage of such an EMCON DELTA state may include that the situational awareness 806 (e.g., set of all known nodes and attributes of those nodes) includes knowledge of the secondary nodes 804 by the primary node 802. However, a disadvantage of such an EMCON DELTA state may include that third party (e.g., adverse) nodes may be able to intercept a signal of the primary node 802 and thereby detect the primary node 802.



FIG. 9A shows a diagrammatic illustration of the primary node 802 and the secondary nodes 804 in an EMCON ALPHA state, where no node is transmitting. An advantage of such an EMCON ALPHA state may include that third party (e.g., adverse) nodes may be unable to detect and/or have reduced ability to determine attributes of the primary node 802. However, a disadvantage of such an EMCON DELTA state may include that the primary node 802 may have limited situational awareness 808 of the secondary nodes 804.



FIG. 9B shows a diagrammatic illustration of the primary node 802 and the secondary nodes 804 in an EMCON ALPHA state with secondary node transmissions allowed, according to example embodiments of this disclosure. An advantage of such an EMCON DELTA state with secondary node transmissions may include that the primary node 802 may have situational awareness 810 of the secondary nodes 804, while third party (e.g., adverse) nodes may be unable to detect and/or have reduced ability to determine attributes of the primary node 802.


In embodiments, the signals transmitted by the secondary nodes 804 (e.g., transmitter nodes) to the primary node 802 (e.g., receiver node) include low probability of detection (LPD) signals. For example, the secondary nodes 804 may utilize one-way LPD beacon transmissions.


In embodiments, for an EMCON CHARLIE state, where mission-essential equipment may transmit but at least some sensors are prohibited from transmitting, the advantages and disadvantages may be similar to FIG. 8, for EMCON DELTA. For example, a disadvantage of such an EMCON CHARLIE state may include that third party nodes may be able to intercept a signal of the primary node 802 and thereby detect the primary node 802.


In embodiments, for an EMCON BETA state, the advantages and disadvantages may depend on whether location information is allowed to be transmitted by the primary node 802 and whether such information may be used by a third-party node. Location information may include, but is not limited to, Position Location Information/Precise Position Location Information (PLI/PPLI), such as may be used in military operations.


In embodiments, in an EMCON BETA state where location information is allowed to be transmitted, the advantages and disadvantages may be similar to FIG. 8 showing an EMCON DELTA state. For example, similar to FIG. 8, a disadvantage of an EMCON BETA state with PLI/PPLI allowed may include that third party nodes may be able to intercept a signal of the primary node 802 and thereby detect the primary node 802.


In embodiments, in an EMCON BETA state where location information is not allowed to be transmitted, the advantages and disadvantages may be similar to FIG. 9A showing an EMCON ALPHA state with no transmissions by the second nodes. For example, similar to FIG. 9A, a disadvantage of an EMCON BETA state with location information disallowed may include that the situational awareness 808 does not include knowledge of the secondary nodes 804.


At least some embodiments allow for a high value asset to achieve situational awareness of a variety of nodes (e.g., Tx nodes of various assets such as UAVs, which may be assets that are less critically valuable) while avoiding detection such that a network of such nodes may provide for relatively high protection of high value assets while still providing situational awareness to such high value assets.


CONCLUSION

It is to be understood that embodiments of the methods disclosed herein may include one or more of the steps described herein. Further, such steps may be carried out in any desired order and two or more of the steps may be carried out simultaneously with one another. Two or more of the steps disclosed herein may be combined in a single step, and in some embodiments, one or more of the steps may be carried out as two or more sub-steps. Further, other steps or sub-steps may be carried in addition to, or as substitutes to one or more of the steps disclosed herein.


Although inventive concepts have been described with reference to the embodiments illustrated in the attached drawing figures, equivalents may be employed and substitutions made herein without departing from the scope of the claims. Components illustrated and described herein are merely examples of a system/device and components that may be used to implement embodiments of the inventive concepts and may be replaced with other devices and components without departing from the scope of the claims. Furthermore, any dimensions, degrees, and/or numerical ranges provided herein are to be understood as non-limiting examples unless otherwise specified in the claims.

Claims
  • 1. A system, comprising: a transmitter node and a receiver node, wherein each node of the transmitter node and the receiver node comprises: a communications interface including at least one antenna element; anda controller operatively coupled to the communications interface, the controller including one or more processors, wherein the controller has information of own node velocity and own node orientation;wherein each node of the transmitter node and the receiver node are in motion relative to each other,wherein each node of the transmitter node and the receiver node are time synchronized to apply Doppler corrections associated with said node's own motions relative to a common reference frame,wherein the common reference frame is known to the transmitter node and the receiver node prior to the transmitter node transmitting signals to the receiver node and prior to the receiver node receiving the signals from the transmitter node,wherein the receiver node is configured to be in a state of reduced emissions.
  • 2. The system of claim 1, wherein the state of reduced emissions includes at least one of: a state of radio silence or a state of emissions control (EMCON).
  • 3. The system of claim 1, wherein the signals transmitted by the transmitter node to the receiver node include low probability of detection (LPD) signals.
  • 4. The system of claim 1, wherein the common reference frame is a common inertial reference frame.
  • 5. The system of claim 1, wherein the receiver node is configured to adjust a receiver frequency of the receiver node according to an own speed and an own velocity direction of the receiver node so as to perform a receiver-side Doppler correction.
  • 6. The system of claim 5, wherein an amount of adjustment of an adjusted transmit frequency is proportional to a transmitter node velocity projection onto a Doppler null direction, wherein an amount of adjustment of the receiver frequency is proportional to a receiver node velocity projection onto the Doppler null direction.
  • 7. The system of claim 6, wherein the receiver node is configured to determine a relative speed between the transmitter node and the receiver node.
  • 8. The system of claim 7, wherein the receiver node is configured to determine a direction that the transmitter node is in motion and a velocity vector of the transmitter node.
  • 9. The system of claim 8, wherein a maximum net frequency shift for a Doppler correction by the receiver node occurs when a resultant vector is parallel to the Doppler null direction, wherein the resultant vector is equal to a velocity vector of the receiver node minus the velocity vector of the transmitter node.
  • 10. The system of claim 8, wherein a minimum net frequency shift for a Doppler correction by the receiver node occurs when a resultant vector is antiparallel to the Doppler null direction, wherein the resultant vector is equal to a velocity vector of the receiver node minus the velocity vector of the transmitter node.
  • 11. The system of claim 8, wherein a net frequency shift for a Doppler correction by the receiver node is zero when a vector pointing to the receiver node from the transmitter node is parallel to the Doppler null direction.
  • 12. The system of claim 1, wherein the transmitter node and the receiver node are time synchronized via synchronization bits associated with acquisition.
  • 13. The system of claim 12, wherein the synchronization bits operate as physical layer overhead.
  • 14. The system of claim 1, wherein each node of the transmitter node and the receiver node are in motion in three dimensions.
  • 15. The system of claim 1, wherein each node of the transmitter node and the receiver node are in motion in two dimensions.
  • 16. The system of claim 1, wherein the system is a mobile ad-hoc network (MANET) comprising the transmitter node and the receiver node.
  • 17. A method, comprising: providing a transmitter node and a receiver node, wherein each node of the transmitter node and the receiver node are time synchronized, wherein each node of the transmitter node and the receiver node are in motion relative to each other, wherein each node of the transmitter node and the receiver node comprises a communications interface including at least one antenna element, wherein each node of the transmitter node and the receiver node further comprises a controller operatively coupled to the communications interface, the controller including one or more processors, wherein the controller has information of own node velocity and own node orientation;based at least on the time synchronization, applying, by the transmitter node, Doppler corrections to the transmitter node's own motions relative to a common reference frame; andbased at least on the time synchronization, applying, by the receiver node, Doppler corrections to the receiver node's own motions relative to the common reference frame;wherein the common reference frame is known to the transmitter node and the receiver node prior to the transmitter node transmitting signals to the receiver node and prior to the receiver node receiving the signals from the transmitter node,wherein the receiver node is configured to be in a state of reduced emissions.
  • 18. The method of claim 17, wherein the state of reduced emissions includes at least one of: a state of radio silence or a state of emissions control (EMCON).
  • 19. The method of claim 17, wherein the signals transmitted by the transmitter node to the receiver node include low probability of detection (LPD) signals.
  • 20. The method of claim 17, further comprising: adjusting, by the receiver node, a receiver frequency of the receiver node according to an own speed and an own velocity direction of the receiver node so as to perform a receiver-side Doppler correction;determining, by the receiver node, a relative speed between the transmitter node and the receiver node; anddetermining, by the receiver node, a direction that the transmitter node is in motion and a velocity vector of the transmitter node,wherein an amount of adjustment of an adjusted transmit frequency is proportional to a transmitter node velocity projection onto a Doppler null direction, wherein the amount of the adjustment of the receiver frequency is proportional to a receiver node velocity projection onto the Doppler null direction.
US Referenced Citations (219)
Number Name Date Kind
4134113 Powell Jan 1979 A
4399531 Grande et al. Aug 1983 A
4806934 Magoon Feb 1989 A
5835482 Allen Nov 1998 A
5898902 Tuzov Apr 1999 A
6072425 Vopat Jun 2000 A
6115394 Balachandran et al. Sep 2000 A
6195403 Anderson et al. Feb 2001 B1
6496940 Horst et al. Dec 2002 B1
6611773 Przydatek et al. Aug 2003 B2
6662229 Passman et al. Dec 2003 B2
6721290 Kondylis et al. Apr 2004 B1
6744740 Chen Jun 2004 B2
6845091 Ogier et al. Jan 2005 B2
7023818 Elliott Apr 2006 B1
7171476 Maeda et al. Jan 2007 B2
7242671 Li et al. Jul 2007 B2
7299013 Rotta et al. Nov 2007 B2
7417948 Sjöblom Aug 2008 B2
7558575 Losh et al. Jul 2009 B2
7573835 Sahinoglu et al. Aug 2009 B2
7633921 Thubert et al. Dec 2009 B2
7679551 Petovello et al. Mar 2010 B2
7698463 Ogier et al. Apr 2010 B2
7719989 Yau May 2010 B2
7729240 Crane et al. Jun 2010 B1
7787450 Chan et al. Aug 2010 B1
7881229 Weinstein et al. Feb 2011 B2
7903662 Cohn Mar 2011 B2
7983239 Weinstein et al. Jul 2011 B1
8036224 Axelsson et al. Oct 2011 B2
8121741 Taft et al. Feb 2012 B2
8138626 Jonsson et al. Mar 2012 B2
8159954 Larsson et al. Apr 2012 B2
8218550 Axelsson et al. Jul 2012 B2
8223660 Allan et al. Jul 2012 B2
8223868 Lee Jul 2012 B2
8341289 Hellhake et al. Dec 2012 B2
8396686 Song et al. Mar 2013 B2
8490175 Barton et al. Jul 2013 B2
8553560 Axelsson et al. Oct 2013 B2
8630291 Shaffer et al. Jan 2014 B2
8638008 Baldwin et al. Jan 2014 B2
8717230 Fischi et al. May 2014 B1
8717935 Lindem, III et al. May 2014 B2
8732338 Hutchison et al. May 2014 B2
8798034 Aggarwal et al. Aug 2014 B2
8824444 Berenberg et al. Sep 2014 B1
8849596 Ting et al. Sep 2014 B2
8867427 Taori et al. Oct 2014 B2
8913543 Zainaldin Dec 2014 B2
8942197 Rudnick et al. Jan 2015 B2
8964739 Wisehart Feb 2015 B1
8989326 An et al. Mar 2015 B2
9179475 Koleszar et al. Nov 2015 B2
9213387 King et al. Dec 2015 B2
9246795 Madaiah et al. Jan 2016 B2
9294159 Duerksen Mar 2016 B2
9304198 Doerry et al. Apr 2016 B1
9325513 Liu et al. Apr 2016 B2
9345029 Monte et al. May 2016 B2
9435884 Inoue Sep 2016 B2
9516513 Saegrov et al. Dec 2016 B2
9544162 Vasseur et al. Jan 2017 B2
9628285 Császár Apr 2017 B2
9713061 Ruiz et al. Jul 2017 B2
9719803 Ratcliff et al. Aug 2017 B2
9858822 Gentry Jan 2018 B1
9979635 Hellhake et al. May 2018 B2
10067199 Eldridge et al. Sep 2018 B2
10097469 Hui et al. Oct 2018 B2
10098051 Mosko et al. Oct 2018 B2
10205654 Choi et al. Feb 2019 B2
10236648 Irons et al. Mar 2019 B2
10257655 Cody Apr 2019 B2
10382897 Lanes et al. Aug 2019 B1
10455521 Hudson et al. Oct 2019 B2
10459074 Omer et al. Oct 2019 B1
10484837 Navalekar et al. Nov 2019 B2
10531500 Ulinskas Jan 2020 B2
10601684 Hashmi et al. Mar 2020 B2
10601713 Turgeman et al. Mar 2020 B1
10609622 Bader et al. Mar 2020 B2
10785672 Kwan et al. Sep 2020 B2
10798053 Nolan et al. Oct 2020 B2
10873429 Kwon et al. Dec 2020 B1
10931570 Kwon et al. Feb 2021 B1
10965584 Kwon et al. Mar 2021 B1
10979348 Kwon et al. Apr 2021 B1
10993201 Luecke Apr 2021 B2
10999778 Kwon et al. May 2021 B1
11071039 Fallon et al. Jul 2021 B2
11082324 Ramanathan et al. Aug 2021 B2
11129078 Yates et al. Sep 2021 B2
11258520 Goergen et al. Feb 2022 B2
11284295 Kwon et al. Mar 2022 B1
11290942 Kwon et al. Mar 2022 B2
11500111 Frederiksen et al. Nov 2022 B2
11528675 Nagaraja et al. Dec 2022 B2
11977173 Loren et al. May 2024 B2
12050279 Stevens et al. Jul 2024 B2
12111406 Sorsby et al. Oct 2024 B2
20020018448 Amis et al. Feb 2002 A1
20030035589 Kim Feb 2003 A1
20030151513 Herrmann et al. Aug 2003 A1
20040012859 Minefuji Jan 2004 A1
20040028016 Billhartz Feb 2004 A1
20040123228 Kikuchi et al. Jun 2004 A1
20040213239 Lin et al. Oct 2004 A1
20040246902 Weinstein et al. Dec 2004 A1
20050025076 Chaudhuri et al. Feb 2005 A1
20050272379 Rotta Dec 2005 A1
20060010170 Lashley et al. Jan 2006 A1
20060056421 Zaki Mar 2006 A1
20060176847 Chen et al. Aug 2006 A1
20070086541 Moon et al. Apr 2007 A1
20070097880 Rajsic May 2007 A1
20070109979 Fu et al. May 2007 A1
20070223497 Elson et al. Sep 2007 A1
20070299950 Kulkarni Dec 2007 A1
20080107034 Jetcheva et al. May 2008 A1
20080117904 Radha et al. May 2008 A1
20080219204 Lee et al. Sep 2008 A1
20080273582 Gaal et al. Nov 2008 A1
20080291945 Luo Nov 2008 A1
20080310325 Yang Dec 2008 A1
20090086713 Luo Apr 2009 A1
20090290572 Gonia et al. Nov 2009 A1
20100074101 Skalecki et al. Mar 2010 A1
20100074141 Nguyen Mar 2010 A1
20100111065 Noh et al. May 2010 A1
20110006913 Chen et al. Jan 2011 A1
20110013487 Zhou et al. Jan 2011 A1
20110188378 Collins et al. Aug 2011 A1
20110312279 Tsai et al. Dec 2011 A1
20120092208 LeMire et al. Apr 2012 A1
20120098699 Calmettes et al. Apr 2012 A1
20130006834 Waelbroeck et al. Jan 2013 A1
20130069834 Duerksen Mar 2013 A1
20130094366 Lee et al. Apr 2013 A1
20130100942 Rudnick et al. Apr 2013 A1
20130195017 Jamadagni et al. Aug 2013 A1
20130197835 Jonsson et al. Aug 2013 A1
20130250808 Hui et al. Sep 2013 A1
20140017196 Han et al. Jan 2014 A1
20140018097 Goldstein Jan 2014 A1
20140188990 Fulks Jul 2014 A1
20140229519 Dietrich et al. Aug 2014 A1
20140236483 Beaurepaire et al. Aug 2014 A1
20140258201 Finlow-Bates Sep 2014 A1
20150010153 Robertson Jan 2015 A1
20150025818 Das et al. Jan 2015 A1
20150222479 Kim et al. Aug 2015 A1
20150296335 Joshi et al. Oct 2015 A1
20150326689 Leppänen et al. Nov 2015 A1
20160139241 Holz et al. May 2016 A1
20160150465 Jung et al. May 2016 A1
20160187458 Shah et al. Jun 2016 A1
20160189381 Rhoads Jun 2016 A1
20160373997 Petersen et al. Dec 2016 A1
20170111266 Ko Apr 2017 A1
20170134227 Song et al. May 2017 A1
20170149658 Rimhagen et al. May 2017 A1
20170168163 Small Jun 2017 A1
20180013665 Ko et al. Jan 2018 A1
20180026475 Gelonese et al. Jan 2018 A1
20180098263 Luo et al. Apr 2018 A1
20180146489 Jin et al. May 2018 A1
20180234336 Schumm et al. Aug 2018 A1
20180302807 Chen et al. Oct 2018 A1
20180317226 Sakoda Nov 2018 A1
20190098625 Johnson et al. Mar 2019 A1
20190222302 Lin et al. Jul 2019 A1
20190251848 Sivanesan et al. Aug 2019 A1
20190317207 Schroder et al. Oct 2019 A1
20190349172 Zhang Nov 2019 A1
20200011968 Hammes et al. Jan 2020 A1
20200052997 Ramanathan et al. Feb 2020 A1
20200092949 Donepudi et al. Mar 2020 A1
20200196309 Amouris Jun 2020 A1
20200236607 Zhu et al. Jul 2020 A1
20200292706 Hexsel et al. Sep 2020 A1
20200350983 Alasti et al. Nov 2020 A1
20200371247 Marmet Nov 2020 A1
20200396708 Bharadwaj et al. Dec 2020 A1
20210083917 Konishi et al. Mar 2021 A1
20210153097 Du et al. May 2021 A1
20210201044 Herdade et al. Jul 2021 A1
20210302956 Sudhakaran et al. Sep 2021 A1
20210359752 Wang et al. Nov 2021 A1
20210385879 Mahalingam et al. Dec 2021 A1
20220030511 Wang et al. Jan 2022 A1
20220038139 Löwenmark et al. Feb 2022 A1
20220060959 Atungsiri et al. Feb 2022 A1
20220069901 Tian et al. Mar 2022 A1
20220085892 Sorge Mar 2022 A1
20220086818 Nam et al. Mar 2022 A1
20220094634 Kwon et al. Mar 2022 A1
20220143428 Goetz et al. May 2022 A1
20220159741 Hoang et al. May 2022 A1
20220173799 Wigard et al. Jun 2022 A1
20220198351 Beaurepaire et al. Jun 2022 A1
20220360320 Miao et al. Nov 2022 A1
20220368410 Ma et al. Nov 2022 A1
20230057666 Kwon et al. Feb 2023 A1
20230111316 Ma et al. Apr 2023 A1
20230118153 Amorim et al. Apr 2023 A1
20230133633 Park et al. May 2023 A1
20230135149 Krishnamurthy et al. May 2023 A1
20230280435 Schatz et al. Sep 2023 A1
20230280436 Loren et al. Sep 2023 A1
20230280437 Kwon et al. Sep 2023 A1
20230288518 Graf et al. Sep 2023 A1
20230288519 Schatz et al. Sep 2023 A1
20230288521 Kwon et al. Sep 2023 A1
20230296716 Dean et al. Sep 2023 A1
20230379008 Sorsby et al. Nov 2023 A1
20230393229 Loren et al. Dec 2023 A1
20240151800 Stevens et al. May 2024 A1
Foreign Referenced Citations (50)
Number Date Country
101330448 Dec 2008 CN
101465793 Jun 2009 CN
101330448 Dec 2010 CN
101465793 Feb 2011 CN
101686179 Jan 2013 CN
103067286 Jun 2016 CN
107645417 Jan 2018 CN
110234147 Sep 2019 CN
115085799 Sep 2022 CN
102010010935 Sep 2011 DE
0908022 Apr 1999 EP
1912392 Apr 2008 EP
2208084 Nov 2011 EP
2743726 Jun 2014 EP
2466964 Dec 2017 EP
3026961 Aug 2020 EP
2542491 Mar 2017 GB
2568122 Nov 2019 GB
4290684 Jul 2009 JP
5164157 Mar 2013 JP
1020040107702 Dec 2004 KR
100568976 Apr 2006 KR
1020060078814 Jul 2006 KR
101231707 Feb 2013 KR
1020160071964 Jun 2016 KR
2008157609 Mar 2009 WO
2012062091 May 2012 WO
2012165938 Dec 2012 WO
2015114077 Aug 2015 WO
2015143604 Oct 2015 WO
2017101575 Jun 2017 WO
2018077864 May 2018 WO
2019045767 Mar 2019 WO
2020117427 Jun 2020 WO
2020165627 Aug 2020 WO
2020220233 Nov 2020 WO
2021251902 Dec 2021 WO
2022003386 Jan 2022 WO
2022202858 Sep 2022 WO
2022221429 Oct 2022 WO
2022232336 Nov 2022 WO
2022233042 Nov 2022 WO
2022233314 Nov 2022 WO
2023001520 Jan 2023 WO
2023030622 Mar 2023 WO
2023047336 Mar 2023 WO
2023057655 Apr 2023 WO
2023067552 Apr 2023 WO
2023068990 Apr 2023 WO
2023081918 May 2023 WO
Non-Patent Literature Citations (19)
Entry
Seddigh M et al: “Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks”, vol. 13, No. 1, Jan. 1, 2002, pp. 14-25.
Turgut D. et al: “Optimizing clustering algorithm in mobile ad hoc networks using simulated annealing”, vol. 3, Mar. 16, 20023, pp. 1492-1497.
U.S. Appl. No. 17/233,107, filed Apr. 16, 2021, Eric J. Loren.
U.S. Appl. No. 16/987,671, filed Aug. 7, 2021, Kwon et al.
U.S. Appl. No. 17/233,107, filed Apr. 16, 2022, Loren et al.
U.S. Appl. No. 17/857,920, filed Jul. 5, 2022, Loren et al.
Peng Wang, et al., “Convergence of Satellite and Terrestrial Networks: A Comprehensive Survey networks” IEEEAcess; vol. 4, Dec. 31, 2019.
Pulak K. Chowdhury, et al. “Handover Schemes in Satellite Networks: State-of-the-Art and Future Research Directions” 4th Quarter 2006, vol. 8, No. 4, Oct. 1, 2006.
U.S. Appl. No. 17/408,156, filed Aug. 20, 2021, Tj T. Kwon.
U.S. Appl. No. 17/534,061, filed Nov. 23, 2021, William B. Sorsby.
U.S. Appl. No. 17/857,920, filed Jul. 5, 2022, Eric J. Loren.
U.S. Appl. No. 63/344,445, filed May 20, 2022, Eric J. Loren.
U.S. Appl. No. 16/369,398, filed Mar. 29, 2019, Kwon.
U.S. Appl. No. 17/541,703, filed Dec. 3, 2021, Kwon et al.
Extended Search Report for European Application No. 21188737.7 dated Dec. 10, 2021, 8 pages.
Extended Search Report in European Application No. 21190368.7 dated Jan. 5, 2022, 10 pages.
Kwon et al., “Efficient Flooding with Passive Clustering (PC) in Ad Hoc Networks”, Computer Communication Review. 32. 44-56. 10.1145/510726.510730, Aug. 11, 2003, 13 pages.
Martorella, M. et al., Ground Moving Target Imaging via SDAP-ISAR Processing: Review and New Trends. Sensors 2021, 21, 2391. https://doi.org/10.3390/s21072391.
Yi et al., “Passive Clustering in Ad Hoc Networks (PC)”, Url: https://tools.ietf,org/html/drafts-yi-manet-pc-00, Nov. 14, 2001, 31 pages.
Related Publications (1)
Number Date Country
20230379007 A1 Nov 2023 US
Provisional Applications (2)
Number Date Country
63344445 May 2022 US
63400138 Aug 2022 US
Continuation in Parts (2)
Number Date Country
Parent 17940898 Sep 2022 US
Child 17941907 US
Parent 17857920 Jul 2022 US
Child 17940898 US