The present invention generally relates to displays for use in medical procedures, and more specifically, to a six degree of freedom alignment display that includes indicia of the six degrees of freedom to assist in performing medical procedures.
Image guided medical and surgical procedures utilize patient images obtained prior to or during a medical procedure to guide a physician performing the procedure. Recent advances in imaging technology, especially in imaging technologies that produce highly-detailed, computer-generated two-dimensional and three-dimensional images, such as computed tomography (CT), magnetic resonance imaging (MRI), isocentric C-arm fluoroscopic imaging or two and three-dimensional fluoroscopes or ultrasounds have increased the interest in image guided medical procedures.
During these image guided medical procedures, the area of interest of the patient that has been imaged is displayed on a two-dimensional display. Surgical instruments that are used during this medical procedure are tracked and superimposed onto this two-dimensional display to show the location of the surgical instrument relative to the area of interest in the body. However, these two-dimensional displays are not capable of providing either five or six degrees of freedom information of the instrument or other devices navigated in the body, which may be information in certain medical procedures.
Other types of navigation systems operate as an image-less system, where an image of the body is not captured by an imaging device prior to the medical procedure. With this type of procedure, the system may use a probe to contact certain landmarks in the body, such as landmarks on bone, where the system generates either a two-dimensional or three-dimensional model of the area of interest based upon these contacts. This way, when the surgical instrument or other object is tracked relative to this area, they can be superimposed on this model. Here again, however, the display that illustrates the tracked medical instrument in relation to this model is not capable of providing five or six degree of freedom information.
Moreover, in certain medical procedures providing either a five or six degree of freedom display, will greatly assist the surgeon in the medical procedure. For example, this type of information may be helpful with minimally invasive procedures where clearance and viewing of the area of interest may not be relatively available. Therefore, during these types of procedures, the surgeon may not clearly know where the tip or orientation of the instrument may be relative to the patient. With flexible instruments, such as catheters, it makes it even more difficult to estimate where the tip or orientation of the catheter may be during these types of procedures.
Still other procedures, such as orthopedic procedures, employ implants that include multiple components that articulate with one another. Placement of one component of the implant relative to another component of the implant is critical. If a display can provide both targeting and six degree of freedom information in relation to these mutually dependent components, these procedures may be improved. For example, each implant component may require a specific orientation relative to its corresponding implant component to provide for the proper placement and proper range of motion. With these types of procedures and implants, it is generally difficult to accurately locate the components in the five or six degrees of freedom position. Since the orientation and location of these individual components is dependent upon one another to be effective, these components must be properly positioned and aligned in order to improve the life of the implant, increase the range of motion and provide superior patient outcomes.
It is, therefore, desirable to provide a display, which can provide five or six degrees of freedom alignment information regarding tracked surgical instruments and implants, particularly implants or devices that have several components each having a specific orientation dependent upon one another. It is, therefore, an object of the present invention to provide such a display to assist in medical procedures.
In accordance with the teachings of the present invention, a six degree of freedom alignment display that includes indicia of at least five degree of freedom information to assist in performing a medical procedure is disclosed. The six degree of freedom display assists in various types of medical procedures, including orthopedic procedures, neurovascular, intravascular, spinal, cardiovascular procedures, soft tissue procedures, etc.
In an embodiment, a display for use in guiding a medical device to a target in a patient during a medical procedure includes indicia. This indicia includes first, second, third, fourth, and fifth indicia illustrated on the display that identifies first, second, third, fourth, and fifth degree of freedom information. These indicias are illustrated on the display to assist in guiding the medical device to the target.
In another embodiment, a navigation system for use in guiding a medical device to a target in a patient during a medical procedure includes a tracking sensor, a tracking device and a display. The tracking sensor is associated with the medical device and is operable to be used to track the medical device. The tracking device is operable to track the medical device with the tracking sensor. The display includes indicia illustrating at least five degree of freedom information and indicia of the medical device in relation to the at least five degree of freedom information.
In yet another embodiment, a method for navigation and displaying a medical device during a medical procedure is provided. This method includes selecting a target for navigating the medical device to, displaying the target in a coordinate system, tracking the medical device, and displaying the medical device in relation to the target with at least five degree of freedom information.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
a and 2b are diagrams representing undistorted and distorted views of a fluoroscopic C-arm imaging device;
a and 3b is a logic block diagram illustrating a method for employing the display according to the teachings of the present invention;
a-4e illustrate a medical procedure employing the display according to the teachings of the present invention;
a-8g illustrate another medical procedure employing the display according to the teachings of the present invention; and
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. Moreover, while the invention is discussed in detail below in regard to an orthopedic surgical procedure, the display of the present invention may be used with any type of medical procedure, including orthopedic, cardiovascular, neurovascular, soft tissue procedures, or any other medical procedures.
The navigation system 12 includes an imaging device 16 that is used to acquire pre-operative or real-time images of the patient 14. The imaging device 16 is a fluoroscopic C-arm x-ray imaging device that includes a C-arm 18, an x-ray source 20, an x-ray receiving section 22, an optional calibration and tracking target 24 and optional radiation sensors 26. The optional calibration and tracking target 24 includes calibration markers 28 (see
In operation, the imaging device 16 generates x-rays from the x-ray source 20 that propagate through the patient 14 and calibration and/or tracking target 24, into the x-ray receiving section 22. The receiving section 22 generates an image representing the intensities of the received x-rays. Typically, the receiving section 22 includes an image intensifier that first converts the x-rays to visible light and a charge coupled device (CCD) video camera that converts the visible light into digital images. Receiving section 22 may also be a digital device that converts x-rays directly to digital images, thus potentially avoiding distortion introduced by first converting to visible light. With this type of digital C-arm, which is generally a flat panel device, the calibration and/or tracking target 24 and the calibration process discussed below may be eliminated. Also, the calibration process may be eliminated for different types of medical procedures. Alternatively, the imaging device 16 may only take a single image with the calibration and tracking target 24 in place. Thereafter, the calibration and tracking target 24 may be removed from the line-of-sight of the imaging device 16.
Two dimensional fluoroscopic images taken by the imaging device 16 are captured and stored in the C-arm controller 30. These images are forwarded from the C-arm controller 30 to a controller or work station 36 having the display 10 that may either include a single display 10 or a dual display 10 and a user interface 38. The work station 36 provides facilities for displaying on the display 10, saving, digitally manipulating, or printing a hard copy of the received images, as well as the five or six degree of freedom display. The user interface 38, which may be a keyboard, joy stick, mouse, touch pen, touch screen or other suitable device allows a physician or user to provide inputs to control the imaging device 16, via the C-arm controller 30, or adjust the display settings, such as safe zones of the display 10, further discussed herein. The work station 36 may also direct the C-arm controller 30 to adjust the rotational axis 34 of the C-arm 18 to obtain various two-dimensional images along different planes in order to generate representative two-dimensional and three-dimensional images. When the x-ray source 20 generates the x-rays that propagate to the x-ray receiving section 22, the radiation sensors 26 sense the presence of radiation, which is forwarded to the C-arm controller 30, to identify whether or not the imaging device 16 is actively imaging. This information is also transmitted to a coil array controller 48, further discussed herein. Alternatively, a person or physician may manually indicate when the imaging device 16 is actively imaging or this function can be built into the x-ray source 20, x-ray receiving section 22, or the control computer 30.
Fluoroscopic C-arm imaging devices 16 that do not include a digital receiving section 22 generally require the calibration and/or tracking target 24. This is because the raw images generated by the receiving section 22 tend to suffer from undesirable distortion caused by a number of factors, including inherent image distortion in the image intensifier and external electromagnetic fields. An empty undistorted or ideal image and an empty distorted image are shown in
Intrinsic calibration, which is the process of correcting image distortion in a received image and establishing the projective transformation for that image, involves placing the calibration markers 28 in the path of the x-ray, where the calibration markers 28 are opaque or semi-opaque to the x-rays. The calibration markers 28 are rigidly arranged in pre-determined patterns in one or more planes in the path of the x-rays and are visible in the recorded images. Because the true relative position of the calibration markers 28 in the recorded images are known, the C-arm controller 30 or the work station or computer 36 is able to calculate an amount of distortion at each pixel in the image (where a pixel is a single point in the image). Accordingly, the computer or work station 36 can digitally compensate for the distortion in the image and generate a distortion-free or at least a distortion improved image 40 (see
While the fluoroscopic C-arm imaging device 16 is shown in
The navigation system 12 further includes an electromagnetic navigation or tracking system 44 that includes a transmitter coil array 46, the coil array controller 48, a navigation probe interface 50, an instrument 52 having an electromagnetic tracker and a dynamic reference frame 54. It should further be noted that the entire tracking system 44 or parts of the tracking system 44 may be incorporated into the imaging device 16, including the work station 36 and radiation sensors 26. Incorporating the tracking system 44 will provide an integrated imaging and tracking system. Any combination of these components may also be incorporated into the imaging system 16, which again can include a fluoroscopic C-arm imaging device or any other appropriate imaging device. Obviously, if an image-less procedure is performed, the navigation and tracking system 44 will be a stand alone unit.
The transmitter coil array 46 is shown attached to the receiving section 22 of the C-arm 18. However, it should be noted that the transmitter coil array 46 may also be positioned at any other location as well, particularly if the imaging device 16 is not employed. For example, the transmitter coil array 46 may be positioned at the x-ray source 20, within the OR table 56 positioned below the patient 14, on siderails associated with the OR table 56, or positioned on the patient 14 in proximity to the region being navigated, such as by the patient's pelvic area. The transmitter coil array 46 includes a plurality of coils that are each operable to generate distinct electromagnetic fields into the navigation region of the patient 14, which is sometimes referred to as patient space. Representative electromagnetic systems are set forth in U.S. Pat. No. 5,913,820, entitled “Position Location System,” issued Jun. 22, 1999 and U.S. Pat. No. 5,592,939, entitled “Method and System for Navigating a Catheter Probe,” issued Jan. 14, 1997, each of which are hereby incorporated by reference.
The transmitter coil array 46 is controlled or driven by the coil array controller 48. The coil array controller 48 drives each coil in the transmitter coil array 46 in a time division multiplex or a frequency division multiplex manner. In this regard, each coil may be driven separately at a distinct time or all of the coils may be driven simultaneously with each being driven by a different frequency. Upon driving the coils in the transmitter coil array 46 with the coil array controller 48, electromagnetic fields are generated within the patient 14 in the area where the medical procedure is being performed, which is again sometimes referred to as patient space. The electromagnetic fields generated in the patient space induces currents in sensors 58 positioned in the instrument 52, further discussed herein. These induced signals from the instrument 52 are delivered to the navigation probe interface 50 and subsequently forwarded to the coil array controller 48. The navigation probe interface 50 provides all the necessary electrical isolation for the navigation system 12. The navigation probe interface 50 also includes amplifiers, filters and buffers required to directly interface with the sensors 58 in instrument 52. Alternatively, the instrument 52 may employ a wireless communications channel as opposed to being coupled directly to the navigation probe interface 50.
The instrument 52 is equipped with at least one, and may include multiple localization sensors 58. In this regard, the instrument 52 may include an orthogonal pair coil sensor 58 or a tri-axial coil sensor 58 or multiple single coil sensors 58 positioned about the instrument 52. Here again, the instrument 52 may be any type of medical instrument or implant. For example, the instrument may be a catheter that can be used to deploy a medical lead, be used for tissue ablation, or be used to deliver a pharmaceutical agent. The instrument 52 may also be an orthopedic instrument, used for an orthopedic procedure, such as reamers, impactors, cutting blocks, saw blades, drills, etc. The instrument 52 may also be any type of neurovascular instrument, cardiovascular instrument, soft tissue instrument, etc. Finally, the instrument 52 may be an implant that is tracked, as well as any other type of device positioned and located within the patient 14. These implants can include orthopedic implants, neurovascular implants, cardiovascular implants, soft tissue implants, or any other devices that are implanted into the patient 14. Particularly, implants that are formed from multiple components where the location and orientation of each component is dependent upon the location and orientation of the other component, such that each of these components can be tracked or navigated by the navigation and tracking system 44 to be displayed on the six degree of freedom display 10.
In an alternate embodiment, the electromagnetic sources or generators may be located within the instrument 52 and one or more receiver coils may be provided externally to the patient 14 forming a receiver coil array similar to the transmitter coil array 46. In this regard, the sensor coils 58 would generate electromagnetic fields, which would be received by the receiving coils in the receiving coil array similar to the transmitter coil array 46. Other types of localization or tracking may also be used with other types of navigation systems, which may include an emitter, which emits energy, such as light, sound, or electromagnetic radiation, and a receiver that detects the energy at a position away from the emitter. This change in energy, from the emitter to the receiver, is used to determine the location of the receiver relative to the emitter. These types of localization systems include conductive, active optical, passive optical, ultrasound, sonic, electromagnetic, etc. An additional representative alternative localization and tracking system is set forth in U.S. Pat. No. 5,983,126, entitled “Catheter Location System and Method,” issued Nov. 9, 1999, which is hereby incorporated by reference. Alternatively, the localization system may be a hybrid system that includes components from various systems.
The dynamic reference frame 54 of the electromagnetic tracking system 44 is also coupled to the navigation probe interface 50 to forward the information to the coil array controller 48. The dynamic reference frame 54 is a small magnetic field detector or any other type of detector/transmitter that is designed to be fixed to the patient 14 adjacent to the region being navigated so that any movement of the patient 14 is detected as relative motion between the transmitter coil array 46 and the dynamic reference frame 54. This relative motion is forwarded to the coil array controller 48, which updates registration correlation and maintains accurate navigation, further discussed herein. The dynamic reference frame 54 can be configured as a pair of orthogonally oriented coils, each having the same center or may be configured in any other non-coaxial coil configuration. The dynamic reference frame 54 may be affixed externally to the patient 14, adjacent to the region of navigation, such as the patient's pelvic region, as shown in
Alternatively, the dynamic reference frame 54 may be internally attached, for example, to the pelvis or femur of the patient using bone screws that are attached directly to the bone. This provides increased accuracy since this will track any motion of the bone. Moreover, multiple dynamic reference frames 54 may also be employed to track the position of two bones relative to a joint. For example, one dynamic reference frame 54 may be attached to the pelvis, while a second dynamic reference frame 54 may be attached to the femur during hip arthroplasty. In this way, motion of the femur relative to the pelvis may be detected by the dual dynamic reference frames 54. An exemplary dynamic reference frame 54 and fiducial marker 60, is set forth in U.S. Pat. No. 6,381,485, entitled “Registration of Human Anatomy Integrated for Electromagnetic Localization,” issued Apr. 30, 2002, which is hereby incorporated by reference.
Briefly, the navigation system 12 operates as follows. The navigation system 12 creates a translation map between all points in the radiological image generated from the imaging device 16 and the corresponding points in the patient's anatomy in patient space. After this map is established, whenever a tracked instrument 52 is used, the work station 36 in combination with the coil array controller 48 and the C-arm controller 30 uses the translation map to identify the corresponding point on the pre-acquired image, which is displayed on display 10. This identification is known as navigation or localization. An icon representing the localized point or instrument is shown on the display 10, along with five or six degrees of freedom indicia.
To enable navigation, the navigation system 12 must be able to detect both the position of the patient's anatomy 14 and the position of the surgical instrument 52. Knowing the location of these two items allows the navigation system 12 to compute and display the position of the instrument 52 in relation to the patient 14. The tracking system 44 is employed to track the instrument 52 and the anatomy simultaneously. While the display 10 is configured to show the instrument with six degree of freedom accuracy.
The tracking system 44 essentially works by positioning the transmitter coil array 46 adjacent to the patient space to generate a low-energy magnetic field generally referred to as a navigation field. Because every point in the navigation field or patient space is associated with a unique field strength, the electromagnetic tracking system 44 can determine the position of the instrument 52 by measuring the field strength at the sensor 58 location. The dynamic reference frame 54 is fixed to the patient 14 to identify the location of the patient 14 in the navigation field. The electromagnetic tracking system 44 continuously recomputes the relative position of the dynamic reference frame 54 and the instrument 52 during localization and relates this spatial information to patient registration data to enable image guidance of the instrument 52 within the patient 14.
Patient registration is the process of determining how to correlate the position of the instrument 52 on the patient 14 to the position on the diagnostic, pre-acquired, or real-time images. To register the patient 14, the physician or user will select and store particular points from the pre-acquired images and then touch the corresponding points on the patient's anatomy with a pointer probe 62. The navigation system 12 analyzes the relationship between the two sets of points that are selected and computes a match, which correlates every point in the image data with its corresponding point on the patient's anatomy or the patient space. The points that are selected to perform registration are the fiducial arrays or landmarks 60. Again, the landmarks or fiducial points 60 are identifiable on the images and identifiable and accessible on the patient 14. The landmarks 60 can be artificial landmarks 60 that are positioned on the patient 14 or anatomical landmarks 60 that can be easily identified in the image data. The system 12 may also perform 2D to 3D registration by utilizing the acquired 2D images to register 3D volume images by use of contour algorithms, point algorithms or density comparison algorithms, as is known in the art.
In order to maintain registration accuracy, the navigation system 12 continuously tracks the position of the patient 14 during registration and navigation. This is necessary because the patient 14, dynamic reference frame 54, and transmitter coil array 46 may all move during the procedure, even when this movement is not desired. Therefore, if the navigation system 12 did not track the position of the patient 14 or area of the anatomy, any patient movement after image acquisition would result in inaccurate navigation within that image. The dynamic reference frame 54 allows the electromagnetic tracking device 44 to register and track the anatomy. Because the dynamic reference frame 54 is rigidly fixed to the patient 14, any movement of the anatomy or the transmitter coil array 46 is detected as the relative motion between the transmitter coil array 46 and the dynamic reference frame 54. This relative motion is communicated to the coil array controller 48, via the navigation probe interface 50, which updates the registration correlation to thereby maintain accurate navigation.
It should also be understood that localization and registration data may be specific to multiple targets. For example, should a spinal procedure be conducted, each vertebra may be independently tracked and the corresponding image registered to each vertebra. In other words, each vertebra would have its own translation map between all points in the radiological image and the corresponding points in the patient's anatomy in patient space in order to provide a coordinate system for each vertebra being tracked. The tracking system 44 would track any motion in each vertebra by use of a tracking sensor 58 associated with each vertebra. In this way, dual displays 10 may be utilized, further discussed herein, where each display tracks a corresponding vertebra using its corresponding translation map and a surgical implant or instrument 52 may be registered to each vertebra and displayed on the display 10 further assisting an alignment of an implant relative to two articulating or movable bones. Moreover, each separate display in the dual display 10 may superimpose the other vertebra so that it is positioned adjacent to the tracked vertebra thereby adding a further level of information on the six degree of freedom display 10.
As an alternative to using the imaging system 16, in combination with the navigation and tracking system 44, the five or six degree of freedom alignment display 10 can be used in an imageless manner without the imaging system 16. In this regard, the navigation and tracking system 44 may only be employed and the probe 62 may be used to contact or engage various landmarks on the patient. These landmarks can be bony landmarks on the patient, such that upon contacting a number of landmarks for each bone, the workstation 36 can generate a three-dimensional model of the bones. This model is generated based upon the contacts and/or use of atlas maps. The workstation 36 may also generate a center axis of rotation for the joint or planes, based upon the probe contacts. Alternatively, the tracking sensor 58 may be placed on the patient's anatomy and the anatomy moved and correspondingly tracked by the tracking system 44. For example, placing a tracking sensor 58 on the femur and fixing the pelvis in place of a patient and rotating the leg while it is tracked with the tracking system 44 enables the work station 36 to generate a center of axis of the hip joint by use of kinematics and motion analysis algorithms, as is known in the art. If the pelvis is not fixed, another tracking sensor 58 may be placed on the pelvis to identify the center of axis of the hip joint. If a tracking sensor 58 is placed on the femur and a tracking sensor 58 is placed on the tibia, upon moving this portion of the anatomy, a center of axis of the knee joint may be identified. Likewise, by placing a separate tracking sensor 58 on two adjacent vertebra and articulating the spine, the center of axis of the spinal region can also be identified. In this way, a target and/or model based on the center of the particular joint may be designated and identified on the six degree of freedom display 10. Movement of the instrument or implant 52 may then be tracked in relation to this target and/or model to properly align the instrument or implant 52 relative to the target and/or model.
Turning to
If an image-less medical procedure is selected, the method begins at block 72 identifying that an image-less based medical procedure will be performed. This method proceeds to either block 74 identifying a first way to generate image-less models or block 76 identifying a second way to generate image-less models. At block 74, the probe 62 is used to contact the body at various anatomical landmarks in the area of interest, such as a bone. For example, by touching the probe 62 to the pelvis, knee, and ankle, articulation planes can be defined using known algorithms and the center of each joint may also be defined. An example of this type of modeling is set forth in U.S. Pat. No. 5,682,886, which is hereby incorporated by reference. Alternatively, multiple anatomical landmarks can be contacted with the probe 62 to generate a 3-D model with the more points contacted, the more accurate the model depicted.
Secondly, to generate a model at block 76, a tracking device is placed on the body and the body rotated about the joint. When this is done, the plane of rotation and joint center can be identified using known kinematic and/or motion analysis algorithms or using atlas maps or tables, as is known in the art. Once the area of interest has been probed, via block 74 or block 76, a model is generated at block 78. This model can be a 3D surface rendered model, a 2-D model identifying articulating planes or a 3D model identifying articulating planes and rotation, as well as the center of the joints. This enables the display 10 to use the joint centers or articulating planes as the target or trajectory, further discussed herein.
With each of the procedures 74 or 76, the procedure may be initially based on the use of atlas information or a 3-D model that is morphed, to be a patient specific model. In this regard, should the femur be the area of interest, an accurate representation of an ordinary femur may be selected from an atlas map, thereby providing an initial 2-D or 3-D model representing a typical anatomical femur. As with block 74, upon contacting numerous areas on the actual femur with the probe 62, the atlas model may be morphed into a patient specific 3-D model, with the more points contacted, the more accurate the morphed model. Patient specific information may also be acquired using an ultrasound probe to again identify the shape of the patient's natural femur in order to morph the atlas model. A fluoroscopic image of the region may also be used to morph the patient's femur with the atlas model to provide a patient specific morphed model. Proceeding under block 76 and assuming that the area of interest is the hip joint, an atlas model of the femur and pelvis may be the initial starting point. Upon rotating and moving the femur relative to the pelvis, a patient specific morphed model may be created to generate accurate joint centers and axes of motion again using known kinematics and/or motion analysis algorithms
Once the image data is calibrated and registered at block 70 or the model is generated at block 78, the method proceeds to block 80. At block 80, the specific type of coordinate system is selected, which will be displayed by indicia on the six degree of freedom display 10. The coordinate systems can be a Cartesian coordinate system, a spherical coordinate system, or a polar coordinate system. By way of example, the Cartesian coordinate system will be selected. The Cartesian coordinate system will include the X, Y, and Z axes, and X rotation, Y rotation, and Z rotation about its respective axes.
With reference to
Arrow indicator 94 identifies the degree of rotation about the X axis 82. Arrow indicator 96 shows the amount of rotation about the Y axis 84. Arrow 98 identifies the rotation about the Z axis, while arrow 100 identifies the depth being tracked along the Z axis 86. The origin 102 may be set to be the desired target position or trajectory path. The crosshairs 104 represents the tip of the instrument 52 being tracked, while the circle 106 represents the hind area of the instrument 52 being tracked. With the understanding that the instrument 52 can be any type of medical device or implant. Also, if five degree of freedom information is provided, one of the indicia 82, 84, 86, 88, 90, and 92 will be removed.
Once the coordinate system is selected at block 80, the method proceeds to block 108 where the target or trajectory is selected. The target or trajectory selected at block 108 is typically positioned at the origin 102 on the display 10. In this way, the object being tracked or aligned may be tracked and aligned about the origin 102. Alternatively, the target may be identified at any coordinate within the display 10 or multiple targets may also be identified within the single display 10. An indicia of the target may also be positioned on the display 10. The target is selected based upon the desired area to position the instrument 52 and can be selected from the pre-acquired images or from the 3-D model. Once selected, this target is correlated to the display 10 and generally positioned at the origin 102.
Once the target/trajectory is selected at block 108, such as the origin 102, the method proceeds to block 110 where the safe zones are identified for each degree of freedom. Referring again to
Once the safe zones 112 are identified for each degree of freedom in block 110, the method proceeds to block 114 where the target trajectory in the selected coordinate system is displayed with the safe zones 112, as shown in
Once the target/trajectory 102 is displayed along with the safe zones 112 in the proper coordinate system, as shown in
With the indicia of the implant/instrument 52 being displayed, the implant/instrument 52 is aligned or fixed with the target/trajectory 102 at block 124. In this regard, the tip 104 and the hind 106 are aligned and fixed relative to the target/trajectory 102 at the origin and the rotational orientation is also aligned to the desired position. Again, the target/trajectory 102 may not be positioned at the origin and can be positioned anywhere within the coordinate system if desired. As shown in
At block 126, a determination is made as to whether there is a second implant/instrument 52 to be tracked. If there is not a second implant/instrument 52 to be tracked, the method ends at block 128. Should there be a second implant/instrument 52 to track, such as a corresponding implant component that articulates with the first implant, the method proceeds to block 130. At block 130, a second target/trajectory 102 is selected, which is based upon the alignment or fixation of the first implant/instrument 52 relative to the first target/trajectory 102. In this regard, if the surgeon is not able to position the first implant/instrument 52 at the desired target/trajectory 102, this offset from the target/trajectory 102 may affect the second implant, which possibly articulates or mates with the first implant. If this is the case, the second target/trajectory 102 will need to take into consideration this offset in order to provide proper articulation and alignment of the first implant component with the second implant component.
With minimally invasive types of procedures, the implant may also have numerous components with each component articulating or mating with another component, thereby requiring tracking of each component as it is implanted during the minimally invasive procedure. This second target/trajectory 102 may be displayed on a separate display 10 (see
Once the second target/trajectory 102 has been selected at block 130, the method proceeds to block 132. At block 132, the safe zones 112 for each degree of freedom is selected for the second implant/instrument 52 similar to the way the first set of safe zones 112 were selected for the first implant/instrument 52. Once the second safe zones 112 are selected, the method proceeds to block 134. At block 134, the display 10 displays the second target/trajectory 102 in the same coordinate system with the second safe zones 112. Here again, at block 136, if it is an image based medical procedure, the pre-acquired image may be superimposed on to the target/trajectory 102. Alternatively, this image can be positioned adjacent the target screen in a split screen configuration (see
Alternatively, separate displays 10 may be used where information is linked between the displays showing the second implant/instrument 52 in relation to the first implant/instrument 52. With the second implant/instrument 52 being tracked at block 140, the second implant/instrument 52 is displayed in relation to the second target/trajectory 102 in five or six degrees of freedom at block 142. Again, this may be a separate display 10, a split screen display 10 with both the first target/trajectory 102 and the second target/trajectory 102 or the same display 10 displaying both targets/trajectories 102. While the second implant/instrument 52 is being displayed, the second implant/instrument 52 is aligned and fixed at the second target/trajectory 102 at block 144. Once the second implant/instrument 52 is fixed at block 144, the method proceeds to block 146.
At block 146, a determination is made whether the alignment or fixation of the first and second implants/instruments 52 are correct. In this regard, with two separate displays 10 linked or with a single display 10, showing both targets/trajectories 102, a surgeon can determine whether each implant/instrument 52 is within its desired safe zones 112 and, therefore, optimally positioned for proper articulation. Here again, these safe zones 112 may be color coded for the different safe zones provided. If both implants are positioned and fixed at the proper targets, the method ends at block 148. If one or both of the implants are not properly positioned, adjustment of the first or second target/trajectory 102 is performed at block 150. Once either or both targets are adjusted, realignment of the first and/or second implants/instruments 52 are performed at block 152. Here again, since multiple component implants are dependent upon one another with respect to their position and orientation, alignment and adjustments of the targets/trajectories 102 may be performed several times until the optimum placement for each is performed at repeat block 154. Thereafter, the method terminates at end block 156.
While the above-identified procedure is discussed in relation to an orthopedic medical procedure in which an implant having multiple implant components is implanted within a patient using the six degree of freedom display 10, it should be noted that the six degree of freedom display 10 may be used to track other medical devices as well. For example, as was briefly discussed, an ablation catheter generally has an electrode positioned only on one angular portion of its circumference. Likewise, the wall of an artery typically has a larger plaque build-up on one side. Therefore, it is desirable to align that ablation electrode with the proper side of the artery wall during the procedure. With the six degree of freedom display 10, the surgeon can easily identify the location, depth and angular rotation of the catheter relative to the artery wall. Other types of procedures may require the medical instrument or probe to be properly oriented and located within the patient, such as identifying and tracking tumors, soft tissue, etc. By knowing and displaying the six degree of freedom movement of the medical device on the display 10, the medical procedure is optimized.
It should also be pointed out that the method discussed above requires that the implant/instrument 52 have a tracking sensor associated therewith in order to identify the location of the tracked device in six degrees of freedom and display it on the display 10. The tracking sensors may be attached directly to implants, attached to the instruments that engage the implants or attach to members extending out from the implants. These tracking sensors again may be electromagnetic tracking sensors, optical tracking sensors, acoustic tracking sensors, etc. Examples of various targets, which may or may not be superimposed on the display again include orthopedic targets, spinal targets, cardiovascular targets, neurovascular targets, soft tissue targets, etc. Specific examples include again the location of the plaque on a wall of an artery, the center of an articulating joint being replaced, the center of the implant placement, etc. By displaying two targets, either on separate displays or on the same display, the surgeon can dynamically plan and trial implant placements by moving one component of the implant to see where the other articulating component of the implant should be positioned. In this way, the surgeon can trial the implant confirming its placement and orientation, via the display 10 before the implant is permanently affixed to the patient 14.
In a spinal procedure, two adjacent vertebra bodies can be tracked and displayed on two separate displays. In this way, if a single jig, such as a cutting jig is used to cut both the surface of the first vertebra and the surface of the second vertebra, orientation of the jig may be displayed on each separate display in relation to the corresponding vertebra being acted upon, thereby enabling simultaneous tracking of the two planes being resected for each separate vertebra on a dual display system. Additionally, each vertebra may be displayed on each of the dual displays so that the vertebra being tracked is shown with the adjacent vertebra superimposed adjacent thereto. Once the vertebra bodies are prepared, the implant is typically placed between each vertebra on the prepared site. Other ways of preparing this site is by using drills, reamers, burrs, trephines or any other appropriate cutting or milling device.
Briefly, the method, as shown in
Tones, labels, colors, shading, overlaying with image data can all be modified and incorporated into the display 10. The current display 10 is also shown as a Cartesian coordinate based display, but again could be based on a polar based display or a spherical based display and a quick switch between both can be supplied or simultaneously displayed. The display can also be configured by the user to hide parameters, location, size, colors, labels, etc.
Some medical applications that may be commonly displayed and linked to the display 10 are: 1) reaming of an acetabular cup with major focus upon RY and RZ, 2) length of leg during hip and knee procedures focused upon TZ and RZ, 3) biopsies and ablations focused upon RX, RY, and RZ for direction of the therapy device, and 4) catheters with side ports for sensing information or delivery of devices, therapies, drugs, stem cells, etc. focused upon six degree of freedom information.
Referring now to
In this regard,
Turning to
Once the acetabular cup 178 has been impacted, the femoral head 162 is resected along a plane 184 by use of a cutting guide 186, having the tracking sensor 58 and a saw blade 188. By using the center of the femoral head 162 as the second target, the cutting plane 184 may be properly defined to provide proper articulation with the acetabular cup 178 before a hip stem is implanted in the femur 160. Here again, the second target is dependent upon the first target. Thus, if the acetabular cup 178 was implanted somewhat offset from its target, the second target may be properly compensated to accommodate for this offset by use of the display 10. In this regard, a second display illustrating the target for the cutting plane 184 may be provided.
Once the femoral head 162 of the femur 160 has been resected, as shown in
Once the intramedullary canal 192 has been reamed by the reamer 190, a hip stem 194 is impacted with an impactor 196 into the intramedullary canal 192. By targeting the acetabular cup location, along with the resection plane 184 and the reaming axis of the reamer 190, upon positioning the hip stem 194, within the femur 160, proper articulation and range of motion between the acetabular cup 178 and the hip stem 194 is achieved without time consuming trialing as is conducted in conventional orthopedic procedures. Thus, by providing the safe zones 112 in relation to the hip stem 194 size, proper articulation with the acetabular cup 178 is achieved. Here again, while an example of an orthopedic hip replacement is set out, the six degree of freedom display 10 may be utilized with any type of medical procedure requiring visualization of a medical device with six degree freedom information.
The six degree of freedom display 10 enables implants, devices and therapies that have a specific orientation relative to the patient anatomy 14 to be properly positioned by use of the display 10. As was noted, it is difficult to visualize the correct placement of devices that require five or six degree of freedom alignment. Also, the orientation of multiple-segment implants, devices, or therapies in five and six degrees of freedom so that they are placed or activated in the correct orientation to one another is achieved with the display 10. Since the location and orientation is dependent upon one another to be effective, by having the proper orientation, improved life of the implants, the proper degrees of motion, and patient outcome is enhanced. Also, the six degree of freedom display 10 may be used as a user input mechanism by way of keyboard 38 for controlling each degree of freedom of a surgical robotic device. In this regard, the user can input controls with the joystick, touch screen or keyboard 38 to control a robotic device. These devices also include drill guide holders, drill holders, mechanically adjusted or line devices, such as orthopedic cutting blocks, or can be used to control and drive the alignment of the imaging system 16, or any other type of imaging system.
Since multiple implants and therapies, or multi-segment/compartment implants require multiple alignments, the display 10 may include a stereo display or two displays 10. These displays may or may not be linked, depending on the certain procedure. The target point/location (translation and orientation of each implant component is dependent upon the other implant placement or location). Therefore, the adjustment or dynamic targeting of the dependent implant needs to be input to the dependent implant and visually displayed. Again, this can be done by two separate displays or by superimposing multiple targets on a single display. Many implants such as spinal disc implants, total knee and total hip replacements repair patient anatomy 14 by replacing the anatomy (bone, etc.) and restoring the patient 14 to the original biomechanics, size and kinematics. The benefit of the six degree of freedom alignment display 10 is that original patient data, such as the images can be entered, manually or collectively, via the imaging device 16 or image-less system used for placement of the implant. Again, manually, the user can enter data, overlay templates, or collect data, via the imaging system 16. An example, as discussed herein of an application is the alignment of a femoral neck of a hip implant in the previous patient alignment. The previous patient alignment can be acquired by landmarking the patient femoral head by using biomechanics to determine the center and alignment of the current line and angle of the femoral head. This information can be used as the target on the display 10 in order to properly align the implant replacing the femoral head.
The six degree of freedom display 10 also provides orientation guidance on a single display. Separate visual and quantitative read-outs for each degree of freedom is also displayed on the display 10. Visual representations or indicia of procedure-specific accepted values (i.e., a “safe zone 112”) for each degree of freedom is also clearly displayed on the display 10. These safe zones 112 are displayed as specifics or ranges for the user to align or place within. The procedure specific accepted values for the safe zones 112 can be manufacture determined, user determined, patient specific (calculated) or determined from algorithms (finite element analysis, kinematics, etc. atlas or tables). It can also be fixed or configurable. Safe zones 112 can also be defined as ranges around a planned trajectory path or the specific trajectory path itself (range zero). The trajectory paths are input as selected points by the user or paths defined from the patient image data (segmented vascular structure, calculated centers of bone/joints, anatomical path calculated by known computed methods, etc.).
Turning now to
Referring specifically to
Referring to
Once each vertebrae 200 and 202 have been distracted by the cam distracter 204, a sagittal wedge 206 also having a tracking sensor 58 is utilized and shown in
Once the sagittal centering has been achieved with the sagittal wedge 206, the medical procedure proceeds to burring as shown in
Referring to
Here again, the six degree of freedom display 10, which is illustrated as a split or dual display 10 in
By use of the six degree of freedom display, for the various types of medical procedures, improved results can be achieved by providing the surgeon with the necessary information required. In regard to surgical implants, the range of motion may be increased while reducing impingement of two-part articulating or fixed implants. This also enables maximum force transfer between the implant and the body. With therapy delivery procedures, by knowing the location of the catheter delivery tube and the specific port orientation, accurately aiming at the site is enabled to provide maximum delivery of the therapy at the correct site. This procedure also enhances and enables better results when using an ablation catheter by again knowing the rotational orientation of the ablation catheter and the ablation electrode relative to the area in the wall of the artery that requires ablation. Finally, by knowing the rotational orientation of a ablation or biopsy catheter, this type of catheter may be easily directed and aligned to tumors, stem cells, or other desired sites in an easy and efficient manner.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1576781 | Phillips | Mar 1926 | A |
1735726 | Bornhardt | Nov 1929 | A |
2407845 | Nemeyer | Sep 1946 | A |
2650588 | Drew | Sep 1953 | A |
2697433 | Sehnder | Dec 1954 | A |
3016899 | Stenvall | Jan 1962 | A |
3017887 | Heyer | Jan 1962 | A |
3061936 | Dobbeleer | Nov 1962 | A |
3073310 | Mocarski | Jan 1963 | A |
3109588 | Polhemus et al. | Nov 1963 | A |
3294083 | Alderson | Dec 1966 | A |
3367326 | Frazier | Feb 1968 | A |
3439256 | Kähne et al. | Apr 1969 | A |
3577160 | White | May 1971 | A |
3614950 | Rabey | Oct 1971 | A |
3644825 | Davis, Jr. et al. | Feb 1972 | A |
3674014 | Tillander | Jul 1972 | A |
3702935 | Carey et al. | Nov 1972 | A |
3704707 | Halloran | Dec 1972 | A |
3821469 | Whetstone et al. | Jun 1974 | A |
3868565 | Kuipers | Feb 1975 | A |
3941127 | Froning | Mar 1976 | A |
3983474 | Kuipers | Sep 1976 | A |
4017858 | Kuipers | Apr 1977 | A |
4037592 | Kronner | Jul 1977 | A |
4052620 | Brunnett | Oct 1977 | A |
4054881 | Raab | Oct 1977 | A |
4117337 | Staats | Sep 1978 | A |
4173228 | Van Steenwyk et al. | Nov 1979 | A |
4182312 | Mushabac | Jan 1980 | A |
4202349 | Jones | May 1980 | A |
4228799 | Anichkov et al. | Oct 1980 | A |
4256112 | Kopf et al. | Mar 1981 | A |
4262306 | Renner | Apr 1981 | A |
4287809 | Egli et al. | Sep 1981 | A |
4298874 | Kuipers | Nov 1981 | A |
4314251 | Raab | Feb 1982 | A |
4317078 | Weed et al. | Feb 1982 | A |
4319136 | Jinkins | Mar 1982 | A |
4328548 | Crow et al. | May 1982 | A |
4328813 | Ray | May 1982 | A |
4339953 | Iwasaki | Jul 1982 | A |
4341220 | Perry | Jul 1982 | A |
4346384 | Raab | Aug 1982 | A |
4358856 | Stivender et al. | Nov 1982 | A |
4368536 | Pfeiler | Jan 1983 | A |
4396885 | Constant | Aug 1983 | A |
4396945 | DiMatteo et al. | Aug 1983 | A |
4403321 | DiMarco | Sep 1983 | A |
4418422 | Richter et al. | Nov 1983 | A |
4419012 | Stephenson et al. | Dec 1983 | A |
4422041 | Lienau | Dec 1983 | A |
4431005 | McCormick | Feb 1984 | A |
4485815 | Amplatz | Dec 1984 | A |
4506676 | Duska | Mar 1985 | A |
4543959 | Sepponen | Oct 1985 | A |
4548208 | Niemi | Oct 1985 | A |
4571834 | Fraser et al. | Feb 1986 | A |
4572198 | Codrington | Feb 1986 | A |
4583538 | Onik et al. | Apr 1986 | A |
4584577 | Temple | Apr 1986 | A |
4584994 | Bamberger et al. | Apr 1986 | A |
4608977 | Brown | Sep 1986 | A |
4613866 | Blood | Sep 1986 | A |
4617925 | Laitinen | Oct 1986 | A |
4618978 | Cosman | Oct 1986 | A |
4621628 | Bludermann | Nov 1986 | A |
4625718 | Olerud et al. | Dec 1986 | A |
4638798 | Shelden et al. | Jan 1987 | A |
4642786 | Hansen | Feb 1987 | A |
4645343 | Stockdale et al. | Feb 1987 | A |
4649504 | Krouglicof et al. | Mar 1987 | A |
4651732 | Frederick | Mar 1987 | A |
4653509 | Oloff et al. | Mar 1987 | A |
4659971 | Suzuki et al. | Apr 1987 | A |
4660970 | Ferrano | Apr 1987 | A |
4673352 | Hansen | Jun 1987 | A |
4688037 | Krieg | Aug 1987 | A |
4701049 | Beckman et al. | Oct 1987 | A |
4705395 | Hageniers | Nov 1987 | A |
4705401 | Addleman et al. | Nov 1987 | A |
4706665 | Gouda | Nov 1987 | A |
4709156 | Murphy et al. | Nov 1987 | A |
4710708 | Rorden et al. | Dec 1987 | A |
4719419 | Dawley | Jan 1988 | A |
4722056 | Roberts et al. | Jan 1988 | A |
4722336 | Kim et al. | Feb 1988 | A |
4723544 | Moore et al. | Feb 1988 | A |
4727565 | Ericson | Feb 1988 | A |
RE32619 | Damadian | Mar 1988 | E |
4733969 | Case et al. | Mar 1988 | A |
4737032 | Addleman et al. | Apr 1988 | A |
4737794 | Jones | Apr 1988 | A |
4737921 | Goldwasser et al. | Apr 1988 | A |
4742356 | Kuipers | May 1988 | A |
4742815 | Ninan et al. | May 1988 | A |
4743770 | Lee | May 1988 | A |
4743771 | Sacks et al. | May 1988 | A |
4745290 | Frankel et al. | May 1988 | A |
4750487 | Zanetti | Jun 1988 | A |
4753528 | Hines et al. | Jun 1988 | A |
4761072 | Pryor | Aug 1988 | A |
4764016 | Johansson | Aug 1988 | A |
4771787 | Wurster et al. | Sep 1988 | A |
4779212 | Levy | Oct 1988 | A |
4782239 | Hirose et al. | Nov 1988 | A |
4788481 | Niwa | Nov 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4793355 | Crum et al. | Dec 1988 | A |
4794262 | Sato et al. | Dec 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4803976 | Frigg et al. | Feb 1989 | A |
4804261 | Kirschen | Feb 1989 | A |
4805615 | Carol | Feb 1989 | A |
4809694 | Ferrara | Mar 1989 | A |
4821200 | Öberg | Apr 1989 | A |
4821206 | Arora | Apr 1989 | A |
4821731 | Martinelli et al. | Apr 1989 | A |
4822163 | Schmidt | Apr 1989 | A |
4825091 | Breyer et al. | Apr 1989 | A |
4829373 | Leberl et al. | May 1989 | A |
4836778 | Baumrind et al. | Jun 1989 | A |
4838265 | Cosman et al. | Jun 1989 | A |
4841967 | Chang et al. | Jun 1989 | A |
4845771 | Wislocki et al. | Jul 1989 | A |
4849692 | Blood | Jul 1989 | A |
4860331 | Williams et al. | Aug 1989 | A |
4862893 | Martinelli | Sep 1989 | A |
4869247 | Howard, III et al. | Sep 1989 | A |
4875165 | Fencil et al. | Oct 1989 | A |
4875478 | Chen | Oct 1989 | A |
4884566 | Mountz et al. | Dec 1989 | A |
4889526 | Rauscher et al. | Dec 1989 | A |
4896673 | Rose et al. | Jan 1990 | A |
4905698 | Strohl, Jr. et al. | Mar 1990 | A |
4923459 | Nambu | May 1990 | A |
4931056 | Ghajar et al. | Jun 1990 | A |
4945305 | Blood | Jul 1990 | A |
4945914 | Allen | Aug 1990 | A |
4951653 | Fry et al. | Aug 1990 | A |
4955891 | Carol | Sep 1990 | A |
4961422 | Marchosky et al. | Oct 1990 | A |
4977655 | Martinelli | Dec 1990 | A |
4989608 | Ratner | Feb 1991 | A |
4991579 | Allen | Feb 1991 | A |
5002058 | Martinelli | Mar 1991 | A |
5005592 | Cartmell | Apr 1991 | A |
5013317 | Cole et al. | May 1991 | A |
5016639 | Allen | May 1991 | A |
5017139 | Mushabac | May 1991 | A |
5027818 | Bova et al. | Jul 1991 | A |
5030196 | Inoue | Jul 1991 | A |
5030222 | Calandruccio et al. | Jul 1991 | A |
5031203 | Trecha | Jul 1991 | A |
5042486 | Pfeiler et al. | Aug 1991 | A |
5047036 | Koutrouvelis | Sep 1991 | A |
5050608 | Watanabe et al. | Sep 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5057095 | Fabian | Oct 1991 | A |
5059789 | Salcudean | Oct 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5079699 | Tuy et al. | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5094241 | Allen | Mar 1992 | A |
5097839 | Allen | Mar 1992 | A |
5098426 | Sklar et al. | Mar 1992 | A |
5099845 | Besz et al. | Mar 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5105829 | Fabian et al. | Apr 1992 | A |
5107839 | Houdek et al. | Apr 1992 | A |
5107843 | Aarnio et al. | Apr 1992 | A |
5107862 | Fabian et al. | Apr 1992 | A |
5109194 | Cantaloube | Apr 1992 | A |
5119817 | Allen | Jun 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5143076 | Hardy et al. | Sep 1992 | A |
5152288 | Hoenig et al. | Oct 1992 | A |
5160337 | Cosman | Nov 1992 | A |
5161536 | Vikomerson et al. | Nov 1992 | A |
5178164 | Allen | Jan 1993 | A |
5178621 | Cook et al. | Jan 1993 | A |
5186174 | Schlondorff et al. | Feb 1993 | A |
5187475 | Wagener et al. | Feb 1993 | A |
5188126 | Fabian et al. | Feb 1993 | A |
5190059 | Fabian et al. | Mar 1993 | A |
5193106 | DeSena | Mar 1993 | A |
5197476 | Nowacki et al. | Mar 1993 | A |
5197965 | Cherry et al. | Mar 1993 | A |
5198768 | Keren | Mar 1993 | A |
5198877 | Schulz | Mar 1993 | A |
5207688 | Carol | May 1993 | A |
5211164 | Allen | May 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5211176 | Ishiguro et al. | May 1993 | A |
5212720 | Landi et al. | May 1993 | A |
5214615 | Bauer | May 1993 | A |
5219351 | Teubner et al. | Jun 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5224049 | Mushabac | Jun 1993 | A |
5228442 | Imran | Jul 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5233990 | Barnea | Aug 1993 | A |
5237996 | Waldman et al. | Aug 1993 | A |
5249581 | Horbal et al. | Oct 1993 | A |
5251127 | Raab | Oct 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5253647 | Takahashi et al. | Oct 1993 | A |
5255680 | Darrow et al. | Oct 1993 | A |
5257636 | White | Nov 1993 | A |
5257998 | Ota et al. | Nov 1993 | A |
5261404 | Mick et al. | Nov 1993 | A |
5265610 | Darrow et al. | Nov 1993 | A |
5265611 | Hoenig et al. | Nov 1993 | A |
5269759 | Hernandez et al. | Dec 1993 | A |
5271400 | Dumoulin et al. | Dec 1993 | A |
5273025 | Sakiyama et al. | Dec 1993 | A |
5274551 | Corby, Jr. | Dec 1993 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5285787 | Machida | Feb 1994 | A |
5291199 | Overman et al. | Mar 1994 | A |
5291889 | Kenet et al. | Mar 1994 | A |
5295483 | Nowacki et al. | Mar 1994 | A |
5297549 | Beatty et al. | Mar 1994 | A |
5299253 | Wessels | Mar 1994 | A |
5299254 | Dancer et al. | Mar 1994 | A |
5299288 | Glassman et al. | Mar 1994 | A |
5300080 | Clayman et al. | Apr 1994 | A |
5305091 | Gelbart et al. | Apr 1994 | A |
5305203 | Raab | Apr 1994 | A |
5306271 | Zinreich et al. | Apr 1994 | A |
5307072 | Jones, Jr. | Apr 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5315630 | Sturm et al. | May 1994 | A |
5316024 | Hirschi et al. | May 1994 | A |
5318025 | Dumoulin et al. | Jun 1994 | A |
5320111 | Livingston | Jun 1994 | A |
5325728 | Zimmerman et al. | Jul 1994 | A |
5325873 | Hirschi et al. | Jul 1994 | A |
5329944 | Fabian et al. | Jul 1994 | A |
5330485 | Clayman et al. | Jul 1994 | A |
5333168 | Fernandes et al. | Jul 1994 | A |
5353795 | Souza et al. | Oct 1994 | A |
5353800 | Pohndorf et al. | Oct 1994 | A |
5353807 | DeMarco | Oct 1994 | A |
5359417 | Müller et al. | Oct 1994 | A |
5368030 | Zinreich et al. | Nov 1994 | A |
5371778 | Yanof et al. | Dec 1994 | A |
5375596 | Twiss et al. | Dec 1994 | A |
5377678 | Dumoulin et al. | Jan 1995 | A |
5383454 | Bucholz | Jan 1995 | A |
5385146 | Goldreyer | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5386828 | Owens et al. | Feb 1995 | A |
5389101 | Heilbrun et al. | Feb 1995 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5394457 | Leibinger et al. | Feb 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5397329 | Allen | Mar 1995 | A |
5398684 | Hardy | Mar 1995 | A |
5399146 | Nowacki et al. | Mar 1995 | A |
5400384 | Fernandes et al. | Mar 1995 | A |
5402801 | Taylor | Apr 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415660 | Bechtold et al. | May 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5419325 | Dumoulin et al. | May 1995 | A |
5423334 | Jordan | Jun 1995 | A |
5425367 | Shapiro et al. | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5426683 | O—Farrell, Jr. et al. | Jun 1995 | A |
5426687 | Goodall et al. | Jun 1995 | A |
5427097 | Depp | Jun 1995 | A |
5429132 | Guy et al. | Jul 1995 | A |
5433198 | Desai | Jul 1995 | A |
RE35025 | Anderton | Aug 1995 | E |
5437277 | Dumoulin et al. | Aug 1995 | A |
5443066 | Dumoulin et al. | Aug 1995 | A |
5443489 | Ben-Haim | Aug 1995 | A |
5444756 | Pai et al. | Aug 1995 | A |
5445144 | Wodicka et al. | Aug 1995 | A |
5445150 | Dumoulin et al. | Aug 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5446548 | Gerig et al. | Aug 1995 | A |
5447154 | Cinquin et al. | Sep 1995 | A |
5448610 | Yamamoto et al. | Sep 1995 | A |
5453686 | Anderson | Sep 1995 | A |
5456718 | Szymaitis | Oct 1995 | A |
5457641 | Zimmer et al. | Oct 1995 | A |
5458718 | Venkitachalam | Oct 1995 | A |
5464446 | Dreessen et al. | Nov 1995 | A |
5466261 | Richelsoph | Nov 1995 | A |
5469847 | Zinreich et al. | Nov 1995 | A |
5478341 | Cook et al. | Dec 1995 | A |
5478343 | Ritter | Dec 1995 | A |
5480422 | Ben-Haim | Jan 1996 | A |
5480439 | Bisek et al. | Jan 1996 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5485849 | Panescu et al. | Jan 1996 | A |
5487391 | Panescu | Jan 1996 | A |
5487729 | Avellanet et al. | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5490196 | Rudich et al. | Feb 1996 | A |
5494034 | Schlondorff et al. | Feb 1996 | A |
5503416 | Aoki et al. | Apr 1996 | A |
5513637 | Twiss et al. | May 1996 | A |
5514146 | Lam et al. | May 1996 | A |
5515160 | Schulz et al. | May 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5531227 | Schneider | Jul 1996 | A |
5531520 | Grimson et al. | Jul 1996 | A |
5542938 | Avellanet et al. | Aug 1996 | A |
5543951 | Moehrmann | Aug 1996 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5546949 | Frazin et al. | Aug 1996 | A |
5546951 | Ben-Haim | Aug 1996 | A |
5551429 | Fitzpatrick et al. | Sep 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5566681 | Manwaring et al. | Oct 1996 | A |
5568384 | Robb et al. | Oct 1996 | A |
5568809 | Ben-haim | Oct 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5575794 | Walus et al. | Nov 1996 | A |
5575798 | Koutrouvelis | Nov 1996 | A |
5583909 | Hanover | Dec 1996 | A |
5588430 | Bova et al. | Dec 1996 | A |
5590215 | Allen | Dec 1996 | A |
5592939 | Martinelli | Jan 1997 | A |
5595193 | Walus et al. | Jan 1997 | A |
5596228 | Anderton et al. | Jan 1997 | A |
5600330 | Blood | Feb 1997 | A |
5603318 | Heilbrun et al. | Feb 1997 | A |
5611025 | Lorensen et al. | Mar 1997 | A |
5617462 | Spratt | Apr 1997 | A |
5617857 | Chader et al. | Apr 1997 | A |
5619261 | Anderton | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5622170 | Schulz | Apr 1997 | A |
5627873 | Hanover et al. | May 1997 | A |
5628315 | Vilsmeier et al. | May 1997 | A |
5630431 | Taylor | May 1997 | A |
5636644 | Hart et al. | Jun 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5640170 | Anderson | Jun 1997 | A |
5642395 | Anderton et al. | Jun 1997 | A |
5643268 | Vilsmeier et al. | Jul 1997 | A |
5645065 | Shapiro et al. | Jul 1997 | A |
5646524 | Gilboa | Jul 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5662111 | Cosman | Sep 1997 | A |
5664001 | Tachibana et al. | Sep 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5681260 | Ueda et al. | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5682890 | Kormos et al. | Nov 1997 | A |
5690108 | Chakeres | Nov 1997 | A |
5694945 | Ben-Haim | Dec 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5695501 | Carol et al. | Dec 1997 | A |
5697377 | Wittkampf | Dec 1997 | A |
5702406 | Vilsmeier et al. | Dec 1997 | A |
5711299 | Manwaring et al. | Jan 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5715822 | Watkins et al. | Feb 1998 | A |
5715836 | Kliegis et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5727552 | Ryan | Mar 1998 | A |
5727553 | Saad | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5730129 | Darrow et al. | Mar 1998 | A |
5730130 | Fitzpatrick et al. | Mar 1998 | A |
5732703 | Kalfas et al. | Mar 1998 | A |
5735278 | Hoult et al. | Apr 1998 | A |
5738096 | Ben-Haim | Apr 1998 | A |
5740802 | Nafis et al. | Apr 1998 | A |
5741214 | Ouchi et al. | Apr 1998 | A |
5742394 | Hansen | Apr 1998 | A |
5744953 | Hansen | Apr 1998 | A |
5748767 | Raab | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749835 | Glantz | May 1998 | A |
5752513 | Acker et al. | May 1998 | A |
5755725 | Druais | May 1998 | A |
RE35816 | Schulz | Jun 1998 | E |
5758667 | Slettenmark | Jun 1998 | A |
5762064 | Polvani | Jun 1998 | A |
5767669 | Hansen et al. | Jun 1998 | A |
5767699 | Bosnyak et al. | Jun 1998 | A |
5767960 | Orman | Jun 1998 | A |
5769789 | Wang et al. | Jun 1998 | A |
5769843 | Abela et al. | Jun 1998 | A |
5769861 | Vilsmeier | Jun 1998 | A |
5772594 | Barrick | Jun 1998 | A |
5775322 | Silverstein et al. | Jul 1998 | A |
5776064 | Kalfas et al. | Jul 1998 | A |
5782765 | Jonkman | Jul 1998 | A |
5787886 | Kelly et al. | Aug 1998 | A |
5792055 | McKinnon | Aug 1998 | A |
5795294 | Luber et al. | Aug 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5799055 | Peshkin et al. | Aug 1998 | A |
5799099 | Wang et al. | Aug 1998 | A |
5800352 | Ferre et al. | Sep 1998 | A |
5800535 | Howard, III | Sep 1998 | A |
5802719 | O'Farrell, Jr. et al. | Sep 1998 | A |
5803089 | Ferre et al. | Sep 1998 | A |
5807252 | Hassfeld et al. | Sep 1998 | A |
5810008 | Dekel et al. | Sep 1998 | A |
5810728 | Kuhn | Sep 1998 | A |
5810735 | Halperin et al. | Sep 1998 | A |
5820553 | Hughes | Oct 1998 | A |
5823192 | Kalend et al. | Oct 1998 | A |
5823958 | Truppe | Oct 1998 | A |
5824085 | Sahay et al. | Oct 1998 | A |
5825908 | Pieper et al. | Oct 1998 | A |
5828725 | Levinson | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5829444 | Ferre et al. | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5831260 | Hansen | Nov 1998 | A |
5833608 | Acker | Nov 1998 | A |
5834759 | Glossop | Nov 1998 | A |
5836954 | Heilbrun et al. | Nov 1998 | A |
5840024 | Taniguchi et al. | Nov 1998 | A |
5840025 | Ben-Haim | Nov 1998 | A |
5843076 | Webster, Jr. et al. | Dec 1998 | A |
5848967 | Cosman | Dec 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5868674 | Glowinski et al. | Feb 1999 | A |
5868675 | Henrion et al. | Feb 1999 | A |
5871445 | Bucholz | Feb 1999 | A |
5871455 | Ueno | Feb 1999 | A |
5871487 | Warner et al. | Feb 1999 | A |
5873822 | Ferre et al. | Feb 1999 | A |
5882304 | Ehnholm et al. | Mar 1999 | A |
5884410 | Prinz | Mar 1999 | A |
5889834 | Vilsmeier et al. | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5891157 | Day et al. | Apr 1999 | A |
5904691 | Barnett et al. | May 1999 | A |
5907395 | Schultz et al. | May 1999 | A |
5913820 | Bladen et al. | Jun 1999 | A |
5920395 | Schulz | Jul 1999 | A |
5921992 | Costales et al. | Jul 1999 | A |
5923727 | Navab | Jul 1999 | A |
5928248 | Acker | Jul 1999 | A |
5938603 | Ponzi | Aug 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5947980 | Jensen et al. | Sep 1999 | A |
5947981 | Cosman | Sep 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5951475 | Gueziec et al. | Sep 1999 | A |
5951571 | Audette | Sep 1999 | A |
5954647 | Bova et al. | Sep 1999 | A |
5957844 | Dekel et al. | Sep 1999 | A |
5961553 | Coty et al. | Oct 1999 | A |
5964796 | Imran | Oct 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5967982 | Barnett | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5971997 | Guthrie et al. | Oct 1999 | A |
5976156 | Taylor et al. | Nov 1999 | A |
5980535 | Barnett et al. | Nov 1999 | A |
5983126 | Wittkampf | Nov 1999 | A |
5987349 | Schulz | Nov 1999 | A |
5987960 | Messner et al. | Nov 1999 | A |
5999837 | Messner et al. | Dec 1999 | A |
5999840 | Grimson et al. | Dec 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6006127 | Van Der Brug et al. | Dec 1999 | A |
6013087 | Adams et al. | Jan 2000 | A |
6014580 | Blume et al. | Jan 2000 | A |
6016439 | Acker | Jan 2000 | A |
6019725 | Vesely et al. | Feb 2000 | A |
6024695 | Taylor et al. | Feb 2000 | A |
6050724 | Schmitz et al. | Apr 2000 | A |
6059718 | Taniguchi et al. | May 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6071288 | Carol et al. | Jun 2000 | A |
6073043 | Schneider | Jun 2000 | A |
6076008 | Bucholz | Jun 2000 | A |
6096050 | Audette | Aug 2000 | A |
6104944 | Martinelli | Aug 2000 | A |
6118845 | Simon et al. | Sep 2000 | A |
6122538 | Sliwa, Jr. et al. | Sep 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6131396 | Duerr et al. | Oct 2000 | A |
6139183 | Graumann | Oct 2000 | A |
6147480 | Osadchy et al. | Nov 2000 | A |
6149592 | Yanof et al. | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6161032 | Acker | Dec 2000 | A |
6165181 | Heilbrun et al. | Dec 2000 | A |
6167296 | Shahidi | Dec 2000 | A |
6172499 | Ashe | Jan 2001 | B1 |
6175756 | Ferre et al. | Jan 2001 | B1 |
6178345 | Vilsmeier et al. | Jan 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6194639 | Botella et al. | Feb 2001 | B1 |
6201387 | Govari | Mar 2001 | B1 |
6203497 | Dekel et al. | Mar 2001 | B1 |
6205411 | DiGioia et al. | Mar 2001 | B1 |
6211666 | Acker | Apr 2001 | B1 |
6223067 | Vilsmeier | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6245109 | Mendes et al. | Jun 2001 | B1 |
6246231 | Ashe | Jun 2001 | B1 |
6259942 | Westermann et al. | Jul 2001 | B1 |
6273896 | Franck et al. | Aug 2001 | B1 |
6285902 | Kienzle et al. | Sep 2001 | B1 |
6298262 | Franck et al. | Oct 2001 | B1 |
6314310 | Ben-Haim et al. | Nov 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6332887 | Knox | Dec 2001 | B1 |
6341231 | Ferre et al. | Jan 2002 | B1 |
6348058 | Melkent et al. | Feb 2002 | B1 |
6351659 | Vilsmeier | Feb 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6381485 | Hunter et al. | Apr 2002 | B1 |
6424856 | Vilsmeier et al. | Jul 2002 | B1 |
6427314 | Acker | Aug 2002 | B1 |
6428547 | Vilsmeier et al. | Aug 2002 | B1 |
6434415 | Foley et al. | Aug 2002 | B1 |
6437567 | Schenck et al. | Aug 2002 | B1 |
6445943 | Ferre et al. | Sep 2002 | B1 |
6466261 | Nakamura et al. | Oct 2002 | B1 |
6470207 | Simon et al. | Oct 2002 | B1 |
6474341 | Hunter et al. | Nov 2002 | B1 |
6478802 | Kienzle, III et al. | Nov 2002 | B2 |
6484049 | Seeley et al. | Nov 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6493573 | Martinelli et al. | Dec 2002 | B1 |
6498944 | Ben-Haim et al. | Dec 2002 | B1 |
6499488 | Hunter et al. | Dec 2002 | B1 |
6516046 | Fröhlich et al. | Feb 2003 | B1 |
6527443 | Vilsmeier et al. | Mar 2003 | B1 |
6551325 | Neubauer et al. | Apr 2003 | B2 |
6584174 | Schubert et al. | Jun 2003 | B2 |
6609022 | Vilsmeier et al. | Aug 2003 | B2 |
6611700 | Vilsmeier et al. | Aug 2003 | B1 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6694162 | Hartlep | Feb 2004 | B2 |
6701179 | Martinelli et al. | Mar 2004 | B1 |
6895268 | Rahn et al. | May 2005 | B1 |
6947786 | Simon et al. | Sep 2005 | B2 |
20010007918 | Vilsmeier et al. | Jul 2001 | A1 |
20020077540 | Kienzle, III | Jun 2002 | A1 |
20020087163 | Dixon et al. | Jul 2002 | A1 |
20020095081 | Vilsmeier | Jul 2002 | A1 |
20030028196 | Bonutti | Feb 2003 | A1 |
20030069591 | Carson et al. | Apr 2003 | A1 |
20030120150 | Govari | Jun 2003 | A1 |
20030194505 | Milbocker | Oct 2003 | A1 |
20040024309 | Ferre et al. | Feb 2004 | A1 |
20040097952 | Sarin et al. | May 2004 | A1 |
20040236424 | Berez et al. | Nov 2004 | A1 |
20040254584 | Sarin et al. | Dec 2004 | A1 |
20050043621 | Perlin | Feb 2005 | A1 |
20050254814 | Sakamoto | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
964149 | Mar 1975 | CA |
3042343 | Jun 1982 | DE |
35 08730 | Mar 1985 | DE |
37 17 871 | May 1987 | DE |
38 38011 | Nov 1988 | DE |
3831278 | Mar 1989 | DE |
42 13 426 | Apr 1992 | DE |
42 25 112 | Jul 1992 | DE |
4233978 | Apr 1994 | DE |
197 15 202 | Apr 1997 | DE |
197 47 427 | Oct 1997 | DE |
197 51 761 | Nov 1997 | DE |
198 32 296 | Jul 1998 | DE |
198 56 013 | Jun 2000 | DE |
100 13 519 | Oct 2001 | DE |
20111479 | Oct 2001 | DE |
10085137 | Nov 2002 | DE |
0 062 941 | Mar 1982 | EP |
0 119 660 | Sep 1984 | EP |
0 155 857 | Jan 1985 | EP |
0 319 844 | Jan 1988 | EP |
0 326 768 | Dec 1988 | EP |
0419729 | Sep 1989 | EP |
0350996 | Jan 1990 | EP |
0 651 968 | Aug 1990 | EP |
0 427 358 | Oct 1990 | EP |
0 456 103 | May 1991 | EP |
0 581 704 | Jul 1993 | EP |
0655138 | Aug 1993 | EP |
0894473 | Jan 1995 | EP |
0 820 731 | Jan 1998 | EP |
0 908 146 | Oct 1998 | EP |
0 930 046 | Oct 1998 | EP |
1 057 461 | Dec 2000 | EP |
1103229 | May 2001 | EP |
1 188 421 | Mar 2002 | EP |
1 442 715 | Aug 2004 | EP |
2417970 | Feb 1979 | FR |
2 618 211 | Jul 1987 | FR |
1 243 353 | Aug 1971 | GB |
2 094 590 | Feb 1982 | GB |
2 164 856 | Oct 1984 | GB |
61-94639 | Oct 1984 | JP |
62-327 | Jun 1985 | JP |
63-240851 | Mar 1987 | JP |
3-267054 | Mar 1990 | JP |
2765738 | Apr 1991 | JP |
WO 8809151 | Dec 1988 | WO |
WO 8905123 | Jun 1989 | WO |
WO 9005494 | May 1990 | WO |
WO 9104711 | Apr 1991 | WO |
WO 9103982 | Apr 1991 | WO |
WO 9107726 | May 1991 | WO |
WO 9203090 | Mar 1992 | WO |
WO 9206645 | Apr 1992 | WO |
WO 9404938 | Mar 1994 | WO |
WO 9423647 | Oct 1994 | WO |
WO 9424933 | Nov 1994 | WO |
WO 9507055 | Mar 1995 | WO |
WO 9611624 | Apr 1996 | WO |
WO 9632059 | Oct 1996 | WO |
WO 9736192 | Oct 1997 | WO |
WO 9749453 | Dec 1997 | WO |
WO 9808554 | Mar 1998 | WO |
WO 9838908 | Sep 1998 | WO |
WO 9938449 | Jan 1999 | WO |
WO 9915097 | Apr 1999 | WO |
WO 9952094 | Apr 1999 | WO |
WO 9921498 | May 1999 | WO |
WO 9923956 | May 1999 | WO |
WO 9926549 | Jun 1999 | WO |
WO 9927839 | Jun 1999 | WO |
WO 9929253 | Jun 1999 | WO |
WO 9933406 | Jul 1999 | WO |
WO 9937208 | Jul 1999 | WO |
WO 9960939 | Dec 1999 | WO |
WO 0023015 | Apr 2000 | WO |
WO 0130437 | May 2001 | WO |
WO-0176497 | Oct 2001 | WO |
WO0237935 | May 2002 | WO |
WO-02067783 | Sep 2002 | WO |
WO03039377 | May 2003 | WO |
WO 03079940 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040152970 A1 | Aug 2004 | US |