This patent disclosure relates generally to internal combustion engines and, more particularly, to internal combustion engines configured to operate on a six-stroke internal combustion cycle.
Internal combustion engines operating on a six-stroke cycle are generally known in the art. In a six-stroke cycle, a piston reciprocally disposed in a cylinder moves through an intake stroke from a top dead center (TDC) position towards a bottom dead center (BDC) position to admit air or a mixture of air with fuel and/or exhaust gas into the cylinder through one or more intake valves. The intake valve(s) selectively fluidly connect the cylinder with an air source, and are in an open position during the intake stroke to allow the cylinder to fill with air or a mixture thereof.
When the cylinder has sufficiently filled, the intake valve(s) close(s) to fluidly trap the air or air mixture within the cylinder. During a compression stroke, the piston moves back towards the TDC position to compress the air or the air mixture trapped in the cylinder. During this process, an initial or additional fuel charge may be introduced to the cylinder by an injector. The compressed air/fuel mixture in the cylinder then ignites, thus increasing fluid pressure within the cylinder. The increased pressure pushes the piston towards the BDC position in what is commonly referred to as a combustion or power stroke.
In accordance with the six-stroke cycle, the piston performs a second compression stroke in which it recompresses the combustion products remaining in the cylinder after the first combustion or power stroke. During this recompression, any exhaust valves associated with the cylinder remain generally closed to assist cylinder recompression. Optionally, a second fuel charge and/or additional air may be introduced into the cylinder during recompression to assist igniting the residual combustion products and produce a second power stroke. Following the second power stroke, the cylinder undergoes an exhaust stroke during which the piston moves towards the TDC position and one or more exhaust valves are opened to help evacuate combustion by-products from the cylinder.
One example of an internal combustion engine configured to operate on a six-stroke engine can be found in U.S. Pat. No. 7,418,928. This disclosure relates to a method of operating an engine that includes compressing part of the combustion gas after a first combustion stroke of the piston as well as an additional combustion stroke during a six-stroke cycle of the engine.
The re-compression and re-combustion of combustion products from the first power stroke of a cylinder in six-stroke engines, however, often results in increased emissions, and especially emissions that result when the fluids within the cylinder are at a high temperature. For example, the production of nitrous oxides (NOx) increases with increasing cylinder temperatures. The production of such and other emissions is disfavored, especially since NOx emissions are regulated for diesel engines.
In one aspect, the disclosure describes an internal combustion engine having a combustion cylinder. The combustion cylinder operates on a combustion cycle that includes an intake stroke, during which air is admitted into the combustion cylinder, a compression stroke, during which the air in the combustion cylinder is compressed and fuel is added, a first combustion stroke, a recompression stroke, during which products from the first combustion stroke are compressed in the combustion cylinder and additional fuel is added, a second combustion stroke, and an exhaust stroke. The engine further includes an intake system including an intake collector in fluid communication with the combustion cylinder, and an exhaust system including an exhaust collector in fluid communication with the combustion cylinder. At least one intake valve is disposed to selectively fluidly connect the combustion cylinder with the intake system, and at least one exhaust valve is disposed to selectively fluidly connect the combustion cylinder with the exhaust system. A valve activation system is configured to activate the at least one intake valve and the at least one exhaust valve. A controller associated with the internal combustion engine is configured to provide command signals to the valve activation system such that the at least one intake valve is opened during the recompression stroke to allow a portion of the products from the first combustion stroke to exit the combustion cylinder and enter into the intake collector.
In another aspect, the disclosure describes an additional embodiment of an internal combustion engine having a combustion cylinder. The combustion cylinder operates on a combustion cycle that includes an intake stroke, during which air is admitted into the combustion cylinder, a compression stroke, during which the air in the combustion cylinder is compressed and fuel is added, a first combustion stroke, a recompression stroke, during which products from the first combustion stroke are compressed in the combustion cylinder and additional fuel is added, a second combustion stroke, and an exhaust stroke. The engine includes an intake system including an intake collector in fluid communication with the combustion cylinder, an exhaust system configured to receive exhaust gas from the combustion cylinder. The exhaust system includes an exhaust collector in fluid communication with the combustion cylinder. The engine further includes a blowdown gas passage in fluid communication with the combustion cylinder and the intake system, where the blowdown gas passage is fluidly isolated from the exhaust system. At least one intake valve is disposed to selectively fluidly connect the combustion cylinder with the intake system, and at least one exhaust valve is disposed to selectively fluidly connect the combustion cylinder with the exhaust system. At least one recirculation valve is disposed to selectively fluidly connect the combustion cylinder with the blowdown gas passage. A valve activation system is configured to activate the at least one intake valve, the at least one recirculation valve, and the at least one exhaust valve. A controller associated with the internal combustion engine is configured to provide command signals to the valve activation system such that the at least one recirculation valve is opened during the recompression stroke to allow a portion of the products from the first combustion stroke to exit the combustion cylinder and enter into the intake collector through the blowdown gas passage.
In yet another aspect, the disclosure describes a method for operating a valve system on an internal combustion engine having a combustion cylinder, which operates on a combustion cycle that includes an intake stroke, during which air is admitted into the combustion cylinder, a compression stroke, during which the air in the combustion cylinder is compressed and fuel is added, a first combustion stroke, a recompression stroke, during which products from the first combustion stroke are compressed in the combustion cylinder and additional fuel is added, a second combustion stroke, and an exhaust stroke. The method includes fluidly connecting the combustion cylinder with an intake system to provide an air mixture to fill the combustion cylinder during the intake stroke. The method further includes fluidly connecting the combustion cylinder with the intake system to introduce products from the first combustion stroke into the intake system during the recompression stroke, and mixing the products from the first combustion stroke with air in the intake system to form the air mixture. The method also includes fluidly connecting the combustion cylinder with an exhaust system during the exhaust stroke to evacuate products of the second combustion from the combustion cylinder.
This disclosure generally relates to internal combustion engines and, more particularly, to engines operating with a six stroke cycle. More specifically, certain disclosed engine embodiments are configured to optimize engine operation and reduce emissions by employing two paths for exhaust gas recirculation. In general, internal combustion engines burn a hydrocarbon-based fuel or another combustible fuel source to convert the potential or chemical energy therein to mechanical power that can be utilized for other work. In one embodiment, the disclosed engine may be a compression ignition engine, such as a diesel engine, in which a mixture of air and fuel are compressed in a cylinder to raise their pressure and temperature to a point of at which auto-ignition or spontaneous ignition occurs. Such engines typically lack a sparkplug that is typically associated with gasoline burning engines. However, in alternative embodiments, the utilization of different fuels such as gasoline and different ignition methods, for example, use of diesel as a pilot fuel to ignite gasoline or natural gas, are contemplated and fall within the scope of the disclosure.
Now referring to
To supply the fuel that the engine 102 burns during the combustion process, a fuel system 110 is operatively associated with the engine system 100. The fuel system 110 includes a fuel reservoir 112 that can accommodate a hydrocarbon-based fuel such as liquid diesel fuel. Although only one fuel reservoir is depicted in the illustrated embodiment, it will be appreciated that in other embodiments additional reservoirs may be included that accommodate the same or different types of fuels that may also be burned during the combustion process. In the illustrated embodiment, a fuel line 114 directs fuel from the fuel reservoir 112 to the engine. To pressurize the fuel and force it through the fuel line 114, a fuel pump 116 can be disposed in the fuel line. An optional fuel conditioner 118 may also be disposed in the fuel line 114 to filter the fuel or otherwise condition the fuel by, for example, introducing additives to the fuel, heating the fuel, removing water and the like.
To introduce the fuel to the combustion chambers 106, the fuel line 114 may be in fluid communication with one or more fuel injectors 120 that are associated with the combustion chambers. In the illustrated embodiment, one fuel injector 120 is associated with each combustion chamber but in other embodiments different numbers of injectors might be included. Additionally, while the illustrated embodiment depicts the fuel line 114 terminating at the fuel injectors, the fuel line may establish a fuel loop that continuously circulates fuel through the plurality of injectors and, optionally, delivers unused fuel back to the fuel reservoir 112. Alternatively, or in addition, the fuel line 114 may include a high-pressure fuel collector (not shown), which supplies the fuel injectors with pressurized fuel during operation. The fuel injectors 120 can be electrically actuated devices that selectively introduce a measured or predetermined quantity of fuel to each combustion chamber 106. In other embodiments, introduction methods other than or in addition to fuel injectors, such as a carburetor or the like, can be utilized.
To supply the air to the combustion chambers 106, a hollow runner or intake manifold 130 can be formed in or attached to the engine block 104 such that it extends over or proximate to each of the combustion chambers. The intake manifold 130 can communicate with an intake line 132 that directs air to the internal combustion engine 102. Fluid communication between the intake manifold 130 and the combustion chambers 106 can be established by a plurality of intake runners 134 extending from the intake manifold. One or more intake valves 136 can be associated with each combustion chamber 106 and can open and close to selectively introduce the intake air from the intake manifold 130 to the combustion chamber. While the illustrated embodiment depicts the intake valves at the top of the combustion chamber 106, in other embodiments the intake valves may be placed at other locations such as through a sidewall of the combustion chamber. To direct the exhaust gasses produced by combustion of the air/fuel mixture out of the combustion chambers 106, an exhaust manifold 140 communicating with an exhaust line 142 can also be disposed in or proximate to the engine block 104. The exhaust manifold 140 can communicate with the combustion chambers 106 by exhaust runners 144 extending from the exhaust manifold 140. The exhaust manifold 140 can receive exhaust gasses by selective opening and closing of one or more exhaust valves 146 associated with each chamber.
To actuate the intake valves 136 and the exhaust valves 146, the illustrated embodiment depicts an overhead camshaft 148 that is disposed over the engine block 104 and operatively engages the valves, but other valve activation arrangements and structures can be used. As will be familiar to those of skill in the art, the camshaft 148 can include a plurality of eccentric lobes disposed along its length that, as the camshaft rotates, cause the intake and exhaust valves 136, 146 to displace or move up and down in an alternating manner with respect to the combustion chambers 106. The placement or configuration of the lobes along the camshaft 148 controls or determines the gas flow through the internal combustion engine 102. In an embodiment, the camshaft 148 can be configured to selectively control the relative timing and the duration of the valve opening and closing events through a process referred to as variable valve timing. Various arrangements for achieving variable valve timing are known. In one embodiment, contoured lobes formed on the camshaft 148 are manipulated to alter the timing and duration of valve events by moving the camshaft along its axis to expose the valve activators to changing lobe contours. To implement these adjustments in the illustrated embodiment, the camshaft 148 can be associated with a camshaft actuator 149. As is known in the art, other methods exist for implementing variable valve timing such as additional actuators acting on the individual valve stems and the like.
A block diagram for an alternative embodiment for an engine is shown in
In reference now to the embodiments shown in both
To filter debris from intake air drawn from the atmosphere, an air filter 160 can be disposed upstream of the compressor 152. In some embodiments, the engine system 100 may be open-throttled wherein the compressor 152 draws air directly from the atmosphere with no intervening controls or adjustability, while in other embodiments, to assist in controlling or governing the amount of air drawn into the engine system 100, an adjustable governor or intake throttle 162 can be disposed in the intake line 132 between the air filter 160 and the compressor 152. Because the intake air may become heated during compression, an intercooler 166 such as an air-to-air heat exchanger can be disposed in the intake line 132 between the compressor 152 and the intake manifold 130 to cool the compressed air.
To reduce emissions and assist adjusted control over the combustion process, the engine system 100 can mix the intake air with a portion of the exhaust gasses drawn from the exhaust system of the engine through a system or process called exhaust gas recirculation (“EGR”). The EGR system forms an intake air/exhaust gas mixture that is introduced to the combustion chambers. In one aspect, addition of exhaust gasses to the intake air displaces the relative amount of oxygen in the combustion chamber during combustion that results in a lower combustion temperature and reduces the generation of nitrogen oxides. Two exemplary EGR systems are shown associated with the engine system 100 in
In the first embodiment, a high-pressure EGR system 170 operates to direct high-pressure exhaust gasses to the intake manifold 130. The high-pressure EGR system 170 includes a high-pressure EGR line 172 that communicates with the exhaust line 142 downstream of the exhaust manifold 140 and upstream of the turbine 156 to receive the high-pressure exhaust gasses being expelled from the combustion chambers 106. The system is thus referred to as a high-pressure EGR system 170 because the exhaust gasses received have yet to depressurize through the turbine 156. The high-pressure EGR line 172 is also in fluid communication with the intake manifold 130. To control the amount or quantity of the exhaust gasses combined with the intake air, the high-pressure EGR system 170 can include an adjustable EGR valve 174 disposed along the high-pressure EGR line 172. Hence, the ratio of exhaust gasses mixed with intake air can be varied during operation by adjustment of the adjustable EGR valve 174. Because the exhaust gasses may be at a sufficiently high temperature that may affect the combustion process, the high-pressure EGR system can also include an EGR cooler 176 disposed along the high-pressure EGR line 172 to cool the exhaust gasses.
In the second embodiment, a low-pressure EGR system 180 directs low-pressure exhaust gasses to the intake line 132 before it reaches the intake manifold 130. The low-pressure EGR system 180 includes a low-pressure EGR line 182 that communicates with the exhaust line 142 downstream of the turbine 156 so that it receives low-pressure exhaust gasses that have depressurized through the turbine, and delivers the exhaust gas upstream of the compressor 152 so it can mix and be compressed with the incoming air. The system is thus referred to as a low-pressure EGR system because it operates using depressurized exhaust gasses. To control the quantity of exhaust gasses re-circulated, the low-pressure EGR line 182 can also include an adjustable EGR valve 184.
In both the high- and low-pressure EGR system embodiments, exhaust gas from the exhaust manifold is recirculated into the intake of the engine, as shown in
When this more direct type of exhaust recirculation is employed, the low- and/or high-pressure EGR systems 180 and 170 of the engine 100 (see
It should also be appreciated that the composition of the exhaust gas passing through the recirculation passage 138 may be different in some respects than the exhaust gas passing through the EGR system 170 or 180. Specifically, while the exhaust gas that passes through the EGR system 170 and 180 is provided from the exhaust manifold 140 after it has been exhausted from the engine cylinders following a first combustion, recompression, and second combustion strokes in accordance with a six-stroke cycle, exhaust gas provided through the recirculation passage 138 is removed from the cylinder during the recompression stroke and before the second combustion event. Such gas removed during the recompression stroke can be expected to have a higher hydrocarbon and soot content, which in the present embodiment is not exhausted from the engine and instead is recirculated into the intake manifold 130.
To further reduce emissions generated by the combustion process, the engine system 100 can include one or more after-treatment devices disposed along the exhaust line 142 that treat the exhaust gasses before they are discharged to the atmosphere. One example of an after-treatment device is a diesel particulate filter (“DPF”) 190 that can trap or capture particulate matter in the exhaust gasses. Once the DPF has reached its capacity of captured particulate matter, it must be either cleaned or regenerated. Regeneration may be done either passively or actively. Passive regeneration utilizes heat inherently produced by the engine to burn or incinerate the captured particulate matter. Active regeneration generally requires higher temperature and employs an added heat source such as a burner to heat the DPF. Another after-treatment device that may be included with the engine system is a selective catalytic reduction (“SCR”) system 192. In an SCR system 192, the exhaust gasses are combined with a reductant agent such as ammonia or urea and are directed through a catalyst that chemically converts or reduces the nitrogen oxides in the exhaust gasses to nitrogen and water. To provide the reductant agent, a separate storage tank 194 may be associated with the SCR system and in fluid communication with the SCR catalyst. A diesel oxidation catalyst 196 is a similar after-treatment device made from metals such as palladium and platinum that can convert hydrocarbons and carbon monoxide in the exhaust gasses to carbon dioxide. Other types of catalytic converters, three way converters, mufflers and the like can also be included as possible after-treatment devices.
In the embodiment shown in
To coordinate and control the various systems and components associated with the engine system 100, the system can include an electronic or computerized control unit, module or controller 200. The controller 200 is adapted to monitor various operating parameters and to responsively regulate various variables and functions affecting engine operation. The controller 200 can include a microprocessor, an application specific integrated circuit (“ASIC”), or other appropriate circuitry and can have memory or other data storage capabilities. The controller can include functions, steps, routines, data tables, data maps, charts and the like saved in and executable from read only memory to control the engine system. Although in
For example, to monitor the pressure and/or temperature in the combustion chambers 106, the controller 200 may communicate with chamber sensors 210 such as a transducer or the like, one of which may be associated with each combustion chamber 106 in the engine block 104. The chamber sensors 210 can monitor the combustion chamber conditions directly or indirectly. For example, by measuring the backpressure exerted against the intake or exhaust valves, or other components that directly or indirectly communicate with the combustion cylinder such as glow plugs, during combustion, the chamber sensors 210 and the controller 200 can indirectly measure the pressure in the combustion chamber 106. The controller can also communicate with an intake manifold sensor 212 disposed in the intake manifold 130 and that can sense or measure the conditions therein. To monitor the conditions such as pressure and/or temperature in the exhaust manifold 140, the controller 200 can similarly communicate with an exhaust manifold sensor 214 disposed in the exhaust manifold 140. From the temperature of the exhaust gasses in the exhaust manifold 140, the controller 200 may be able to infer the temperature at which combustion in the combustion chambers 106 is occurring.
To measure the flow rate, pressure and/or temperature of the air entering the engine, the controller 200 can communicate with an intake air sensor 220. The intake air sensor 220 may be associated with, as shown, the intake air filter 160 or another intake system component such as the intake manifold. The intake air sensor 220 may also determine or sense the barometric pressure or other environmental conditions in which the engine system is operating.
To further control the combustion process, the controller 200 can communicate with injector controls 230 that can control the fuel injectors 120 operatively associated with the combustion chambers 106. The injector controls 240 can selectively activate or deactivate the fuel injectors 120 to determine the timing of introduction and the quantity of fuel introduced by each fuel injector. To further control the timing of the combustion operation, the controller 200 can also communicate with a camshaft control 232 that is operatively associated with the camshaft 148 and/or camshaft actuator 149 to control the variable valve timing, when such a capability is used.
In embodiments having an intake throttle 155, the controller 200 can communicate with a throttle control associated with the throttle and that can control the amount of air drawn into the engine system 100. Alternatively, the amount of air used by the engine may be controlled by variably controlling the intake valves in accordance with a Miller cycle, which includes maintaining intake valves open for a period during the compression stroke and/or closing intake valves early during an intake stroke to thus reduce the amount of air compressed in the cylinder during operation. The controller 200 can also be operatively associated with either or both of the high-pressure EGR system 170 and the low-pressure EGR system 180. For example, the controller 200 is communicatively linked to a high-pressure EGR control 242 associated with the adjustable EGR valve 174 disposed in the high-pressure EGR line 182. Similarly, the controller 200 can also be communicatively linked to a low-pressure EGR control 244 associated with the adjustable EGR valve 184 in the low-pressure EGR line 182. The controller 200 can thereby adjust the amount of exhaust gasses and the ratio of intake air/exhaust gasses introduced to the combustion process.
The engine system 100 can operate in accordance with a six-stroke combustion cycle in which the reciprocal piston disposed in the combustion chamber makes six or more strokes between the top dead center (“TDC”) position and bottom dead center (“BDC”) position during each cycle. A representative series of six strokes and the accompanying operations of the engine components associated with the combustion chamber 106 are illustrated in
The actual strokes are performed by a reciprocal piston 250 that is slidably disposed in an elongated cylinder 252 bored into the engine block. One end of the cylinder 250 is closed off by a flame deck surface 254 so that the combustion chamber 106 defines an enclosed space between the piston 250, the flame deck surface and the inner wall of the cylinder. The reciprocal piston 250 moves between the TDC position where the piston is closest to the flame deck surface 254 and the BDC position where the piston is furthest from the flame deck surface. The motion of the piston 250 with respect to the flame deck surface 254 thereby defines a variable volume 258 that expands and contracts.
Referring to
As illustrated in
During a first power stroke, the combusting air/fuel mixture expands forcing the piston 250 back to the BDC position as indicated in
Referring to
In other words, as the piston is recompressing the byproducts of the first power stroke that are present in the cylinder, the pressure of those byproducts will increase beyond the fluid pressure in the intake and exhaust manifolds of the engine. Under such conditions, opening the intake valve 136 will cause blowdown exhaust gas to exit the cylinder and pass directly into the intake manifold of the engine. Such internal EGR, however, may not suffice to remove an adequate amount of blowdown exhaust gas from the cylinder, so the opening of the exhaust gas valve 146 may also be required.
In the engine embodiment shown in
The engine embodiment shown in
Regardless of the cylinder valve arrangement used, the introduction of blowdown exhaust gas into the intake system of the engine, either by opening the intake valve 136 in the embodiment shown in
Returning now to
The quantity of the second fuel charge 264 provided to the cylinder, in conjunction with oxygen that may remain within the cylinder, can be selected such that stoichiometric or near stoichiometric conditions for combustion are provided within the combustion chamber 106. At stoichiometric conditions, the ratio of fuel to air is such that substantially the entire second fuel charge will react with all the remaining oxygen in the combustion products 262. When the piston 250 is at or near the TDC position and the combustion chamber 106 reaches the second maximum pressure 288, the second fuel charge 264 and the previous combustion products 262 may spontaneously ignite. Referring to
The second combustion event can further incinerate the unburned combustion products from the initial combustion event such as unburned fuel and soot. The quantity or amount of hydrocarbons in the resulting second combustion products 266 remaining in the cylinder 252 may also be reduced. Referring to
It should be appreciated that both a traditional EGR system, such as the low- and/or high-pressure EGR systems 180 and 170, as well as a system for re-circulating blowdown exhaust gas, such as the recirculation passage 138 that cooperates with the recirculation valves 137, may advantageously be used alongside one another. For example, the traditional EGR system may operate at relatively lower engine speeds and loads, such as idle, where the combustion cylinder pressures and engine emissions may not require removal and recirculation of exhaust blowdown gases. Similarly, at high engine speeds and, especially, at high engine loads, the EGR system may be operating to recirculate little or no exhaust gas, such that the maximum amount of oxygen can be provided to the cylinders for combustion, while the blowdown recirculation system may be operating at or close to a maximum capacity to ensure that peak cylinder pressures remain below the operating thresholds of the engine.
In this way, an engine controller that monitors and controls operation of various engine components and systems such as intake, exhaust and recirculation valve timing, EGR valve operation, fuel injector activation for injection duration and initiation, may be used to control and optimize engine operation and emissions. The controller may monitor various signals indicative of operation of the engine combustion system, for example, exhaust temperature, blowdown gas temperature, cylinder pressure, engine airflow, EGR gas flow, EGR valve position, exhaust pressure, intake pressure, intake air temperature, altitude and the like either directly by use of sensors, as previously discussed, or indirectly by calculating or otherwise estimating these parameters.
With such information, and relative to the present disclosure, the controller may dynamically balance, in real time, the control of EGR gas and blowdown gas that is recirculated in the engine based on the operating point of the engine. The engine operating point may be indicated by the then-present engine speed and load at which the engine is operating. The magnitude of exhaust gas recirculation through the EGR system and the blowdown gas recirculation system for each engine operating point may be determined based on predetermined control parameters, which can be tabulated against engine speed and load, and be corrected based on the engine operating parameters measured or estimated.
For example, for a given engine speed and load, the controller may provide an EGR control signal to an EGR valve that causes a valve opening that corresponds to a desired EGR rate. In the same operating condition, the controller may also provide a valve timing signal to a device that determines the timing and/or duration of the valve opening of at least the recirculation valve that corresponds to a desired blowdown exhaust gas recirculation rate, as discussed above relative to the engine embodiment shown in
A representative engine map showing areas of engine operation where EGR, exhaust blowdown recirculation or both may be desired is shown in
In reference to the engine map 312, each engine operating condition may be represented on the map by a point, which corresponds to the then-present engine speed and load. In the map 312, the collection of points belonging to the first area 320 represent points during which the engine uses the traditional EGR system, at different degrees that are tailored to the particular engine system, to control emissions. The collection of points belonging to the third area 324 represent points during which the engine primarily uses blowdown exhaust gas recirculation to control emissions. The collection of points belonging to the second area 322 represent transitional points during which the engine may use both traditional EGR and blowdown exhaust gas recirculation to control emissions. Thus, depending on whether the engine operating point on the map falls in the first, second or third areas 320, 322 or 324, the controller may provide the appropriate commands to the various engine components and systems affecting cylinder operation.
In addition to controlling the EGR and blowdown exhaust recirculation functions of the engine referring to
The present disclosure is applicable to internal combustion engines performing a six-stroke combustion cycle. A flowchart for a method of controlling engine airflow and emissions is provided in
On the basis of engine operating point as a primary control parameter, the timing and duration of activation of the EGR valve and blowdown exhaust valve are determined in the controller at 304. As previously discussed, in one embodiment, the controller may contain lookup tables or other functions operating to determine or interpolate a desired valve activation signal based on the then-present engine operating point. The desired EGR valve control signal thus determined may be provided as a setpoint to an EGR valve controller. Alternatively, the EGR valve control signal may be provided in the form of a desired EGR gas flow rate, which is then provided to an EGR valve system control module that monitors various engine parameters, for example, comparing signals from an engine intake mass air flow sensor with signals from a sensor measuring EGR gas flow rate or, alternatively, with a theoretical calculation of the volumetric efficiency of the engine, to calculate the effective rate of EGR gas provided to the engine. Similarly, a blowdown exhaust valve control signal may be provided to an actuator operating to push the recirculation valve open (see, for example, valve 137 in
The controller may then determine the loading state of a LNT catalyst at 306, to determine whether regeneration is required. Various engine operating parameters indicative of the operating conditions of the combustion cylinders are monitored at 308. Operating conditions of the combustion cylinders may include signals indicative of exhaust temperature, blowdown gas temperature, cylinder pressure, engine airflow, EGR gas flow, EGR valve position, exhaust pressure, intake pressure, intake air temperature, altitude and the like, but fewer or more of the signals listed here can be used.
Based on the determination at 306 of the LNT loading state, and further based on the various operating conditions monitored at 308, the controller may adjust at the predetermined valve timing and activation duration at 310. As previously discussed, adjustments may be made to address operating thresholds of cylinder operation as well as, in some instances, to facilitate LNT regeneration. More particularly, the monitoring of engine parameters may indicate that, possibly due to environmental conditions, the operation of the combustion cylinders is approaching operational limits. For example, higher than expected cylinder pressures, which can result from clogging in the blowdown recirculation system, may require an increase in the opening duration of the exhaust blowdown recirculation valves. Also, while some embodiments may include a fuel injector disposed in the exhaust system and operating to provide the hydrocarbons required to regenerate the LNT (see, for example, injector 199 in
It will be appreciated that the foregoing description provides examples of the disclosed system and technique. However, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
Number | Name | Date | Kind |
---|---|---|---|
2249997 | Wydler | Jul 1941 | A |
4179892 | Heydrich | Dec 1979 | A |
4736715 | Larsen | Apr 1988 | A |
5224460 | Havstad et al. | Jul 1993 | A |
5284116 | Richeson, Jr. | Feb 1994 | A |
5433180 | Hitomi et al. | Jul 1995 | A |
5564275 | Codan et al. | Oct 1996 | A |
6209324 | Daudel et al. | Apr 2001 | B1 |
6293092 | Ament et al. | Sep 2001 | B1 |
6295817 | Abthoff et al. | Oct 2001 | B1 |
6311651 | Singh | Nov 2001 | B1 |
6321731 | Russ et al. | Nov 2001 | B1 |
6324847 | Pierpont | Dec 2001 | B1 |
6332446 | Matsumoto et al. | Dec 2001 | B1 |
6491016 | Buratti | Dec 2002 | B1 |
6557779 | Perr et al. | May 2003 | B2 |
6564758 | Enderle et al. | May 2003 | B1 |
6619241 | Otterspeer et al. | Sep 2003 | B2 |
6622693 | Arndt et al. | Sep 2003 | B2 |
6705543 | Carroll, III et al. | Mar 2004 | B2 |
6758174 | Fuerhapter | Jul 2004 | B1 |
6772742 | Lei et al. | Aug 2004 | B2 |
6807956 | Gaessler et al. | Oct 2004 | B2 |
6941746 | Tarabulski et al. | Sep 2005 | B2 |
6966505 | Peterson, Jr. | Nov 2005 | B2 |
7031821 | Lewis et al. | Apr 2006 | B2 |
7096848 | Ono et al. | Aug 2006 | B2 |
7143725 | Hu | Dec 2006 | B1 |
7181902 | Naik | Feb 2007 | B2 |
7213565 | Grünaug et al. | May 2007 | B2 |
7264785 | Blakeman et al. | Sep 2007 | B2 |
7287378 | Chen et al. | Oct 2007 | B2 |
7418928 | Fiveland | Sep 2008 | B2 |
7422000 | Kesse et al. | Sep 2008 | B2 |
7426916 | Reed et al. | Sep 2008 | B2 |
7500475 | Raymond et al. | Mar 2009 | B2 |
7513239 | Blessing et al. | Apr 2009 | B2 |
7556017 | Gibson | Jul 2009 | B2 |
7574983 | Kuo | Aug 2009 | B2 |
7597865 | Mori et al. | Oct 2009 | B2 |
7673590 | Reed et al. | Mar 2010 | B2 |
7685990 | Dingle | Mar 2010 | B2 |
7726268 | Kelem et al. | Jun 2010 | B2 |
7763222 | Miyairi et al. | Jul 2010 | B2 |
7832370 | Sutherland et al. | Nov 2010 | B2 |
7867598 | Miyairi et al. | Jan 2011 | B2 |
7891345 | Pierpont | Feb 2011 | B2 |
8051659 | Yamashita et al. | Nov 2011 | B2 |
8096279 | Kuzuyama | Jan 2012 | B2 |
8136504 | Winstead | Mar 2012 | B2 |
8141352 | Tsujimoto et al. | Mar 2012 | B2 |
8215292 | Bryant | Jul 2012 | B2 |
8291872 | Szybist et al. | Oct 2012 | B2 |
20080047509 | Sellnau et al. | Feb 2008 | A1 |
20080283006 | Sutherland et al. | Nov 2008 | A1 |
20090145382 | Kawai | Jun 2009 | A1 |
20090272363 | Yun et al. | Nov 2009 | A1 |
20100050963 | Ooyama | Mar 2010 | A1 |
20100064994 | Colliou et al. | Mar 2010 | A1 |
20100083921 | Ooyama | Apr 2010 | A1 |
20100212300 | Fiveland et al. | Aug 2010 | A1 |
20100269775 | Chandes et al. | Oct 2010 | A1 |
20100299049 | Kang et al. | Nov 2010 | A1 |
20110017170 | Song et al. | Jan 2011 | A1 |
20110162349 | Cheng et al. | Jul 2011 | A1 |
20110197852 | Meyman | Aug 2011 | A1 |
20120023935 | Pursifull et al. | Feb 2012 | A1 |
20120166066 | Fiveland et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
03-115743 | May 1991 | JP |
WO 2009081227 | Jul 2009 | WO |
WO 2010075165 | Jul 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20140158072 A1 | Jun 2014 | US |