This disclosure relates to infrastructure devices and more particularly to faceplate displays for such devices that are not limited in size by the confines of the infrastructure device.
Infrastructure devices are those devices that are mounted to a premises in such as manner as to be permanent or at least not easily removed therefrom. One aspect of an infrastructure device is that it is connected, at least electrically, to wiring affixed to the premises structure. Another aspect of an infrastructure device is that it is connected via wired or wireless communications to devices that are themselves connected electrically to the premises electricity delivery infrastructure. A light switch is one form of an infrastructure device. An electrical outlet is another form of such a device. A TV, radio, security system, surveillance system, premise-based communication system, or game box is yet another form of such device. Other infrastructure devices can be, for example, a wide variety of sensors/systems such as are obvious (e.g., light switches, plugs, thermostats, inline power boxes, etc) but also non-obvious sensors/systems such as light sensors, temperature sensors, internet access systems, WAN system, LAN systems, RF systems, display systems, power sensors, power supply systems, schedulers, clocks, audio/video systems, intercom systems, telephone systems, HVAC systems, television, radio, cameras, proximity sensors, occupancy sensors, GPS, entertainment systems, safety monitoring systems, security systems, fire monitoring systems, surveillance systems, messaging systems, alert and alarm systems, medical monitoring systems, data monitoring systems, data control systems, access monitoring systems, access control systems, legacy remote control systems (e.g., TVs, radios, lighting), media reader systems, identification systems, humidity sensors, barometric pressure sensors, weight sensors, traffic pattern sensors, power quality sensors, operating costs, power factor sensors, meters, storage systems, distributed generation systems, UPS systems, battery monitoring systems, priority systems, inertia sensors, glass break sensors, flood sensors, vibration sensors, smoke sensors, carbon dioxide sensors, carbon monoxide sensors, ultrasound sensors, infra-red sensors, microwave sensors, radiation sensors, bacteria sensors, disease sensors, poison sensors, germ sensors, toxic material sensors, air quality sensors, laser sensors, load sensors, load control systems, etc.
A common trait of infrastructure devices is that they are mounted in boxes, usually called utility boxes, permanently (for all practical purposes) affixed to the premises. Utility boxes come in various sizes with the smallest size (single gang) having a front opening of roughly 2½ inches wide and 4 inches tall. Utility boxes typically grow larger in the width direction. Thus a two-gang utility box has the same height (4 inches) but a width of 5 inches, with a triple-gang box having a width of 7½ inches, etc.
Utility device covers, called faceplates, are sized to fit the width of the box. Thus faceplates come in single-gang, double-gang, triple-gang, etc. sizes. All of these sizes have a similar height but vary in width. In situations such as discussed in one or more of the above-identified patent applications where it is desired to have the cover of a utility device act as an information display, the size limitations of a single-gang and possibly even a double-gang box limits the size of the displayed information. This then reduces the amount of information that can be displayed and/or reduces the size of the letters or images on the display. As a result, the distance away from the display a person can be and still be able to read it properly is also reduced.
In addition to the display size limitations imposed on a faceplate, for example, by a single-gang box, there is also a limitation as to the amount of electronics that can be positioned within the faceplate. For complex faceplate displays that can handle a number of different functions, the need for electronic footprint space is critical.
The present invention is directed to a system and method which allows a display to have a dimension significantly greater than the actual dimension of the matching utility box or traditional utility box device faceplate. Thus, by making the size of the faceplate independent from the size of the matching utility box or traditional utility box faceplate, larger displays are possible which allows for larger size lettering and pictures and also allows for increased electronics within the display itself. In one embodiment, faceplate displays having double, triple or even quad-gang size can be positioned over a single-gang utility box thereby increasing the space for electronics as well as increasing the amount of (or size of) displayable material.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with fiber objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
Also shown in
Note that the exact width or height of the faceplate is not critical but should for esthetic reasons fit into the decor of the premise to which it is to be used. Thus, the size (both height and width) should be such as to be pleasing to the eye and not make the faceplate appear as though it is foreign to the environment. In most cases, this would dictate that the faceplate width be made to appear to be a multiple (such as two, three, four, five, six, etc) of a standard single-gang faceplate. Thus, while the faceplate need not be exactly a gang box width multiple, it should be close enough to such a multiple so as to not appear to be out of place. Note also that the faceplate display could, subject to any element positioned on the faceplate that would need to fit into a utility box, extend left or right (or up/down) of the box by any amount. Also note that traditional faceplates are marginally larger than the utility box. In the discussion herein, the faceplate is significantly larger. In this context, ‘significantly’ means that to the user's eye, it appears to be wider (taller) than a typical gang box by at least one inch and in most cases, by at least two inches.
Note that using the concepts of the invention, commonly available LCD panels normally destined for small notebook computers or portable DVD players and that have a traditional 3×4 or 6×9 aspect ratio, can be used as a faceplate of desired, even though such devices do not fit the standard light switch cover height parameters.
The front surface of the faceplate would have a display or other user-visible operational elements distributed across substantially all of the front surface, regardless of the faceplate size. The term ‘substantially all’ does not imply that every portion of the faceplate must have some visible display but rather that there are no large gaps or obviously missing elements as there would be, for example, if one where to place a traditional two-gang faceplate over a single-gang utility box. In such a situation, the area of the faceplate in front of the ‘missing’ gang-box would be blank, or substantially blank, because there could be no display device mounted in the ‘missing’ box. In some cases the ‘substantially all’ test would be satisfied if the faceplate contained a gap for a device mounted in a gang-box. For example, assume a triple-gang width faceplate display were to be used with a switch mounted in a single-gang utility box. The triple-gang faceplate could have an opening therein (either in a center position, or left or right of center) to accept a utility box mounted switch.
Note that in most applications, the triple-gang faceplate would likely be one piece that can be attached on via connectors on the faceplate back-side to the actual ‘in-box” switching module using a two piece design (the faceplate and the switching module). A preferred approach then would be to allow the switching module to be connected to the faceplate in a “centered”, “left”, and “right” side orientation. In other words, the faceplate could be centered on the box or offset to the left or right side of the box (or up or down) according to how the faceplate might best look on the wall so as to provide better placement than where the box is actually located. In such a situation, the backside of the faceplate would have a sophisticated connection system (not shown) to cover reasonable switch and faceplate mounting combinations.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is related to U.S. patent application Ser. No. 11/683,298 filed Mar. 7, 2007 entitled “LIGHT SWITCH USED AS A COMMUNICATION DEVICE”; U.S. patent application Ser. No. 11/683,326 filed Mar. 7, 2007 entitled “ANTICIPATORY UTILITY CONTROL DEVICE”; U.S. patent application Ser. No. 11/683,335 filed Mar. 7, 2007 entitled “PLUG AND PLAY UTILITY CONTROL MODULES”; U.S. Provisional Patent Application No. 60/956,314 filed Aug. 16, 2007 entitled “UTILITY OUTLETS AS A SECURITY SYSTEM”; U.S. Provisional Patent Application No. 60/940,010 filed May 24, 2007 entitled “LIGHT SWITCH AS A WIRELESS HUB”; U.S. Provisional Patent Application No. 60/940,010 filed May 24, 2007 entitled “UTILITY OUTLETS AS REMOTE CONTROL REPEATERS”; U.S. Provisional Patent Application No. 60/956,306 filed Aug. 16, 2007 entitled “USING UTILITY OUTLETS TO DETERMINE AND REPORT MEDIA-BASED ACTIVITY”, and U.S. patent application Ser. No. ______ filed Oct. 19, 2007, Attorney Docket No. 66816-P036US-10715041 entitled “INFRASTRUCTURE DEVICE WITH REMOVABLE FACE PLATE FOR REMOTE OPERATION,” the disclosures of which are incorporated herein by reference.