Sizing roll stand for a steel mill

Information

  • Patent Grant
  • RE38095
  • Patent Number
    RE38,095
  • Date Filed
    Friday, February 23, 2001
    23 years ago
  • Date Issued
    Tuesday, April 29, 2003
    21 years ago
  • Inventors
  • Examiners
    • Larson; Lowell A.
    Agents
    • Oldham; Edward H.
  • US Classifications
    Field of Search
    • US
    • 072 78
    • 072 224
  • International Classifications
    • B21B3920
Abstract
An assembly for producing a finished shape for a rod after the last rolling stage of a multi strand steel mill. This apparatus provides an operation for correcting minor surface irregularities and shape distortion of the rod as it exits from the finishing roll stand. The apparatus consists of four rollers mounted in an assembly which resembles a roller entry guide except that the rollers are capable of producing changes in shape of a work product passing therethrough. The orientation of the roller axis is slowly and constantly changed to prevent wear distortion of the rollers which may result when the rollers are required to roll a malformed product from fixed roller axes. The rollers may be driven in some circumstances.
Description




BACKGROUND OF THE INVENTION




Modern steel mills are required to produce a finished product which must meet critical size requirements within a very small tolerance. Most rod mills are capable of producing a finished product within a given tolerance range until the steel work product wears the contours of the forming rolls so that the finished product has a shape which is not acceptable to a customer. To correct minor irregularities in shape, the steel mill industry has, at times, employed a process known as peeling, wherein a finished rod is pulled through a die to remove portions of the surface of the rod to restore the shape of the finished product to one that is now acceptable to a customer and the surface is now true and free of imperfections. The peeling process is capable of correcting for only small deviations in the gauge of the finished product.




SUMMARY OF THE INVENTION




This invention provides a rolling assembly in which at least three and preferably four equally spaced rollers are mounted in a housing about an axis through which a steel rod or wire passes. The rollers are mounted in a robust assembly which can exert substantial pressure on the rollers to change the shape of the work to compensate for minor shape deviations in the shape of the work product caused by wear of the rollers in the reducing mill. The assembly is provided with a roller positioning device which moves the rollers in the roller assembly in concert toward and away from the axis of the work piece passing between the rollers.




At the same time, the roller assembly in which the rollers are mounted is pivotable through a predetermined angle (say 45°) to change the orientation of the entire roller assembly with respect to the workpiece passing therethrough. In this instance, premature wear of the roller surfaces of the rollers of the sizing guide is minimized because the rollers of the sizing guide are constantly changing position with respect to the surface of the work product.




The cross sectional shape of a work product exiting from a finishing stand of a multi stand steel mill is dependent upon the accuracy of the profile existing in the rollers of the mill stand. When the rollers of the mill have worn to the extent that the work product has a gauge or shape which lies outside the acceptable tolerance range and no further corrective actions involving roller adjustment are capable of restoring the work product to an acceptable gauge, the rollers in the mill must be replaced because the surface contours of the reducing rollers have undergone wear and abrasion by the constant passage of the work product between the reducing rolls.




Some wear patterns in the rollers are predictable, depending on the rolling process to which the mill stand rollers are subjected and most operators of modern steel mills instinctively known that shape distortion of the finished product will inevitably result. At times, the distortion in work product shape may be corrected by further processing the work product to remove such distortion after passage through the final mill stand (if the distortion is not too great). The worn rolls in the mill may then continue to be used to produce a useful work product beyond the usual wear period due to the correction applied to the work product. In the past this correction has usually been accomplished by “peeling” some metal from the surface of the malshaped workpiece using a die such that small shape deformations may be removed by this process.




The sizing roll stand of this invention is capable of restoring the exterior shape of a malformed work product exiting from a steel mill to an acceptable size and shape. The apparatus of this invention is capable of providing corrections for the same shape distortions as the “peeling” process to which reference has been made, but at a very high speed. The rollers of the sizing roll stand may or may not be externally driven.




PERTINENT PRIOR ART











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an exploded perspective view of the device of FIG.


1


.





FIG. 2

is a sectional elevation of the sizing roller device of this invention.





FIG. 3

is a perspective view of an exploded roller assembly of this invention.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to

FIGS. 1 and 2

, a sizing device


10


is shown having a supporting base


12


having a rigid semicircular flange


14


secured thereto by means of gussets


16


,


18


,


20


. A pair of faceplates


22


are welded to the flange


14


at the intersection of gussets


16


and


20


. Each faceplate has a pair of holes


24


for mounting the pair of stationary split half rings


26


,


28


therein.




Split rings


26


and


28


have a pair of faceplates


30


,


32


and


35


,


37


formed therein to permit mounting the pair of split half rings


26


,


28


on supporting base


12


and faceplates


35


,


37


have holes


42


,


44


and


46


,


48


formed therein. The split rings


26


,


28


are made to be joined together at the faceplates


30


and


35


and


32


and


37


and the complete assembly is bolted onto faceplates


22


of base


12


with four bolts (such as


50


) passing through holes such as


42


,


34


and


24


to hold split rings


26


and


28


together and firmly in place on base


12


.




The assembled split rings provide a captive cylindrical recess


52


formed between the annular flanges


54


and


56


for receiving the somewhat circular housing


60


therein. (Note that flange


56


has substantially more depth than flange


54


.) Housing


60


has a somewhat cylindrical boss


62


which is made to cooperate with split rings


26


and


28


which form a housing in recess


52


in which the cylindrical boss


62


may rotate.




The housing


60


is provided with a central bore


64


to which guide


66


is frictionally mounted.




Housing


60


is shown with 2 extending arms


68


and


70


protruding therefrom (two more identical arms are located opposite arms


68


and


70


on the housing


60


). The exterior portion of each of the arms


68


and


70


is formed into a clevis type device which is provided with a bore


72


therein.




Housing


60


is provided with a cruciform shaped inner structure


76


at the center of which is bore


64


. The cruciform structure comprises


4


substantially identical recesses


78


formed by parallel walls


80


,


82


arranged in orthogonal relationship about bore


64


. Each pair of walls


80


,


82


houses a bore


84


for receipt of pins such as


86


.




Each recess


78


is of a size and shape to receive a roller assembly


90


(of which there are four) in a restrained pivoting relationship. Each assembly


90


comprises a pivot arm


92


having a bore


94


in one end thereof. At the opposing end of pivot arm


90


is a sizing roller


98


mounted for rotation (in this instance driven) about an axis determined by bore


100


. Suitable bearings are provided in assembly


90


to withstand the heavy pressures applied to roller assembly


90


during a sizing operation.




A drive motor


102


is applied to rollers


98


(in this instance) to assure that rollers


98


are rotating when the work product makes its entry to the bight formed by the wheels


98


. Each roller assembly


90


fits into its respective recess


78


with a precise fit to avoid slopiness, and to prevent unnecessary lateral motion of each assembly


90


along the axes of pins


86


. Each roller assembly


90


is provided with a bearing pad


104


which is applied to the flat surface


106


of assembly


90


. An abutment


108


provides a guide for mounting pads


104


on the wheel assemblies


90


(see FIG.


3


).




The housing


60


is provided with an internal thread


120


for receiving collar


122


which has a cylindrical outer portion


124


of which


126


is threaded to mate with thread


120


. An opposing conical surface


128


is provided in the interior of collar


122


. Conical surface


128


is shaped to mate with pads


104


of the roller assemblies


90


.




A second internal surface


130


of collar


122


is provided with a set of gear teeth


132


. Gear teeth


132


are provided for engagement of toothed pinion


134


of gear motor


136


. Gear motor


136


is mounted on housing


60


so that the gears


134


and


132


are in constant engagement.




A hydraulic cylinder


220


is mounted in mounting plates


222


,


224


on base


12


. Cylindrical bosses


226


,


228


of cylinder


220


are mated in bore


130


of plates


226


,


228


. Piston rod


232


of cylinder


220


terminates in fitting


234


which has a projection


236


bearing a bore hole


238


therein.




The projection


236


is provided to fit into one of the clevis members


68


of arms


70


of housing


60


and receive a pin


240


through apertures


72


and


238


to secure piston rod


232


to one of the arms


70


of housing


60


. As piston rod


232


is moved in and out of cylinder


220


, the housing


60


rotates within recess


52


of housing


56


formed by the split rings


26


and


28


.




The sizing guide


10


functions as follows: A work product (rod, wire, etc.) is fed into funnel shaped guide


66


and passes into the bight between the four rollers


98


mounted in roller assemblies


90


. The rollers


98


have a predetermined external contour


150


to produce the desired shape of the work product passing therebetween. Collar


122


is rotated by drive motor


138


to move the collar


122


axially in housing


60


along the threaded surface


120


to bear on bearing pads


104


of roller assemblies


90


to wedge the rollers


98


inwardly into a contacting relationship with the work product.




If for some reason the shape of the work product has deviated from the preset gauge required, the sizing device


10


may be used to bring the work product back to a size that is within an acceptable tolerance by applying substantial pressures to the wheel assemblies


90


. The conical surface


108


of collar


122


serves to wedge the wheel assemblies in an inward direction.




Usually the rolls of a mill stand wear in a predictable manner over a period of time, depending on the deformation being produced by the mill rolls in the work product passing therebeween. The work product usually exits from the last mill stand having a peculiar and consistent shape which has a particular orientation with respect to the mill stand. Because of this, any deviation from the desired cross sectional shape of the workpiece tends to be continuously passed from the mill stand with a consistent physical orientation, into the sizing device of this invention.




Depending on the deviation of the workpiece from the desired gauge, the sizing device of this invention will provide correction to the shape of the workpiece exiting from this device and prolong the life of rollers


98


of the sizing guide


10


. Because the finished product of a steel mill exits with any shape deformation of the work product always in the same orientation with respect to the direction of travel of the work product, this device is made to rotate the entire roller assembly (encased in housing


60


) through an angle of about 45° during operation. This assures that the rollers


98


of the roller assemblies


90


continuously contact different surface configurations of the moving work product so that the rollers


98


wear evenly. The working life of rollers


98


is significantly increased as a result.




While changes and deviations from the disclosed device will no doubt occur to those skilled in the art, the applicant prefers to limit the scope of this invention by the ambit of the following claims.



Claims
  • 1. A roller sizing guide having a setplurality of guide rollers mounted in a housing to form a guide roller assembly for contacting and guiding a workpiece traveling through said guide along a central axis of said housing,said housing and roller assembly being rotatably supported on a suitable support means to permit said housing and roller assembly to rotate about said central axis, said rollerssaid roller assembly comprising a plurality of levers pivotally being mounted on pivots located at one end of each lever in said housing, each lever having a roller mounted in the end remote from the pivot, said pivoted levers serving to permit said rollers to move in an arc toward or away from said central axis, a pressure bearing pad for each lever located at the roller end of the roller assembly over the point of contact of each roller and workpiece, roller positioning means for said rollers mounted in said housing to apply a force to said rollers at said pressure bearing pad to move said rollers in concert to contact said workpiece to alter the shape of said workpiece at is travels through said guide.
  • 2. A roller sizing guide as claimed in claim 1 wherein said roller positioning means includes a common wedging meansring surrounding said guide roller assembly for producing simultaneous and equal pivotal movement of said rollers in said housing toward said workpiece.
  • 3. A roller sizing guide as claimed in claim 1 wherein a housing drive means is mounted on said structure to produce rotationoscilliatory motion through a predetermined arc of said housing and said roller assembly during passage of said workpiece therethrough.
  • 4. A roller sizing guide as claimed in claim 3 wherein said roller positioning means includes a common wedging means for producing simultaneously and equal movement of said rollers in said housing toward said workpiece.
  • 5. A roller sizing guide as claimed in claim 4 wherein all of said rollers are mechanically driven.
  • 6. A roller sizing guide as claimed in claim 5 which includes a funnel shaped guide for feeding said workpiece along said axis to said set of rollers.
  • 7. A roller sizing guide for producing shape changes in a workpiece passing along a central axis of said guide,said guide having a rotatable housing mounted in a suitable framework supported by a base, said housing having a cylindraceous outer surface, said framework including means to contact said cylindraceous outer surface and permit said housing to rotate in a plane orthogonal to said axis, said housing having means to mount at least three roller assemblies in said housing, said roller assemblies comprising lever means having a suitable roller mounted for rotation at one end thereof, pivot means in said lever means at an end remote from said roller, said pivot means being mounted in said housing to provide for pivotally mounting said rollers at equally spaced intervals about said axis, bearing pads mounted on said lever means at a location on said lever means remote from said pivot means, adjustable pressure lever contacting means applying pressure to bearing pads on said lever means causing said leverslever means to exert pressure on said roller assemblies at points above said roller to cause said rollers to contact said workpiece and produce surface changes to said workpiece.
  • 8. A roller sizing guide as claimed in claim 7 wherein housing rotation means is connected to said housing to cause continued rotational oscillation of said housing within predetermined limits.
  • 9. A roller sizing guide as claimed in claim 8 wherein said adjustable pressure lever contacting means comprises a pressure ring having an exterior threaded surface for threadably engaging a threaded surface in said housing, said pressure ring being provided with a conical inner surface to engage pressure pads on said roller assemblies for adjustably applying pressure to said pressure pads of said roller assemblies as said pressure ring rotates in said housing.
  • 10. A sizing guide assembly for guiding and contacting a workpiece passing through said guide assembly to produce minor shape changes in said workpiece as it passes through a central axis of said guide assembly,said guide assembly comprising: a stationary support for mounting a rotatable housing within said stationary support to permit said housing to rotate about said central axis, said housing comprising a pair of cooperating members for mounting and adjusting the position of a plurality of guide rollers in a roller assembly in said sizing guide, a first member of said pair having an external cylindrical surface which cooperates with said stationary support to permit said first member to rotate in a controlled manner within said support member, said first member having means to mount a plurality of pivot arms therein, each pivot arm having a guide roller mounted thereon for contacting said workpiece, said pivot arms and guide rollers being moved in concert by a second member which is mounted within said first member so as to permit said second member to execute translational motion within said first member along said central axis in the presence of a suitable stimulus, said second member having a conical interior surface which simultaneously engages said pivot arms to move said pivot arms and said rollers toward said workpiece as said second member translates.
  • 11. A sizing guide assembly as claimed in claim 10 wherein said second member is of a ring shaped configuration and has a threaded peripheral surface opposite said conical surface, wherein said threaded peripheral outer surface of said second member engages a corresponding mating threaded interior surface in said first member.
  • 12. A method of producing minor changes to a steel rod or wire as it passes through a sizing guide comprising:providing said guide with a housing for mounting a plurality of rollers therein for contacting said rod or wire as it passes through said guide, providing pressure means for urging said rollers in concert toward said rod or wire as it passes therethrough, providing a support means to capture said housing within said support means in such a manner as to constrain said housing to rotational movement about said rod or wire as it passes therethrough, driving means associated with said housing for causing oscillatory rotational motion of said housing and rollers about said rod or wire as said rod or wire passes through said guide.
  • 13. A method as claimed in claim 12 in which each roller is mounted within said housing on a pivot arm, and said pressure means comprises a pressure ring mounted in said housing, wherein said pressure ring is provided with an internal conical surface which engages each pivot arm simultaneously.
  • 14. A method as claimed in claim 13 in which said pressure ring executes translational motion upon suitable stimulation to change the pressure on said pivot arms and said rollers.
US Referenced Citations (8)
Number Name Date Kind
1697739 Sussman Jan 1929 A
2168340 Hill Aug 1939 A
3765214 Boehmer Oct 1973 A
4039107 Boley Aug 1977 A
4194381 Joekel Mar 1980 A
4790164 Rothe Dec 1988 A
5363682 Takeda et al. Nov 1994 A
6018974 Potthoff et al. Feb 2000 A
Foreign Referenced Citations (8)
Number Date Country
58188509 Nov 1983 JP
61107406 Jul 1986 JP
1262014 Oct 1989 JP
233922 Sep 1990 JP
341848 Sep 1991 JP
570707 Sep 1993 JP
839104 Feb 1996 JP
10180336 Jul 1998 JP
Divisions (1)
Number Date Country
Parent 09/174115 Oct 1998 US
Child 09/790567 US
Reissues (1)
Number Date Country
Parent 09/174115 Oct 1998 US
Child 09/790567 US