This disclosure relates generally to skateboards and more particularly to a multi-wheel skateboard truck.
Individuals have ridden and used skateboards as a convenient and entertaining form of transportation. Generally, skateboards present many favorable advantages over other self-propelled transportation alternatives, as skateboards can be easily stored, picked up, and carried. However, and quite often, when users ride skateboards over cracks including (but not an exhaustive list of) contraction joints, expansion joints, control joints, and uneven surfaces, the wheels of the skateboard descend into the crack and then pop back up when the wheels of the skateboard contacts the other side of the crack. This type of interaction results in detrimental effects including, noise, shock to the rider, and handling (or control) of the skateboard. There is a need in the art for a moving wheel platform that minimizes wheel interactions with noncontinuous and uneven surfaces to enhance an individual's riding experience and satisfaction.
The invention presented herein is directed to moving-wheel platforms that are capable of tempering negative (or unwanted) feedback experienced by a user when maneuvering over uneven surfaces, such as sidewalk cracks. Many of the moving-wheel platform embodiments presented herein, can be configured for use in skateboard or longboard applications (in the form of a truck). However, in alternative embodiments, the moving wheel platforms can be adapted for use in wheelbarrows, industrial carts, industrial dollies, commercial carts, commercial dollies, hand trucks, and stack trucks applications.
The skateboard or longboard can comprise a series of trucks having arms, axles and wheels arranged in such a manner that at least two wheels are in contact with the ground surface at any given moment, while another wheel of the truck is either suspended or submerged into a crack or voided space, when applicable. The truck is further configured to prevent the wheels of the truck from contacting or engaging the bottom of the skateboard or longboard when a sudden shift in the skateboard's center of mass occurs. This is at least in part accomplished by rotation inhibiting structures.
The term or phrase “connect”, “connected”, “connects”, “connecting” used herein can be defined as joining two or more elements together, mechanically or otherwise. Connecting (whether mechanical or otherwise) can be for any length of time, e.g. permanent or semi-permanent or only for an instant.
The term or phrase “link”, “linked”, “links”, “linking” used herein can be defined as a relationship between two or more elements where at least one elements affects another element. Linking (whether mechanical or otherwise) can be for any length of time, e.g. permanent or semi-permanent or only for an instant.
The term or phrase “secure”, “secured”, “secures”, “securing” used herein can be defined as fixing or fastening (one or more elements) firmly so that it cannot be moved or become loose. Securing (whether mechanical or otherwise) can be for any length of time, e.g. permanent or semi-permanent or only for an instant.
The term or phrase “width” or “width of the elongated body” used herein is measured in a direction extending from a first end of the elongated body to a second end of the elongated body (or along the longitudinal axis of the elongated body), which is distal from the first end.
The term or phrase “couple”, “coupled”, “couples”, and “coupling” used herein can be defined as connecting two or more elements, mechanically or otherwise. Coupling (whether mechanical or otherwise) can be for any length of time, e.g. permanent or semi-permanent or only for an instant. Mechanical coupling and the like should be broadly understood and include mechanical coupling of all types. The absence of the word “removably,” “removable,” and the like near the word “coupled,” and the like does not mean that the coupling, in question is or is not removable.
The term or phrase “skateboard” or “longboard” used herein can be defined by four distinct portions. A top portion of the skateboard is defined as the portion of a deck the user stands on. A bottom portion of the skateboard is defined as the portion opposite the top portion. A stance of the right footed user by convention is defined as the left foot being forward of the right foot. A front portion of the skateboard is defined as being proximal to the left foot of the user. A back portion of the skateboard is defined as being proximal with the right foot of the user. A forward direction is defined as the direction when the right foot of the user pushes backwards on a ground surface to make the skateboard move in the opposite direction.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, device, or apparatus that comprises a list of elements is not necessarily limited to those elements but may include other elements not expressly listed or inherent to such process, method, system, article, device, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the apparatus, methods, and/or articles of manufacture described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
“A,” “an,” “the,” “at least one,” and “one or more” are used interchangeably to indicate that at least one of the item is present; a plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; about or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range. Each value within a range and the endpoints of a range are hereby all disclosed as separate embodiment. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated items, but do not preclude the presence of other items. As used in this specification, the term “or” includes any and all combinations of one or more of the listed items. When the terms first, second, third, etc. are used to differentiate various items from each other, these designations are merely for convenience and do not limit the items.
In many examples as used herein, the term “approximately” can be used when comparing one or more values, ranges of values, relationships (e.g., position, orientation, etc.) or parameters (e.g., velocity, acceleration, mass, temperature, spin rate, spin direction, etc.) to one or more other values, ranges of values, or parameters, respectively, and/or when describing a condition (e.g., with respect to time), such as, for example, a condition of remaining constant with respect to time. In these examples, use of the word “approximately” can mean that the value(s), range(s) of values, relationship(s), parameter(s), or condition(s) are within ±0.5%, ±1.0%, ±2.0%, ±3.0%, ±5.0%, and/or ±10.0% of the related value(s), range(s) of values, relationship(s), parameter(s), or condition(s), as applicable.
Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
Presented herein are skateboards or longboards comprising a series of trucks (skateboard 111, 511). The moving wheel platforms described herein can be configured for use in skateboard or longboard applications in the form of a truck (the truck 100, 200, 300, 400, 500).
1. Hanger
In many of the exemplary skateboard truck embodiments, the truck comprises a hanger. The hanger generally comprises an elongated body; a pivot saddle protruding from the elongated body; a void (or bore) extending longitudinally through the elongated body; one or more arms pivotably (and/or removably) engaged to the hanger; and one or more rotation-inhibiting structure(s) configured to limit over rotation of the one or more arm(s). In many embodiments, the hanger is configured to be coupled to a baseplate.
The baseplate, in return, can be affixed to the bottom surface of the skateboard or longboard. As the hanger and the baseplate are assembled to one another, a linkage is formed that enables the hanger to become a base or foundation piece that directly or indirectly connects, links, or secures many of the undermentioned components together.
2. Elongated Body
Generally, in many embodiments, a portion of the hanger comprises an elongated body. The elongated body of the hanger can be cylindrical (“elongated cylindrical body”) and/or tubular (“elongated tubular body”).
As previously mentioned, the elongated body can be tubular (“elongated tubular body”). In many embodiments, the elongated tubular body comprises an inner diameter and an outer diameter throughout the entire width of the hanger (see
In specific embodiments, the inner diameter D1 of the elongated tubular body can be 0.01 inch, 0.03 inch, 0.05 inch, 0.07 inch, 0.09 inch, 0.11 inch, 0.13 inch, 0.15 inch, 0.17 inch, 0.19 inch, 0.21 inch, 0.23 inch, 0.25 inch, 0.27 inch, 0.29 inch, 0.31 inch, 0.33 inch, 0.35 inch, 0.37 inch, 0.39 inch, 0.41 inch, 0.43 inch, 0.45 inch, 0.47 inch, 0.49 inch, 0.51 inch, 0.53 inch, or 0.55 inch. The outer diameter D2 can range between 0.1 inch to 1.0 inch. Specifically, the outer diameter of the elongated tubular body can be 0.1-inch, 0.2-inch, 0.3-inch, 0.4-inch, 0.5-inch, 0.6-inch, 0.7-inch, 0.8-inch, 0.9 inch, or 1.0 inch, or combinations thereof. In other embodiments, the outer diameter D2 can range between 0.1 inch-0.2 inch, 0.2 inch-0.3 inch, 0.3 inch-0.4 inch, 0.4 inch-0.5 inch, 0.5 inch-0.6 inch, 0.6 inch-0.7 inch, 0.7 inch-0.8 inch, 0.8 inch-0.9 inch, or 0.9 inch-1.0 inch.
The material of the elongated body can be constructed from any material used to construct a conventional skateboard truck. The elongated body of the hanger can be made from any one or combination of the following: 8620 alloy steel, S25C steel, carbon steel, maraging steel, 17-4 stainless steel, 1380 stainless steel, 303 stainless steel, stainless steel alloy, brushed steel, tungsten, titanium, titanium alloy, aluminum, aluminum alloy, aluminum 3003, aluminum 5052, aluminum 6061, aluminum 7075, Aluminum A356, ADC-12, or any other metal or plastic suitable for creating an elongated body. The material of the elongated body can vary based upon the intended use and/or weight of the hanger.
The elongated body of the hanger may vary in width to accommodate (or compliment) the width of the skateboard deck or a particular apparatus. In many embodiments, the width of the elongated body can range between approximately 5 inches to approximately 9 inches. In other embodiments, the width of the elongated body can be approximately between 5 inches-6 inches, 6 inches-7 inches, 7 inches-8 inches, or 8 inches-9 inches. In further embodiments, the width of the elongated body can approximately be 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, or other suitable widths that enables a proper relationship between the width of the skateboard and the width of the hanger.
In many embodiments, in a widthwise direction, a portion of the elongated body forms a void. An exemplary embodiment of the elongated body forming a void is illustrated in
Each void of the elongated body can extend along the width direction of the elongated body between approximately 1% and 50%. Specifically, in many embodiments, the void can extend approximately between 1%-5%, 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, or 45%-50% of the elongated body width. In alternative embodiments, as illustrated in
3. Axle(s)
The truck further comprises at least one axle. The one or more axles may extend either entirely through the elongated body of the hanger (if the elongated body forms a bore) or partially through the elongated body (if the elongated body forms a void). In many embodiments, if the bore extends entirely though the elongated body, then only one axle is needed. If a portion of the hanger is solid, then a void exists on the distal ends of the elongated body and two different axles extend through and out the ends of the elongated body. The void(s) can extend from each end of the elongated body into a percentage (less than approximately 50%) of the elongated body width, as a solid section of the elongated body exists between voids.
4. Wheels
The trucks further comprise at least two wheels. In many embodiments, one or more axles are configured to receive one or more wheels. Each of the one or more wheels may be characterized by a diameter (wheel diameter), a durometer (wheel durometer), and a material (wheel material). In many embodiments, the truck can have two or more wheels, three or more wheels, four or more wheels, five or more wheels, or six or more wheels. For further example, in many embodiments, the skateboard truck can have two wheels, three wheels, four wheels, five wheels, six wheels, or seven wheels.
In many embodiments, the diameter of the one or more wheel(s) ranges between 40 mm and 76 mm. In other embodiments, the wheel diameter can range between 40 mm-42 mm, 42 mm-44 mm, 44 mm-46 mm, 46 mm-48 mm, 48 mm-50 mm, 50 mm-52 mm, 52 mm-54 mm, 54 mm-56 mm, 56 mm-58 mm, 58 mm-60 mm, 60 mm-62 mm, 62 mm-64 mm, 64 mm-66 mm, 66 mm-68 mm, 68 mm-70 mm, 70 mm -72 mm, 72 mm-74 mm, or 74 mm-76 mm. In some embodiments, the wheel diameter of the one or more wheels can be 40 mm, 41 mm, 42 mm, 43 mm, 44 mm, 45 mm, 46 mm, 47 mm, 48 mm, 49 mm, 50 mm, 51 mm, 52 mm, 53 mm, 54 mm, 55 mm, 56 mm, 57 mm, 58 mm, 59 mm, 60 mm, 61 mm, 62 mm, 63 mm, 64 mm, 65 mm, 66 mm, 67 mm, 68 mm, 69 mm, 70 mm, 71 mm, 72 mm, 73 mm, 74 mm, 75 mm, or 76 mm.
One or more wheel(s) may have an equivalent and/or similar diameter with respect to another wheel, two or more wheels, three or more wheels, four or more wheels, or five or more wheels. In alternative embodiments, one or more wheels may have a different wheel diameter with respect to another wheel, two or more wheels, three or more wheels, four or more wheels, or five or more wheels.
In many embodiments, the wheel durometer can vary based upon the intended use of the wheel and desired gripping ability with the ground surface. For example, if the user (or individual) requires wheels that provide enough grip to maneuver over rough surfaces, sidewalk contraction joints, cracks, pebbles, rocks, etc., then the durometer of the plurality of wheels may range between approximately 78 a-98 a. In other embodiments, the wheel durometer value can be between approximately 78 a-80 a, 80 a-82 a, 82 a-84 a, 84 a-86 a, 86 a-88 a, 88 a-90 a, 90 a-92 a, 92 a-94 a, 94 a-96 a, or 96 a-98 a. In some embodiments, the wheel durometer value can be 78 a, 79 a, 80 a, 81 a, 82 a, 83 a, 84 a, 85 a, 86 a, 87 a, 88 a, 89 a, 90 a, 91 a, 92 a, 93 a, 94 a, 95 a, 96 a, 97 a, or 98 a. To achieve a desired wheel durometer, the plurality of wheels can be formed from various plastic or plastic polyurethane materials.
5. Wheel Bearings
Each of the plurality of wheels further includes a wheel bearing set. In many of the illustrative embodiments, a center of each of the plurality of wheels forms a cutout portion to accommodate the wheel bearing set. The wheel bearing set reduces or eliminates friction between the plurality of wheels and the axle the wheel rotates about. The cut-out portion can be substantially round or circular, however, in alternative embodiments the cut out-portion can be any geometry that permits rotation. In many exemplary embodiments, the wheel bearing set can be in the form of a steel bearing set or a ceramic bearing set.
6. Pivot Saddle
In many embodiments, the hanger further comprises a pivot saddle that extends from the elongated body. The pivot saddle enables a user to alter the direction of the truck. For example, the pivot saddle provides the ability to pivot the truck in a left or right direction. The pivot saddle comprises a pivot tip and a pivot body. In general, and more preferably, the pivot saddle can be integrally connected to the elongated body and therefore formed as one component. In other embodiments, the pivot saddle and the elongated body can be formed from a similar or different material. The combination of the elongated body and pivot saddle generally outlines a triangular shape. The pivot saddle connects and engages to a base plate.
In many embodiments, the pivot saddle is centrally located along the elongated body relative to the first and second ends. In alternative embodiments, the pivot saddle can be asymmetrically positioned along the elongated body. In many embodiments, the pivot saddle can be located between approximately 20% and approximately 80% of the total width of the elongated body (measured from either the first end or the second end of the elongated body of the hanger). For example, the pivot saddle can be positioned approximately 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, or 55% away from either the first end and/or second end of the elongated body.
In many embodiments, the pivot body alone can take the form of a substantially triangular shape, as shown in some of the below exemplary embodiments. In alternative embodiments, the pivot body can be substantially square, rectangular, curvilinear, semi-circular, parabolic, or combinations thereof.
In many embodiments, the pivot body forms a through aperture (pivot body aperture). In general, the geometry of the through aperture is circular or cylindrical. However, in other embodiments, the geometry of the through aperture can be of an oval, elliptical, round, or countersunk form.
The material of the pivot body can be constructed from any material used to construct a conventional skateboard truck. The pivot body of the pivot saddle can be made from any one or combination of the following: 8620 alloy steel, S25C steel, carbon steel, maraging steel, 17-4 stainless steel, 1380 stainless steel, 303 stainless steel, stainless steel alloy, brushed steel, tungsten, titanium, titanium alloy, aluminum, aluminum alloy, aluminum 3003, aluminum 5052, aluminum 6061, aluminum 7075, ADC-12, Aluminum A356, or any other metal suitable for creating a pivot body. In many embodiments, the pivot body is made of aluminum 6061 or the cast equivalent. The material of the pivot body can vary based upon the intended use and/or desired weight of the pivot saddle.
The pivot tip of the pivot saddle engages a pivot cup of the base plate. Combining the pivot tip and the pivot body together forms a pivot saddle that permits the truck to maneuver in both a left and/or right direction. The pivot tip can be integrally formed to the pivot body, thereby forming a single continuous structure.
In many embodiments, the pivot tip is widest at the surface adjacent to the pivot body and as the pivot tip becomes spaced further from the adjacent surface, the pivot tip gradually tapers (i.e. decreases in width as a function of increasing distance from the adjacent surface). At the distal most point from the adjacent surface, the pivot tip is substantially pointed and/or tipped. The arrangement and interaction of the pivot saddle and pivot cup will be described in more detail below.
The material of the pivot tip can be constructed from any material used to construct a conventional skateboard truck. The pivot tip of the pivot saddle can be made from any one or combination of the following: 8620 alloy steel, S25C steel, carbon steel, maraging steel, 17-4 stainless steel, 1380 stainless steel, 303 stainless steel, stainless steel alloy, brushed steel, tungsten, titanium, titanium alloy, aluminum, aluminum alloy, aluminum 3003, aluminum 5052, aluminum 6061, aluminum 7075 ADC-12, Aluminum A356, or any metal suitable for creating a pivot tip. In many embodiments, the pivot tip can be made of aluminum 6061 or the cast equivalent. The material of the pivot tip can vary based upon the intended use and/or desired weight of the pivot saddle.
7. Base Plate
The base plate, as previously described, is configured to receive a portion of the hanger and more particularly a portion of the pivot saddle. In many embodiments, the pivot tip of the pivot saddle protrudes from the elongated body of the hanger to engage a portion of the base plate. Thereby, affixing the hanger and the base plate together. The base plate can be defined as the component of the moving wheel platform (or truck) that couples, connects, attaches, and/or links the elongated body, the plurality of wheels, and the pivot saddle to a given apparatus to create a “movable apparatus”.
The base plate forms a plurality of bolt receiving ports, at least one king pin receiving port, and at least one pivot cup receiving port. These receiving ports provide receiving geometries for a plurality of bolts, a king pin, and the pivot tip of the pivot saddle, respectively. Thereby, securing the moving wheel platform or the truck to a given apparatus.
In many embodiments, the plurality of bolt receiving ports (of the base plate) are proximal to the outer periphery or outer perimeter edge of the base plate. Further, in many embodiments, the plurality of bolt receiving ports are threaded (“threaded bolt receiving ports”). The geometrical characteristics of the threaded bolt receiving ports can vary (i.e. thread type, thread count, pitch, etc.) based upon the geometrical characteristics of a corresponding fastener configured to be received within the threaded bolt receiving ports.
For example, and by way of nonlimiting examples, the base plate can have two bolt receiving ports, three bolt receiving ports, four bolt receiving ports, five bolt receiving ports, six bolt receiving ports, or seven bolt receiving ports. As will be seen and further described below, the base plate can comprise at least four bolt receiving ports. This provides enough structural rigidity to affix the base plate to a given apparatus (i.e. affixing a skateboard truck to a skateboard deck).
The king pin receiving aperture (of the base plate) can be centrally located on the base plate with respect to the perimeter walls of the base plate. In many embodiments, the king pin receiving aperture may or may not be threaded. The geometrical characteristics of the king pin receiving aperture can vary (i.e. thread type, thread count, pitch, etc.) based upon the type and geometry of the king pin. As will be seen and further described in the below embodiments, the king pin receiving aperture can be located forward of the base plate's pivot cup. In many embodiments, the king pin can be a hollow screw that connects the elongated hollow body and the pivot saddle together (at the aperture of the pivot body) to the base plate. This arrangement couples the elongated hollow body and pivot saddle to the base plate.
The material of the base plate can be constructed from any material used to construct a conventional skateboard truck. The base plate can be made from any one or combination of the following: 8620 alloy steel, S25C steel, carbon steel, maraging steel, 17-4 stainless steel, 1380 stainless steel, 303 stainless steel, stainless steel alloy, brushed steel, tungsten, titanium, titanium alloy, aluminum, aluminum alloy, aluminum 3003, aluminum 5052, aluminum 6061, aluminum 7075 ADC-12, Aluminum A356, or any metal suitable for creating a base plate. In many embodiments, the base plate is made of aluminum 6061. The material of the base plate can vary based upon the intended use and/or desired weight of the base plate.
8. Pivot Cup Bushing
The pivot cup receiving port (of the base plate) can be centrally located on the base plate with respect to the perimeter walls (of the base plate). In many embodiments, the pivot cup receiving port can be configured to receive a pivot cup bushing. The pivot cup bushing is generally comprised of a different material then the pivot cup receiving port. For example, in many embodiments, the pivot cup bushing can be comprised of a plastic, polyurethane, or Delrin material. As will be seen in the below embodiments, the pivot cup receiving port can be located rearward of the base plate's king pin receiving aperture.
The pivot tip of the pivot saddle can be configured to be received in the pivot cup bushing, and likewise the pivot cup bushing is configured to be received within the pivot cup receiving port. The combination of the pivot tip, the pivot cup bushing, and the pivot cup receiving port enables less metal-to-metal friction and the ability to more effectively pivot, turn, and/or alter the skateboard truck in different directions.
The hanger further comprises one or more arms that are rotatably coupled to the elongated body of the hanger. In many of the illustrated embodiments, the one or more arm(s) can be on opposing sides of the pivot saddle, or alternatively the pivot saddle in combination with the one or more arm(s) can create a backstop. Thereby, establishing a mechanical lock to prevent overextension or over rotation of the one or more arm(s).
The one or more arm(s) includes a first segment and a second segment. The first segment can be considered as the leading segment and is forward of the second segment (“rear segment”). The second segment can also be considered as the trailing segment and is rearward of the first segment. In many embodiments, as illustrated by
The first segment and second segment of the one or more arms can form together to be substantially coplanar with one another. In other embodiments, the first segment and the second segment can be angled relative to one another between 160 degrees and 180 degrees. For example, in some embodiments, the angle between the first segment and the second segment can be approximately between 160 degrees-165 degrees, 165 degrees-170 degrees, 170 degrees-175 degrees, or 175 degrees-180 degrees. In alternative embodiments, the angle between the first segment and the second segment can be 160 degrees, 161 degrees, 162 degrees, 163 degrees, 164 degrees, 165 degrees, 166 degrees, 167 degrees, 168 degrees, 169 degrees, 170 degrees, 171 degrees, 172 degrees, 173 degrees, 174 degrees, 175 degrees, 176 degrees, 177 degrees, 178 degrees, 179 degrees, or 180 degrees.
The one or more arms can further comprise a front region, which can be similar to the first segment, a rear region, which can be similar to the second segment, and a middle region which is in between the first segment and the second segment. The front region forms a first aperture (also known as a “front aperture”). The middle region forms a second aperture (also known as a “middle aperture”). The rear region forms a third aperture (also known as a “rear aperture”). The aperture can be in the form of a through aperture, a bore aperture, a cylindrical aperture, and/or a circular aperture. The diameter of the first aperture (“front aperture”), second aperture (“middle aperture”), and third aperture (“rear aperture”) can be equivalent to one another or different from one another.
The diameter of the front aperture, the middle aperture, and the rear aperture can range between 0.25 inch to 1.01 inches. In many embodiments, the front aperture, the middle aperture, and the rear aperture can be range between 0.25 inch-0.27 inch, 0.27 inch-0.29 inch, 0.29 inch-0.31 inch, 0.31 inch-0.33 inch, 0.33 inch-0.35 inch, 0.35 inch-0.37 inch, 0.37 inch-0.39 inch, 0.39 inch-0.41 inch, 0.41 inch-0.43 inch, 0.43 inch-0.45 inch, 0.45 inch-0.47 inch, 0.47 inch-0.49 inch, 0.49 inch-0.51 inch, 0.51 inch-0.53 inch, 0.53 inch-0.55 inch, 0.55 inch-0.57 inch, 0.57 inch-0.59 inch, 0.59 inch-0.61 inch, 0.61 inch-0.63 inch, 0.63 inch-0.65 inch, 0.65 inch-0.67 inch, 0.67 inch-0.69 inch, 0.69 inch-0.71 inch, 0.71 inch-0.73 inch, 0.73 inch-0.75 inch, 0.75 inch-0.77 inch, 0.77 inch-0.79 inch, 0.79 inch-0.81 inch, 0.81 inch-0.83 inch, 0.83 inch-0.85 inch, 0.85 inch-0.87 inch, 0.87 inch-0.89 inch, 0.89 inch-0.91 inch, 0.91 inch-0.93 inch, 0.93 inch-0.95 inch, 0.95 inch-0.97 inch, 0.97 inch-0.99 inch, or 0.99 inch-1.01 inch. In specific embodiments, the front aperture, the middle aperture, and the rear aperture can be approximately 0.25-inch, approximately 0.30-inch, approximately 0.35-inch, approximately 0.40-inch, approximately 0.45-inch, or approximately 0.50-inch.
The front aperture of one or more arms can be configured to receive a front axle and a corresponding front wheel. The rear aperture of the one or more arms can be configured to receive a rear axle and a corresponding rear wheel. The middle aperture of the one or more arms can be configured to concentrically attach, link, and/or couple to the elongated body of the hanger. This concentrical linkage between the middle aperture of the one or more arms and the elongated body of the hanger creates a lever arm, which can also be referred to as a pivot arm. Thereby, allowing the one or more arms to rotate and/or pivot relative to the elongated body.
As mentioned above, the level arm (or “pivot arm”) rotates about the elongated body. This type of rotation and/or pivot enables the front wheel and/or rear wheels to climb or glide over foreign object debris, such as sidewall contraction joints, pebbles, small rocks, uneven surfaces, or other debris that may be residing on a ground surface. Some of the benefits and advantages of the level arm will further be discussed in the benefits section.
10. Rotation Inhibiting Structure
The truck further can comprise one or more rotation-inhibiting structure(s). The rotation inhibiting structure prevents the level arm (or pivot arm) from excessively rotating past a predetermined angle. The rotation inhibiting structure may be in a variety of forms. For example, in one embodiment the rotation inhibiting structure may integrally protrude or extend from a truck component (i.e. a pivot body). In another embodiment, a truck component can form a rotation inhibiting structure, which can take the form of a notch, gap, slot, or slit. The rotation inhibiting structure beneficially prevents the level arm or pivot arm from excessive rotation to the point where either the front wheel or the rear wheel contacts a bottom surface of the skateboard deck during engagement of the skateboard or longboard.
In one exemplary embodiment, when the front wheel and the rear wheel of the level arm or pivot arm resides on a ground surface, the rotation inhibiting structure prevents the front end and rear end of the pivot arm from upwardly rotating past 50 degrees. In other embodiments, the rotation inhibiting structure may prevent the front end and the rear end of the pivot arm from upwardly rotating past 45 degrees, 40 degrees, 35 degrees, 30 degrees, 25 degrees, 20 degrees, 15 degrees, 10 degrees, or 5 degrees. In alternative embodiments, the predetermined range of motion for the front end and rear end of the level arm (or pivot arm) can be approximately between 0 degrees and 45 degrees, 0 degrees and 40 degrees, 0 degrees and 35 degrees, 0 degrees and 30 degrees, 0 degrees and 25 degrees, 0 degrees and 20 degrees, 0 degrees and 15 degrees, 0 degrees and 10 degrees, or 0 degrees and 5 degrees.
A 0-degree reference angle is defined as the position where both the front wheel and the rear wheel of the level arm or pivot arm reside on a substantially flat ground surface. As the pivot arm beings to upwardly rotate (i.e. the perpendicular distance between the front wheel or rear wheel relative to the bottom surface of the skateboard deck is shorter than the perpendicular distance between the front wheel and rear wheel at a rest position (on a substantially flat ground surface) relative to the bottom surface of the skateboard deck. The effect of the rotation inhibiting structure is present when the pivot arm or level arm reaches a predetermined rotation threshold angle.
11. Friction Reducing Element
In many exemplary embodiments, the truck preferably comprises a friction reducing element. In general, the friction reducing element is a component between the elongated body of the hanger and the one or more of the arms (also can be defined as the medium between the middle aperture of the one or more arm(s) and the elongated body). The friction reducing element reduces the magnitude of frictional forces between the elongated body of the hanger and the one or more arms. Specifically, in many embodiments, the friction reducing element prevents material galling. In alternative embodiments, the friction reducing element can be in the form of a flange. In other embodiments, the friction reducing element can be cylindrical, round, circular, or tubular to compliment the shape of the middle aperture of the one or more arms.
The friction reducing element can be made from any one or combination of the following: nylon, PVC, polythene, polypropylene, or any plastic suitable for reducing friction between two materials. In some embodiments, the friction reducing element is comprised of a nylon material.
The moving wheel platform described herein beneficially provides enhancements in self-propelled equipment or self-propelled apparatuses. In particular, by creating a moving wheel platform (“skateboard truck” or “truck”) that when fully assembled (“truck assembly”) comprises a rotation inhibiting structure and a pivot/lever arm, the truck assembly effectively maneuvers over foreign objects, such as, but not an exclusive list of sidewalks contraction joints, pebbles, rocks, cracks, or similar objects that creates interference between the wheels and the ground surface (when the self-propelled apparatus is in motion).
In many embodiments, the moving wheel platform (or the skateboard truck) comprises four or more wheels. These wheels can be arranged in a diamond shape configuration. The first and second wheels (two of the four wheels) can be attached to each end of the elongated body. The third and fourth wheels (other two wheels of the four wheels) can be attached to the front segment and rear segment of the one or more pivot/level arm(s). This type of wheel arrangement equally distributes forces loaded onto the truck to create a balanced truck that more effectively glides and/or climbs over sidewalk contraction joints and/or other type of surface cracks. This beneficially prevents (or reduces) the plurality of wheels of the moving wheel platform from entering (or reducing the degree of decent with) sidewalk contraction joints or cracks. Thereby preventing the wheels engaging or getting caught within the sidewalk contraction joint or surface cracks. Thus, eliminating or greatly reducing the possibility of the individual potentially losing balance and/or momentum.
Another beneficial aspect of the moving wheel platform described herein is to have one or more arms concentrically, pivotably, and/or rotatably engaged to the elongated body of the hanger. By having one or more arms rotatable or pivotable about the elongated body of the hanger enables the front segment or the trailing segment at any given moment to upwardly rotate away from the ground surface. For example, the one or more arms that are concentrically and pivotally connected to the elongated body of the hanger may rotate based upon a shift in the skateboard's center of mass (i.e. the mass of the rider being repositioned on the skateboard deck caused by a slope, turn, etc).
Another beneficial aspect of the moving wheel platform described herein is to have one or more rotation inhibiting structures. Integrating rotation inhibiting structures into the moving wheel platform or truck mechanically prevents over-rotation of the one or more pivot arms past a predetermined degree of rotation. This beneficially prevents the plurality of wheels positioned on the first segment and/or trailing segment from inadvertent contact with the bottom portion of a skateboard deck.
Another beneficial aspect of the moving wheel platform described herein is to have at least one friction reducing element. The friction reducing element can be positioned between the middle aperture of the one or more arms and the elongated body of the hanger. The friction reducing element beneficially reduces frictional forces between the cylindrical body of the hanger and the one or more arms. Additionally, the friction reducing element can prevent material galling between the one or more arms and the elongated body of the hanger.
At least some exemplary embodiments of a moving wheel platform according to this invention are described herein, including skateboard trucks and longboard trucks. Such apparatus may include all or some of the aforementioned components, features, and benefits.
Specifically,
Continuing reference to
I. Elongated Body
The elongated body 102 can be sized to be approximately the width of the skateboard deck 111 shown in
The elongated body 102 forms a void 129 that extends from and partially through both the first end 130 and the second end 131 of the elongated body 102. As described above, the void 129 of the elongated body extends between 5% and 45% of the elongated body width on each end (i.e. the first end 130 and the second end 131) of the corresponding elongated body end. For example, the void can extend through each end of the elongated body 102 between 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, or 45% of the width of the elongated body. In other embodiments, the void can extend through each end (the first end and the second end) of the elongated body 102 between approximately 1%-5%, 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, or 40%-45%. In alternative embodiments, the void can extend through each end of the elongated body at a distance less than the total width of the elongated body 102. In this illustrative example, each void formed partially by the first end 130 and the second end 131 extends approximately 20% of the width of the elongated body 102.
Each void 129 formed by the elongated body 102 can further be threaded and configured to receive to receive an axle 103 that is partially threaded. The void 129 and the axle 103 are arranged together to form a threadable engagement. In this illustrative embodiment, the axle 103 is comprised of a metal material, and more particularly comprised of a steel or steel alloy. The length of the axle 103 will vary based upon the characteristics (i.e. dimensions, etc.) of the void 129. This specific embodiment illustrates the truck comprising at least four axles. As will be further discussed below, each axle is configured to receive at least one wheel 104.
The elongated body 102 of the hanger 101 is integrally connected to the pivot saddle 105 (see
The pivot body and pivot tip combine to form a pivot body length 133. The pivot body length 133 can range between 1 inch and 5 inches. In particular, the pivot body length 133 can be 1 inch, 1.5 inches, 2 inches, 2.5 inches, 3 inches, 3.5 inches, 4 inches, 4.5 inches, or 5 inches. In the illustrative embodiment, the pivot body length 133 can be approximately 2.5 inches. The pivot body length 133 can vary based upon the intended use of the rider. For example, a shorter pivot body length 133 (i.e. less than 2.5 inches) may be desirable if the user wants a more responsive truck with respect to movement in the left and/or right direction, or vice versa a longer pivot body length 133 for a less responsive truck (i.e. greater than 2.5 inches). A shorter pivot body length, however, can introduce wheel bite (wheels contacting the bottom surface of the skateboard), which creates the need for rotation inhibiting structures 127.
The pivot saddle 105 of the hanger 101 further comprises an integrally connected rotation inhibiting structure 127. The rotation-inhibiting structure prevents one or more arms 117 from over rotating to the point where the wheels 104 engage the bottom surface 112 of the skateboard deck 111. As illustrated by
The rotation-inhibiting structure spacing distance can be defined as being measured perpendicularly from the elongated body 102 to the rotation inhibiting structure 127. The rotation inhibiting structure spacing distance can range between 0.125 inch and 3 inches. In particular, the rotation inhibiting structure spacing distance can be between 0.125 inch-0.225 inch, 0.225 inch-0.325 inch, 0.325 inch-0.425 inch, 0.425 inch-0.525 inch, 0.525 inch-0.625 inch, 0.625 inch-0.725 inch, 0.725 inch-0.825 inch, 0.825 inch-0.925 inch, 0.925 inch-1.025 inch, 1.025 inch-1.125 inch, 1.125 inch-1.225 inch, 1.225 inch-1.325 inch, 1.325 inch-1.425 inch, 1.425 inch-1.525 inch, 1.525 inch-1.625 inch, 1.625 inch-1.725 inch, 1.725 inch-1.825 inch, 1.825 inch-1.925 inch, 1.925 inch-2.025 inch, 2.025 inch-2.125 inch, 2.125 inch-2.225 inch, 2.225 inch-2.325 inch, 2.325 inch-2.425 inch, 2.425 inch- 2.525 inch, 2.525 inch-2.625 inch, 2.625 inch-2.725 inch, 2.725 inch-2.825 inch, 2.825 inch-2.925 inch, or 2.925 inch-3.025 inch.
The geometry of the rotation inhibiting structure 127 of this exemplary embodiment includes a center portion 134 comprising a semi-circular profile and elongated end protrusions 135 connected to both sides of the semi-circular profile.
As previously mentioned, the center portion 134 of the rotation-inhibiting structure 127 comprises a semi-circular profile. The semi-circular profile of the center portion 134 can have a diameter that ranges between 0.1 inch to approximately 1 inch. For example, in some embodiments, the diameter of the semi-circular profile can be 0.1-inch, 0.2-inch, 0.3-inch, 0.4-inch, 0.5-inch, 0.6-inch, 0.7-inch, 0.8-inch, 0.9-inch, or 1-inch. In other embodiments, the diameter of the semi-circular profile can be between 0.1 inch-0.3-inch, 0.3 inch-0.5-inch, 0.5 inch-0.8-inch, or 0.8 inch-1.1 inch.
As described above, the semi-circular profile of the center portion 134 is connected to elongated end protrusions 135 that protrudes from the semi-circular profile. The elongated end protrusions 135 can generally take any shape, length, or geometry, as long as, the elongated end protrusions are configured to limit rotation of the one or more arm(s) 117 to a predetermined angle. In many embodiments, the elongated end protrusions 135 can be non-circular or non-elliptical. In the illustrative embodiment, the length of rotation inhibiting structure is approximately 2.5 inches (measured along the longitudinal direction of the skateboard). Rotation of the one or more arm(s) 117 is limited when a portion of the arm contacts a portion of the rotation inhibiting structure 127, thereby forming a mechanical stop (see
As previously mentioned, the length of the rotation-inhibiting structure is measured in a direction extending along the longitudinal axis of the skateboard deck 111. In many embodiments, the length of the rotation-inhibiting structure can range between approximately 0.5 inch and approximately 4 inches. For example, the length of the rotation-inhibiting structure can be between 0.5 inch-0.75 inch, 0.75 inch-1.00 inch, 1.0 inch-1.25 inch, 1.25 inch-1.50 inch, 1.50 inch-1.75 inch, 1.75 inch-2.00 inch, 2.00 inch-2.25 inch, 2.25 inch-2.50 inch, 2.50 inch-2.75 inch, 2.75 inch-3.00 inch, 3.00 inch-3.25 inch, 3.25 inch-3.50 inch, 3.50 inch-3.75 inch, or 3.75 inch-4.00 inch.
The width of the rotation inhibiting structure 127 can vary based upon the width of the one or more arms. In general, the width of the rotation inhibiting structure 127 may be approximately the same width of the one or more arms 117 or less than the widths of the one or more arms 117. Constraining the width to be approximately the same or less than the width of the one or more arms 117 ensures that enough surface area of the rotation inhibiting structure 127 contacts the one or more arms 117 to prevent over rotation.
In this embodiment, the width of the rotation inhibiting structure 127 is approximately 0.375 inch. However, in other embodiments, the width of the rotation inhibiting structure can vary between 0.125 inch to approximately 0.6 inch. For example, the width of the rotation inhibiting structure can be between 0.125 inch-0.145 inch, 0.145 inch-0.165 inch, 0.165 inch-0.185 inch, 0.185 inch-0.205 inch, 0.205 inch-0.225 inch, 0.225 inch-0.245 inch, 0.245 inch-0.265 inch, 0.265 inch-0.285 inch, 0.285 inch-0.305 inch, 0.305 inch-0.325 inch, 0.325 inch-0.345 inch, 0.345 inch-0.365 inch, 0.365 inch-0.385 inch, 0.385 inch-0.405 inch, 0.405 inch-0.425 inch, 0.425 inch-0.445 inch, 0.445 inch-0.465 inch, 0.465 inch-0.485 inch, 0.485 inch-0.505 inch, 0.505 inch-0.525 inch, 0.525 inch-0.555 inch, 0.555 inch-0.575 inch, 0.575 inch-0.595 inch, or 0.595 inch-0.615.
As illustrated by
Referring back to
As previously described, the base plate 108 is the component of the truck that couples the elongated body 102, the wheels 104, and the pivot saddle 105 to the skateboard deck 111 (see
The arrangement of the aforementioned truck components described herein enables individuals riding skateboards or longboards to more efficiently maneuver over cracks in sidewalks as the configuration of the truck components enables the wheels coupled to the elongated body of the hanger to be suspended over a contraction joint (i.e. prevents the wheels from descending into the crack when the user is moving over a contraction joint). Further, the rotation-inhibiting structures prevents the wheels coupled to the rotatable arms 117 from contacting a bottom portion of the skateboard (i.e. preventing wheel bite).
The one or more arm(s) 317 further comprises a first rotation inhibiting protrusion 341 and a second rotation inhibiting protrusion 342 that extends outwardly away from the arms 317. When the arms 317 are assembled to the hanger, the first rotation inhibiting protrusion 341 and the second rotation inhibiting protrusion 342 forms an overlapping structure that surrounds (or encompasses) a portion of the pivot body 306. As the arms 317 begin to rotate/pivot away from the ground surface, the first rotation inhibiting protrusion 341 and the second rotation inhibiting protrusion 342 can contact the pivot body 306 providing a mechanical stop to prevent over rotation of the arms 317.
In the embodiments of
I. Elongated Body
The elongated body 302 of this embodiment is configured to be approximately the width of a skateboard deck 311 (of
The elongated body 302 forms a bore 329 that extends entirely through both the first end 330 and the second end 331 of the elongated body 302. In other words, the bore 329 extends entirely (100%) through the width of the elongated body 302. In this embodiment, the elongated body is formed from Aluminum 6061 or the cast equivalent Aluminum A356.
II. Axle
The bore 329 defined by the elongated body 302 is configured to rigidly receive one axle 303. Specifically, when compared to the previous embodiment (
The axle 303 comprises four segments. The first segment of the axle is proximal to the first end of the elongated body. The second segment of the axle is proximal to the second end of the elongated body. The third segment of the axle is in between the first segment and the second segment. The fourth segment of the axle is in between the first segment and the second segment and comprises a hanger stop 346 that abuts a portion of the elongated body, and particularly, the first end of the elongated body.
The hanger stop 346 wraps circumferentially around the axle 303 and is the thickest portion of the axle. The first segment of the axle extends from the first end of the elongated body to create a first overhang portion. Similarly, the second segment of the axle extends from the second end of the elongated body to create a second overhang portion. The first and second overhang portions accommodate, the first and second wheels for securing the first and second wheels to the axle 303, respectively.
III. Rotation Inhibiting Structures
The elongated body 302 further forms at least two rotation inhibiting structures 327 in the form of a gap, a notch, a slot, or a slit. The rotation inhibiting structures 327 are offset and/or spaced from the first end 330 and second end 331 of the elongated body 302. For example, in the illustrated embodiment of
However, in alternative embodiments, the rotation inhibiting structures 327 can be offset from the first end 330 or the second end 331 of the elongated body between 5% and 50%. For example, in many embodiments, the offset distance between the first end and the rotation inhibiting structure 327 or the second end and the rotation inhibiting structure 327 can be 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, or 50%.
The rotation-inhibiting structure 327 comprises at least three internal sidewalls defined by the elongated body 302 (i.e. a first internal sidewall 337, a second internal sidewall 338, and a third internal sidewall 339). The first internal wall is defined as the sidewall closest to either one of the first end 330 or the second end 331 of the elongated body 302. The second internal wall 338 is defined as the sidewall proximal to a sidewall of the other rotation inhibiting structure 327. The third internal wall sidewall 339 shares a common edge with both the first internal wall 337 and the second internal wall 339. The first internal sidewall 337, the second internal sidewall 338, and the third internal sidewall 339 forms a void therebetween. In many embodiments, where the one or more sidewalls meet to form an edge, a radius can be present.
The distance between a pair of rotation-inhibiting structures 327 can be referred to as a rotation inhibiting structure spacing distance 340. The rotation inhibiting structure spacing distance 340 can be defined as the distance measured between the pair of rotation-inhibiting structures second internal sidewalls 338. In the illustrated embodiment, the rotation inhibiting structure spacing distance 340 is approximately 1.25 inches. However, in alternative embodiments, the rotation inhibiting structure spacing distance 340 may range between 0.25 inches and 2 inches.
In other embodiments, the rotation inhibiting structure spacing distance 340 can range between approximately 0.25 inch-0.50 inch, 0.50 inch-0.75 inch, approximately 0.75 inch-1.00 inch, approximately 1.00 inch-1.25 inch, approximately 1.25 inch-1.50 inch, approximately 1.50 inch-1.75 inch, or approximately 1.75 inch-2.00 inch. The rotation inhibiting structure can be approximately 0.25-inch, 0.50-inch, approximately 0.75 inch, approximately 1.00 inch, approximately 1.25 inch, approximately 1.50 inch, approximately 1.75 inch, or approximately 2.00 inch.
IV. Arm(s)
With continued reference to
The middle region of the one or more arms 317 comprises a first rotation inhibiting protrusion 341 protruding from the middle region and front region 320 of the arm 317, a second rotation inhibiting protrusion 342 protruding from the middle region and rear region 322 of the arm 317, and a middle aperture 324. The first rotation inhibiting protrusion 341 is closer to the front region 320 of the arm 317 than the rear region 322 of the arm 317. The second rotation inhibiting protrusion 342 is closer to the rear region 322 than the front region 320.
An imaginary centerline axis is symmetrically positioned between the first rotation inhibiting protrusion 341 and the second rotation inhibiting protrusion 342 and extends through a center point of the middle aperture 324. Thereby, forming a first rotation inhibiting protrusion angle between the centerline axis and the first rotation inhibiting protrusion and a second rotation inhibiting protrusion angle between the centerline axis and the second rotation inhibiting protrusion
The first rotation inhibiting angle 343 can range between 2 degrees and 6 degrees. In some embodiments, the first rotation inhibiting angle 343 can range approximately between 2 degrees-2.5 degrees, 2.5 degrees-3 degrees, 3 degrees-3.5 degrees, 3.5 degrees-4 degrees, 4 degrees-4.5 degrees, 4.5 degrees-5 degrees, 5 degrees-5.5 degrees, or 5.5 degrees-6 degrees. In alternative embodiments, the first rotation inhibiting angle 343 can be approximately 2 degrees, approximately 2.5 degrees, approximately 3 degrees, approximately 3.5 degrees, approximately 4 degrees, approximately 4.5 degrees, approximately 5 degrees, approximately 5.5 degrees, or approximately 6 degrees. In the illustrated embodiment, the first rotation inhibiting angle is approximately 4 degrees.
The second rotation inhibiting angle 344 can range approximately between 12 degrees and 18 degrees. In some embodiments, the second rotation inhibiting angle 344 can range between 12 degrees-13 degrees, 13 degrees-14 degrees, 14 degrees-15 degrees, 16 degrees-17 degrees, or 17 degrees-18 degrees. In alternative embodiments, the first rotation inhibiting angle 344 can be 12 degrees, 12.5 degrees, 13 degrees, 13.5 degrees, 14 degrees, 14.5 degrees, 15 degrees, 15.5 degrees, 16 degrees, 16.5 degrees, 17 degrees, 17.5 degrees, or 18 degrees. In the illustrated embodiment, the second rotation inhibiting angle 344 is approximately 16 degrees.
The middle region of the arms 317 can be sized, arranged, and/or configured to be received within the void 345 of the rotation inhibiting structures 327. The axle 302 not only extends entirely through elongated body, but also extends through the void 345 and middle aperture 324, thereby rigidly supporting both the elongated body of the hanger and the arm(s) while providing an axis of rotation for the arms 317 to rotate about. The combination of the rotation inhibiting structure 327 and the first and second rotation inhibiting protrusion 341, 342 of the arms 117 forms an overlapping structure that surrounds (or encompasses) a portion of the pivot body.
When the truck 300 is in a zero-degree reference angle configuration, the overlapping structure will not be felt or apparent to the rider, however, as the arms 317 begin to rotate/pivot away from the ground surface, the first rotation inhibiting protrusion and the second rotation inhibiting protrusion can contact the pivot body 306 providing a mechanical stop. This mechanical stop prevents over rotation of the one or more arms to the point where the wheels 304 contact the bottom surface of the skateboard deck.
With continued reference to
V. Pivot Saddle
Still Referencing
As previously mentioned, the base plate 308 is the component of the truck that couples the elongated body 302, the wheels 304, and the pivot saddle 305 to the skateboard deck 111. The base plate 308 forms a plurality of bolt receiving ports 309, at least one king pin receiving aperture 316, and at least one pivot cup receiving port 315. These receiving ports provide receiving geometries for a plurality of bolts, a king pin, and the pivot tip of the pivot saddle, respectively. Thereby, securing the moving wheel platform or the truck to a given apparatus.
The arrangement of the aforementioned truck components enables individuals riding skateboards or longboards to more efficiently maneuver over cracks in sidewalks, as the configuration of the truck components enables the wheels coupled to the elongated body of the hanger to be suspended over a contraction joint (i.e. prevents the wheels from descending into the crack when the user is moving over a contraction joint). Further, the rotation-inhibiting structures and rotation inhibiting protrusions of the arms cooperate to prevents one or more wheels from contacting a bottom portion of the skateboard (i.e. preventing wheel bite).
Similarly, to the above truck embodiments,
The elongated body 402 of this embodiment is similar to the elongated body 302 of the previous embodiments and configured to be approximately the width of a skateboard deck 411 (not shown). As previously described above, the width of the elongated body 402 can range between 4 inches and 10 inches. In particular, the width of the elongated body 402 can be 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, or 10 inches. In this example, the width of the elongated body 402 is approximately 7 inches.
The elongated body 402 forms a bore 429 that extends entirely through both the first end 430 and the second end 431 of the elongated body 402. The bore 429 extends entirely (100%) through the width of the elongated body 402. In this embodiment, the elongated body can be formed from Aluminum 6061 or the cast equivalent Aluminum A356.
The bore 429 is configured to rigidly receive one axle 403. Specifically, when compared to the previous embodiment (
The axle 403 can be comprised of a metal material, and more particularly comprised of a steel or steel alloy. The axle 403 further adds structural support to the elongated body 403, as the young's modulus is greater than the young's modulus of the elongated body 403 of the hanger. The length of the axle 403 will vary based upon the width of the elongated body 402. As will be further discussed below, each axle is configured to receive at least one wheel 404.
The elongated body 402 and pivot body 406 further defines and/or comprises at least two rotation inhibiting structures 427 in the form of a gap, a notch, a slot, or a slit. The rotation inhibiting structures 427 are offset and/or spaced away from the first end 430 and second end 431 of the elongated body 402. For example, in the embodiment of
The rotation-inhibiting structure 427 comprises at least three internal sidewalls (i.e. a first internal sidewall 437, a second internal sidewall 438, and a third internal sidewall 439). The first internal wall is defined as the sidewall closest to the either one of the first end 430 or the second end 431 of the elongated body 302. The second internal wall 438 is defined as the sidewall proximal to a sidewall of another rotation inhibiting structure 427. The third internal wall sidewall 439 shares a common edge with both the first internal wall 437 and the second internal wall 439. The first internal sidewall 437, the second internal sidewall 438, and the third internal sidewall 439 forms a void therebetween.
The distance between a pair of rotation-inhibiting structures 427 can be referred to as a rotation inhibiting structure spacing distance 440. The rotation inhibiting structure spacing distance 440 can be defined as the distance measured between the pair of rotation-inhibiting structures second internal sidewalls 438. In this particular embodiment, the rotation inhibiting structure spacing distance 440 can be approximately 1.25 inches.
However, in alternative embodiments, the rotation inhibiting structure spacing distance 440 may range between 0.50 inches and 2 inches. In other embodiments, the rotation inhibiting structure spacing distance 440 may range between 0.50 inch-0.75-inch, 0.75 inch-1.00 inch, 1.00 inch-1.25 inch, 1.25 inch-1.50 inch, 1.50 inch-1.75 inch, or 1.75 inch -2.00 inch. The rotation inhibiting structure may be 0.50-inch, 0.75 inch, 1.00 inch, 1.25 inch, 1.50 inch, 1.75 inch, or 2.00 inch.
The front region 420 further comprises a first region transition area 446. The rear region 422 comprises a second region transition area 447. The first region transition area 446 is defined as the area or portion where the front region 420 transitions to the middle region 421. The second region transition area 447 is defined as the area or portion where the rear region 422 transitions to the middle region 421. At the first region transition area 446, the arm 417 splits from one segment into two segments. At the second transition area 447, the arm 417 splits from one segment into two segments.
In this embodiment, the front region 420 can be a one segment region, the rear region 422 is also a one segment region, however, the middle region, which is in between the front region 420 and the rear region 422 is a two-segment region, which arranges to outline a substantially rectangular shape. Thereby, permitting only one arm 417 to occupy at least two rotation inhibiting structures 427 as the first and second rotation inhibiting protrusions are positioned on both sides of the middle region 421 two segment region.
In other embodiments, at the first region transition area 446, the arm 417 may split from one segment into two segments, three segments, or four segments. At the second transition area 447, the arm 417 may split from one segment into two segments, three segments, or four segments.
The middle region of the one or more arms 417 comprises a first rotation inhibiting protrusion 441, a second rotation inhibiting protrusion 442, and a middle aperture 424. The first rotation inhibiting protrusion 441 protrudes (or extends) from the middle region and is closer to the front region 420 than the rear region 322. The second rotation inhibiting protrusion 442 protrudes from the middle region and is closer to the rear region 422 than the front region 420. Further, the first and second rotation inhibiting protrusions 341, 342 are positioned on both sides of the middle region 421 two segment region.
Similarly, to the above described embodiment, a centerline axis exists between the first rotation inhibiting protrusion 441 and the second rotation inhibiting protrusion 442 and extends through a center point of the middle aperture 424. A first rotation inhibiting protrusion angle is formed between the centerline and the first rotation inhibiting protrusion. A second rotation inhibiting protrusion angle is formed between the centerline and the second rotation inhibiting protrusion.
Similarly, to the above described embodiment, the first rotation inhibiting angle 443 can range between 2 degrees and 6 degrees. In some embodiments, the first rotation inhibiting angle 443 can range between 2 degrees-2.5 degrees, 2.5 degrees and 3 degrees, 3 degrees-3.5 degrees, 3.5 degrees-4 degrees, 4 degrees-4.5 degrees, 4.5 degrees-5 degrees, 5 degrees-5.5 degrees, or 5.5 degrees-6 degrees. In alternative embodiments, the first rotation inhibiting angle 443 can be 2 degrees, 2.5 degrees, 3 degrees, 3.5 degrees, 4 degrees, 4.5 degrees, 5 degrees, 5.5 degrees, or 6 degrees. In the illustrated embodiment, the first rotation inhibiting angle is 4 degrees.
Similarly, to the above described embodiment, the second rotation inhibiting angle 444 can range between 12 degrees and 18 degrees. In some embodiments, the second rotation inhibiting angle 444 can range between 12 degrees and 13 degrees, 13 degrees-14 degrees, 14 degrees-15 degrees, 16 degrees-17 degrees, or 17 degrees-18 degrees. In alternative embodiments, the first rotation inhibiting angle 444 can be 12 degrees, 12.5 degrees, 13 degrees, 13.5 degrees, 14 degrees, 14.5 degrees, 15 degrees, 15.5 degrees, 16 degrees, 16.5 degrees, 17 degrees, 17.5 degrees, or 18 degrees. In the illustrated embodiment, the second rotation inhibiting angle 444 is 16 degrees.
The middle region of the arms 417 are configured to be received within the void 445 of the rotation inhibiting structures 427. The axle 402 not only extends entirely through elongated body, but also extends through the void 445 and middle aperture 424 of the arm 417, thereby rigidly supporting both the elongated body of the hanger but also provides an axis of rotation for the arm 417 to rotate about. The combination of the rotation inhibiting structure 427 and the first rotation inhibiting protrusion 441 of the arm 417 forms an overlapping structure that surrounds or encompasses a portion of the pivot body.
When the truck 400 is in a zero-degree reference angle configuration, the overlapping structure will not be felt or apparent to the rider, however, as the arms 417 begin to rotate/pivot away from the ground surface, the first rotation inhibiting protrusion and the second rotation inhibiting protrusion can contact the pivot body 406 providing a physical barrier. This physical barrier prevents over rotation of the one or more arms to the point where the wheels 404 contact the bottom surface of the skateboard deck (not shown).
With continued reference to
The pivot body 406 and the pivot tip 407 forms a pivot saddle 405 that is substantially triangular. This type of substantially triangular arrangement extends from the first end 430 of the elongated body 402 and the second end 431 of the elongated body 402, therefore additionally acting as a structural support mechanism to the elongated body 402. The axle 403 further adds structural support to the elongated body 403, as the young's modulus is greater than the young's modulus of the elongated body 403 of the hanger.
As previously described, the base plate 408 is the component of the truck that couples the elongated body 402, the wheels 404, and the pivot saddle 405 to the skateboard deck 411. The base plate 408 forms a plurality of bolt receiving ports 409, at least one king pin receiving aperture 416, and at least one pivot cup receiving port (not shown). These receiving ports provides receiving geometries for a plurality of bolts, a king pin, and the pivot tip of the pivot saddle, respectively. Thereby, securing the moving wheel platform or the truck to a given apparatus.
The arrangement of the aforementioned truck components enables individuals riding skateboards or longboards to more efficiently maneuver over cracks in sidewalks as the configuration of the truck components enables the wheels coupled to the elongated body of the hanger to be suspended over a contraction joint (i.e. prevents the wheels from descending into the crack when the user is moving over a contraction joint). Further, this embodiment requires only one arm while still utilizing rotation-inhibiting structures and rotation inhibiting protrusions of the arms to prevents one or more wheels from contacting a bottom portion of the skateboard (i.e. preventing wheel bite).
The elongated body 502 of this illustrated embodiment is similar to the elongated body 102, 202, 302, and 402 of the previous embodiments and configured to be approximately the width of a skateboard deck 511. As previously described above, the width of the elongated body 502 can range between 4 inches and 10 inches. In particular, the width of the elongated body 502 can be 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, or 10 inches. In this illustrative example, the width of the elongated body 502 is approximately 7 inches.
The elongated body 502 forms a bore 529 that extends entirely through both the first end 530 and the second end 531 of the elongated body 502. The bore 529 extends 100% entirely through the width of the elongated body 502. In this particular embodiment, the elongated body is composed of Aluminum 6061 or the cast equivalent Aluminum A356.
The bore 529 can be configured to rigidly receive one axle 503. Specifically, when compared to Embodiment I, this embodiment requires only one axle. This not only requires less components compared to the previous embodiment, but enables the axle 503 to provide more support to the elongated body 502, as more surface area of the axle 503 is engaged with the elongated body 502.
In this illustrative embodiment, the axle 503 is comprised of a metal material, and more particularly comprised of a steel or steel alloy. The axle 503 further adds structural support to the elongated body 503, as the young's modulus is greater than the young's modulus of the elongated body 503 of the hanger. The length of the axle 503 will vary based on the width of the elongated body 502. This specific embodiment illustrates an axle width of approximately 8 inches. As will be further discussed below, each axle is configured to receive at least one wheel 504.
The elongated body 502 further includes at least two rotation inhibiting structures 527 in the form of a gap, a notch, a slot, or a slit. The rotation inhibiting structures 527 are offset and/or spaced away from the first end 530 and second end 531 of the elongated body 502. For example, in the illustrated embodiment of
Similarly, to
The distance between a pair of rotation-inhibiting structures (327, 427) 527 can be referred to as a rotation inhibiting structure spacing distance (340, 440) 540. The rotation inhibiting structure spacing distance (340, 440) 540 is defined as the distance measured between the pair of rotation-inhibiting structures second internal sidewalls (338, 438) 538. In the illustrated embodiment, the rotation inhibiting structure spacing distance (340, 440) 540 is approximately 1.25 inches. However, in alternative embodiments, the rotation inhibiting structure spacing distance (340, 440) 540 may range between 0.50 inches and 2 inches. In other embodiments, the rotation inhibiting structure spacing distance (340, 440) 540 may range between 0.50 inch-0.75-inch, 0.75 inch-1.00-inch, 1.00 inch-1.25 inch, 1.25 inch-1.50 inch, 1.50 inch-1.75 inch, or 1.75 inch-2.00 inch. The rotation inhibiting structure may be 0.50-inch, 0.75-inch, 1.00 inch, 1.25 inch, 1.50 inch, 1.75 inch, or 2.00 inch.
The front region 520 further comprises a first region transition area 546. The rear region 522 comprises a second region transition area 547. The first region transition area 546 is defined as the area or portion where the front region 520 transitions to the middle region 521. The second region transition area 547 is defined as the area or portion where the rear region 522 transitions to the middle region 521. At the first region transition area 546, the arm 517 maintains two segments (to house a wheel between the two segments). At the second transition area 547, the arm 517 transitions from one segment into two segments (see
In other embodiments, at the first region transition area 546, the arm 517 may split into three segments, four segments, or five segments segments. At the section transition area 547, the arm 517 may split from one segment into two segments, three segments, or four segments.
Similarly to the above described arms (317, 417), the middle region of the one or more arms 517 comprises a first rotation inhibiting protrusion 541, a second rotation inhibiting protrusion 542, and a middle aperture 524. The first rotation inhibiting protrusion 541 is closer to the front region 520 than the rear region 522. The second rotation inhibiting protrusion 542 is closer to the rear region 522 than the front region 520. A centerline exists between the first rotation inhibiting protrusion 541 and the second rotation inhibiting protrusion 542 and extends through a center point of the middle aperture 524.
A centerline exists between the first rotation inhibiting protrusion 541 and the second rotation inhibiting protrusion 542 and extends through a center point of the middle aperture 524. A first rotation inhibiting protrusion angle is formed between the centerline and the first rotation inhibiting protrusion. A second rotation inhibiting protrusion angle is formed between the centerline and the second rotation inhibiting protrusion.
The first rotation inhibiting angle 543 can range between 2 degrees and 6 degrees. In some embodiments, the first rotation inhibiting angle 543 can range between 2 degrees-2.5 degrees, 2.5 degrees and 3 degrees, 3 degrees-3.5 degrees, 3.5 degrees-4 degrees, 4 degrees-4.5 degrees, 4.5 degrees-5 degrees, 5 degrees-5.5 degrees, or 5.5 degrees-6 degrees. In alternative embodiments, the first rotation inhibiting angle 543 can be 2 degrees, 2.5 degrees, 3 degrees, 3.5 degrees, 4 degrees, 4.5 degrees, 5 degrees, 5.5 degrees, or 6 degrees. In the illustrated embodiment, the first rotation inhibiting angle is 4 degrees.
The second rotation inhibiting angle 544 can range between 12 degrees and 18 degrees. In some embodiments, the second rotation inhibiting angle 544 can range between 12 degrees and 13 degrees, 13 degrees-14 degrees, 14 degrees-15 degrees, 16 degrees-17 degrees, or 17 degrees-18 degrees. In alternative embodiments, the first rotation inhibiting angle 544 can be 12 degrees, 12.5 degrees, 13 degrees, 13.5 degrees, 14 degrees, 14.5 degrees, 15 degrees, 15.5 degrees, 16 degrees, 16.5 degrees, 17 degrees, 17.5 degrees, or 18 degrees. In the illustrated embodiment, the second rotation inhibiting angle 544 is 16 degrees.
The middle region of the arms 517 can be configured to be received within the void 545 of the rotation inhibiting structures 527. The axle 502 not only extends entirely through elongated body, but also extends through the void 545 and middle aperture 524, thereby rigidly supporting both the elongated body of the hanger but also provides an axis of rotation for the arms 517 to rotate about. The combination of the rotation inhibiting structure 527 and the first rotation inhibiting protrusion 541 of the arm 517 forms an overlapping structure. When the truck 500 is in a zero-degree reference angle configuration, the overlapping structure will not be felt or apparent to the rider, however, as the arms 517 begins to rotate/pivot away from the ground surface, the first rotation inhibiting protrusion and the second rotation inhibiting protrusion will contact the pivot body 506 providing a physical barrier. This physical barrier prevents over rotation of the one or more arms to the point where the wheels 504 contact the bottom surface of the skateboard deck (not shown).
Referring again to
With continued reference to
As previously described, the base plate 508 is the component of the truck that couples the elongated body 502, the wheels 504, and the pivot saddle 505 to the skateboard deck 511. The base plate 508 forms a plurality of bolt receiving ports 509, at least one king pin receiving aperture 516, and at least one pivot cup receiving port 515. These receiving ports provides receiving geometries for a plurality of bolts, a king pin, and the pivot tip of the pivot saddle, respectively. Thereby, securing the moving wheel platform or the truck to a given apparatus.
The arrangement of the aforementioned truck components enables individuals riding skateboards or longboards to more efficiently maneuver over cracks in sidewalks as the configuration of the truck components enables the wheels coupled to the elongated body of the hanger to be suspended over a contraction joint (i.e. prevents the wheels from descending into the crack when the user is moving over a contraction joint). Further, this embodiment requires only one arm while still utilizing rotation-inhibiting structures and rotation inhibiting protrusions of the arms to prevents one or more wheels from contacting a bottom portion of the skateboard (i.e. preventing wheel bite). However, presents an alternative wheel arrangement configuration.
A high-speed motion analysis experiment was conducted to analyze the effectiveness of the skateboard truck embodiments to maneuver over sidewalk contraction joints of approximately 1.125 inches wide. Specifically, the embodiment of
A high-speed motion analysis experiment was conducted to analyze the effectiveness of the skateboard truck embodiments to maneuver offer non-level, non-smooth, and uneven surfaces. Specifically, the embodiment of
Various features and advantages of the disclosures are set forth in the following claims.
Clause 1. A truck comprising: a hanger; the hanger comprising: a cylindrical body; wherein the cylindrical body surrounds a bore or void; a pivot saddle; the pivot saddle further comprises a pivot tip and a pivot body surrounding an aperture; at least two rotation inhibiting structures; an axle; wherein the axle is received within the bore or the void of the cylindrical body of the hanger; an assembly; the assembly comprising: a first arm and a second arm; a first and second auxiliary wheels; wherein: the first and second arms comprises a front region, a middle region, and a rear region; the front region forms a front aperture; the middle region forms a middle aperture; the rear region forms a rear aperture; the two rotation inhibiting structures are adjacent and on opposing sides to the pivot saddle body and spaced from the cylindrical body; the two rotation inhibiting structures are coplanar to each other and/or wherein the middle region of the first and second arms are located in the space between the rotation inhibiting structure and the cylindrical body.
Clause 2. The truck of clause 1, wherein the first arm and the second arm comprises a first end and a second end, and wherein the first end and the second end are substantially planar to one another or at an angle between 178 degrees and 180 degrees.
Clause 3. The truck of clause 1, wherein the first arm and the second arm comprises a first end and a second end, and wherein the first end and the second end are at an angle between 178 degrees and 180 degrees.
Clause 4. The truck of clause 1, wherein the truck is in the nose of a skateboard.
Clause 5. The truck of clause 4, wherein the truck is in the tail of a skateboard.
Clause 6. The truck of clause 1, wherein a third wheel and a fourth wheel are coupled to the axle.
Clause 7. The truck of clause 1, wherein the first wheel, the second wheel, the third wheel and the fourth wheel are in a diamond-shape configuration.
Clause 8. The truck of clause 2, wherein the first end of the first and second arms are shorter in length than the second end of the first and second arms.
Clause 9. The truck of clause 6, wherein the first wheel, the second wheel, the third wheel, and the fourth wheel are the same diameter.
Clause 10. The truck of clause 1, wherein the rotation-inhibiting structure defines a predetermined range of movement.
Clause 11. The truck of clause 10, wherein the predetermined range of movement is between 0 degrees and 35 degrees.
Clause 12. The truck of clause 1, wherein a length of the rotation inhibiting structure is non-circular nor elliptical with a length between 2 to 2.5 inches.
Clause 13. The truck of clause 12, wherein a width of the rotation inhibiting structure is between 0.125 inch and 0.375 inch.
Clause 14. The truck of clause 1, wherein the truck further comprises one or more flange bearings that are housed within the middle aperture of the first and second arms to reduce frictional forces between the cylindrical body of the hanger and the first and second arms.
Clause 15. The truck of clause 14, wherein the flange bearing is comprised of a nylon material.
Clause 16. The truck of clause 3, wherein the truck is in a reverse king pin configuration.
Clause 17. The truck of clause 1, wherein the front aperture, the middle aperture, and the rear aperture are circular.
Clause 18. The truck of clause 1, wherein the rotation-inhibiting structure is solid.
Clause 19. The truck of clause 1, wherein the rotation-inhibiting structure is hollow.
Clause 20. The truck of clause 6, wherein the diameter of the first wheel, the second wheel, the third wheel, and the fourth wheel are between 3 and 6 inches.
This claims the benefit of U.S. Patent Application No. 62/822,412, filed on Mar. 22, 2019 and U.S. Patent Application No. 62/880,562, filed on Jul. 30, 2019, the contents of all of which are entirely incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62822412 | Mar 2019 | US | |
62880562 | Jul 2019 | US |