Skates with in-line wheels having improved maneuverability and control

Information

  • Patent Grant
  • 6227550
  • Patent Number
    6,227,550
  • Date Filed
    Thursday, May 20, 1999
    25 years ago
  • Date Issued
    Tuesday, May 8, 2001
    23 years ago
  • Inventors
  • Examiners
    • Culbreth; Eric
    • Shriver; J. Allen
    Agents
    • Modiano; Guido
    • Josif; Albert
    • O'Byrne; Daniel
Abstract
Skates with in-line wheels, each comprising a supporting structure to which supports are connected for a plurality of wheels, wherein at least one of the central wheels is coupled to the supporting structure so that it can change the level of its rotation axis.
Description




TECHNICAL FIELD




The present invention relates to skates with in-line wheels.




BACKGROUND ART




It is known that roller skates known as in-line skates have become very popular in recent years.




Their increasing demand has been so significant that conventional roller skates with two pairs of twin wheels have practically disappeared.




The success of skates with in-line wheels is such that all sports gear manufacturers are currently ready to market their own range of in-line skates.




These in-line skates substantially have a supporting structure which is rigidly coupled to a shoe in an upward region; the shoe is generally of the type with a rigid shell made of plastics with a soft innerboot, and supports are rigidly fixed to the structure in a downward region; generally four but rarely even three or six wheels arranged in front of each other are articulated to the supports.




The wheels, which have the same diameter and thickness, have a diametrical cross-section which is rounded at its ends, so that the rolling band is particularly narrow.




The ground contact area of each wheel is also particularly narrow and depends on factors such as the type of material (generally a polymer), the weight of the user and the degree of wear.




The technique for using these skates is different from that of twin-wheel skates and is more similar to that of ice skates which, as is known, have a rather long rigid metal blade rigidly coupled edgeways below the shoe.




In skates with in-line wheels, the overall longitudinal dimensions of the wheels even exceed the length of the shoe; while this fact, on the one hand, facilitates travel in a straight line and increases their stability, it entails difficulties in handling turns, which are performed by tilting the entire implement and by changing the direction of each step with respect to the preceding one.




The rigid coupling of the rotation axes of the wheels to the supports also causes every roughness of the ground to be transmitted through the implement to the athlete's leg; this of course worsens control of the implement in addition to having a negative effect on the athlete.




WO93/12846 discloses skates with in-line wheels as defined in the preamble of claim


1


.




DISCLOSURE OF THE INVENTION




The aim of the present invention is to provide skates with in-line wheels for which turning and maneuverability in general are easier.




Within the scope of this aim, a consequent primary object of the present invention is to provide skates with in-line wheels for which stability during straight-line travel is at least equal to that of current skates.




Another important object of the present invention is to provide skates with in-line wheels which are capable of absorbing the stresses induced in a substantially vertical direction by uneven ground.




Another important object of the present invention is to provide skates with in-line wheels which provide faster skating.




Another important object of the present invention is to provide skates with in-line wheels which have improved efficiency and are more controllable with respect to current skates.




Another object of the present invention is to provide skates with in-line wheels which can be manufactured with conventional equipment and systems.




This aim, these objects and others which will become apparent hereinafter are achieved by skates with in-line wheels, each comprising a supporting structure to which supports are connected for a plurality of wheels, characterized in that at least one of the central wheels is coupled to the supporting structure so that it can change the level of its rotation axis.




Advantageously, each one of the skates comprises at least two supports which are coupled to the supporting structure that is coupled to the shoe in an upward region; each one of said supports bears a pair of wheels, and said supports are arranged so as to alternate the wheels of one support with the wheels of the other; the coupling of at least one of said supports to said supporting structure is such as to allow to change the level of at least one of the respective rotation axes of the wheels.











BRIEF DESCRIPTION OF THE DRAWINGS




Further characteristics and advantages of the present invention will become apparent from the following detailed description of two possible embodiments thereof, illustrated only by way of non-limitative example in the accompanying drawings, wherein:





FIG. 1

is a perspective view, taken from below, of a first embodiment of the skates with in-line wheels, according to the present invention, with the shoe rigidly coupled to the supports of the wheels;





FIG. 2

is a side view of the skate of

FIG. 1

;





FIG. 3

is a partially sectional side view of the part of the skates of

FIGS. 1 and 2

arranged below the shoe;





FIG. 4

is a bottom view of the part of the skate shown in

FIG. 3

;





FIG. 5

is a diagram of the arrangement of the ground contact regions during turns;





FIG. 6

is a perspective view of a second embodiment of the in-line skates, with a shoe which can be disconnected from the actual skate;





FIG. 7

is a side view of the second embodiment, in which the accompanying shoe is also shown;





FIG. 8

is a front view of the skate of

FIGS. 6 and 7

, with the wheel and the shoe removed.











WAYS OF CARRYING OUT THE INVENTION




With reference to

FIGS. 1

to


5


, in a first embodiment a skate with in-line wheels according to the present invention comprises a supporting plate


10


which is rigidly coupled, in an upward region, to a shoe


11


, which in this case is constituted by a plastic shell


12


with a soft inner boot


13


.




Two supports, respectively


14


and


15


, are coupled to the plate


10


; each support bears a pair of wheels, respectively the wheels designated by the reference numerals


16


and


17


with respective axles


16




a


and


17




a


for the support


14


and the wheels designated by the reference numerals


18


and


19


with respective axles


18




a


and


19




a


for the support


15


.




The two supports


14


and


15


are arranged so as to mutually intersect, so that the wheels of one support are alternated with the wheels of the other; in particular, from the front part toward the rear part the sequence of the wheels is


16


,


18


,


17


,


19


.




The two supports


14


and


15


are configured so as to have a transverse profile shaped like an inverted U, so as to form the supporting shoulders for the wheel axles, and each support has a cradle-like shape between the two axles.




In front and rear positions with respect to the shoe


11


, the plate


10


has pairs of lateral tabs, respectively


20


and


21


, to which the cradle-shaped portions of the supports


14


and


15


are hinged at respective axes


22


and


23


.




The two supports


14


and


15


are provided with extensions, respectively


24


and


25


, which protrude from the axles


17




a


and


18




a


and are fixed to the plate


10


with respective elastomeric pads


26


and


27


interposed therebetween.




In combination with the above, or as an alternative thereto, it is possible to drive screws, respectively designated by the reference numerals


26




a


and


27




a


, in suitable holes of the plate


10


; the screws constitute adjustable-stroke limiters for the movements of the supports


14


and


15


.




The pads for coupling to the plate


10


may also be replaced for example with an elastic element, such as a spring, optionally having an adjustable elastic response, which mutually connects the two supports


14


and


15


.




Furthermore, the two supports


14


and


15


rest laterally on Teflon elements


14




a


and


15




a


which are fixed to the plate


10


and act as guides for them.




As clearly shown in particular in

FIG. 2

, the arrangement of the wheels of the respective rotation axes is such that the end wheels


16


and


19


, when no weight bears thereon, do not touch the ground, whereas due to the weight of the body the pads


26


and


27


are compressed and the supports


14


and


15


rotate about the axes


22


and


23


, so that all the wheels rest on the ground.




It should also be noted that the two central wheels


17


and


18


are narrower and/or different in profile with respect to the wheels


16


and


19


, so that the ground contact areas are wider at the ends than at the center.




Accordingly, if two imaginary lines are traced which are tangent to the wheels (designated by the reference numeral


28


in FIG.


4


), two curves are obtained which can be compared to the sidecut lines of skis.




It should also be noted that the central wheels


17


and


18


have a smaller diameter than the end wheels


16


and


19


.




Accordingly, when the skate is tilted with respect to the vertical and is subjected to a load, also because of the reduced thickness, the level of the central wheels


17


and


18


varies with respect to the other wheels and to the plate


10


, so that they touch the ground with contact areas which are not aligned (see outline


29


of

FIG. 5

) with respect to the other two wheels, further increasing the sidecut effect.




The skate therefore no longer tends to follow a straight path but turns and follows the arc that joins the four contact areas.




This naturally allows improved maneuverability and steerability of the skate which, while maintaining the same stability during straight-line skating achieves higher turning speeds since it is possible to make tighter curves.




It should also be noted that the ability of the wheels to perform elastic oscillations because of the presence of the pads


26


and


27


at least partially cushions the stresses induced by ground roughness, which would otherwise affect the athlete's legs directly.




With particular reference now to

FIGS. 6

to


8


, the skates according to the present invention, in a second embodiment, have a supporting plate


110


to which a shoe


111


can be coupled and uncoupled, as described in greater detail hereinafter, and below which supports


114


and


115


are coupled which are equivalent to the preceding ones


14


and


15


and are provided, like them, with wheels designated by the reference numerals


116


,


117


,


118


and


119


respectively.




The plate


110


is configured in an upward region so as to form tabs


128


with hollows


129


in which corresponding tabs


130


fit; said tabs


130


protrude at corresponding positions of the upper of the shoe


111


.




In other embodiments, the coupling can of course also be inverted, providing tabs on the plate and hollows in the shoe.




As shown in

FIG. 8

, two openable wings


131


are also articulated to the plate


110


in a rearward position and enclose the quarter


132


of the shoe


111


with two end half-rings


133


which are preferably padded.




The opening of the wings


131


is caused by their rotation about the respective longitudinal axes, which are horizontal with respect to the plate


110


.




Closure is achieved by means of a cable device


134


actuated by a lever


135


which is joined laterally to one of the wings


131


.




The wings


131


also have locators, for example of the interlocking type (not shown in the figures), which allow stable positioning in the closed configuration with respect to the plate


110


and optionally to vary the inclination.




In order to allow adjustability of the plate


110


with respect to the dimensions of the shoe


111


, the plate is divided into two aligned portions


110




a


and


110




b


: the first portion has a tab


136


with a slotted hole


137


which lies on the second portion at a corresponding slotted hole which is not shown in the figures.




A bolt


138


or an equivalent coupling system, by passing through the slotted holes, locks the two portions


110




a


and


110




b


of the plate


110


in the intended mutual position.




It should also be noted that in the same manner it is possible to allow the plate


110


to widen.




The same solution is used to join the half-rings


133


to the respective openable wings


131


.




Each one of the half-rings


133


in fact has a tab


139


which is superimposed on a corresponding portion of the wing


131


, while a bolt


140


passes through the two corresponding slotted holes so as to fix the parts to each other; only the hole


141


is shown.




In practice, it has been observed that the above-described skate, in both of its embodiments, has achieved the intended aim and objects of the present invention.




As mentioned, the skate in fact has a wheel configuration which is per se more suitable than others to handle turns and which, when tilted, actually causes the wheels to determine a curved path.




As mentioned above, this effect can be compared to the effect caused by the particular shape of the sides of skis, known as sidecut.




This effect can be adjusted (customized) as a function of the profile, thickness and material that constitutes the wheels and of the elastic response of the pads.




The elastic coupling also provides a cushioning effect which absorbs stresses.




The invention thus conceived is susceptible of numerous modifications and variations, all of which are within the scope of the appended claims.




All the details may also be replaced with other technically equivalent elements.




In practice, the materials employed, so long as they are compatible with the contingent use, as well as the dimensions, may be any according to requirements.



Claims
  • 1. Skates having a supporting structure to which chassis supports are connected to retain a plurality of in-line wheels, each comprising:at least two chassis support which are each directly coupled to the supporting structure that is joined to a sole portion of a boot of the skate, wherein the chassis supports are each coupled to the supporting structure at two connection points, wherein the first connection point to the chassis support is coupled to the front of the sole portion of the boot and the second connection point to the chassis support is coupled to the rear of the sole portion of the boot, each chassis support retaining at least two wheels and being coupled to the supporting structure so that the wheels of the first chassis support are alternated in an in-line arrangement with the wheels retained by the second chassis support, allowing the first chassis support to retain the first and third wheels and the second chassis support to retain the second and fourth wheels from the front of the skate.
  • 2. The skates according to claim 1, wherein said coupling of at least one of said supports to said supporting structure that allows changes in the level of at least one of the respective rotation axes of the wheels is an elastic coupling.
  • 3. The skates according to claim 1, wherein at least one of said supports is coupled to the supporting structure with a hinge having a horizontal axis.
  • 4. The skates according to claim 2, wherein at least one of said wheels has a different sectional profile with respect to the others.
  • 5. The skates according to claim 4, wherein said at least one wheel that has a different sectional profile with respect to the others is one of the central wheels.
  • 6. The skates according to claim 4, wherein the end wheels are at a higher level than the others from the ground when there is no load on them.
  • 7. The skates according to claim 4, wherein said at least one wheel that has a different sectional profile with respect to the others also has a smaller diameter than the others.
  • 8. The skates according to claim 1, wherein said supports have a longitudinal channel wherein the channel has a concave shape extending from the center wheel axle to the end wheel axle and said supporting structure is coupled to said support so as to allow oscillating movements thereof.
  • 9. The skates according to claim 1, wherein said two wheel supports are fixed to said structure with respective elastomeric pads interposed.
  • 10. The skates according to claim 8, wherein said supports are connected by elastic coupling means.
  • 11. The skates according to claim 10, characterized in that said elastic coupling means have an adjustable elastic response.
  • 12. The skates according to claim 1, wherein screws are driven into suitable holes of the supporting structure and constitute adjustable stroke limiters for the movements of said supports.
  • 13. The skates according to claim 1, wherein said supports rest laterally on axles that retain the wheels to the supports.
  • 14. The skates according to claim 1, wherein said supporting structure is disconnectable from a shoe.
  • 15. The skates according to claim 1, wherein said supporting structure can be lengthened and widened.
  • 16. The skates according to claim 1, wherein said supporting structure contains elements for coupling to the shoe.
  • 17. The skates according to claim 1, wherein two wings are articulated to said supporting structure at the cuff of the shoe, said wings ending in an upward region with respective half-rings which are suitable to surround the cuff.
  • 18. The skates according to claim 17, wherein said wings can rotate about the respective horizontal axes and are rigidly coupled to each other so as to lie between an open configuration for disengaging the cuff and a closed configuration for surrounding and locking said cuff.
  • 19. The skates according to claim 17, wherein said wings are rigidly coupled to each other with a closure device.
  • 20. The skates according to claim 17, wherein said wings are extendable.
Priority Claims (1)
Number Date Country Kind
PD96A0296 Dec 1996 IT
PCT Information
Filing Document Filing Date Country Kind 102e Date 371c Date
PCT/EP97/06706 WO 00 5/20/1999 5/20/1999
Publishing Document Publishing Date Country Kind
WO98/24525 6/11/1998 WO A
US Referenced Citations (17)
Number Name Date Kind
477550 Kenney Jun 1892
926646 Eubank, Jr. Jun 1909
5135244 Allison Aug 1992
5342071 Soo Aug 1994
5405156 Gonella Apr 1995
5522621 Schneider Jun 1996
5586777 Wolf Dec 1996
5690344 Chen Nov 1997
5791665 Mayer, II Aug 1998
5823543 Burns et al. Oct 1998
5855380 Di Filippo et al. Jan 1999
5873583 Moore Feb 1999
5908196 Weiss Jun 1999
5927728 Gignoux et al. Jul 1999
5947487 Keleny et al. Sep 1999
5957470 Powell Sep 1999
6029983 Wegener Feb 2000
Foreign Referenced Citations (3)
Number Date Country
2744373 Aug 1997 FR
9210251 Jun 1992 WO
9312846 Jul 1993 WO