The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2011-146410 filed in Japan on Jun. 30, 2011.
1. Field of the Invention
The present invention relates to a skew correction device, an image forming system, and a skew correction method.
2. Description of the Related Art
There are widely known sheet post-processing apparatuses each of which is disposed on the downstream side of an image forming apparatus main unit and performs post-processing such as binding on recording sheets or the like output from the image forming apparatus. Nowadays, such sheet post-processing apparatuses have been multifunctionalized, and generally perform a bookbinding process in which not only conventional edge binding but also saddle-stitching is performed. In some of the saddle-stitching bookbinding processes, a cutter cuts an edge of a bound booklet in order to further improve output quality.
In the cutting process of such a cutter, the booklet is conveyed by a conveying unit, such as a belt, and subjected to a skew correction by being pressed from the trailing end side thereof in the sheet conveying direction to be placed in contact with an abutting stopper placed in accordance with factors such as a size and an cutting amount of the booklet. For example, Japanese Patent No. 4134854 discloses such a skew correction technique.
In Japanese Patent No. 4134854, a leading end in the conveying direction of a booklet carried onto a booklet placing table is received by a pressing member of a booklet conveying unit. The pressing member is moved to place a trailing end in the conveying direction of the booklet in contact with a reference alignment member that can be turned up and down, and thus, a skew in the conveying direction of the booklet is corrected. The booklet is pressed by a pressing unit while being in contact with the reference alignment member, and thus is inserted into a cutter while maintaining the attitude when being in contact with the reference alignment member, and a cutting process is performed.
According to Japanese Patent No. 4134854, as described above, the skew in the conveying direction of the booklet is corrected by placing the trailing end in the conveying direction of the booklet in contact with the reference alignment member that can be turned up and down. However, although the booklet is not smeared or wrinkled due to friction between the belt and the booklet when the booklet is carried by the belt or the like and corrected in the skew thereof from above and below, it is not always possible to successfully place the booklet in contact with the reference alignment member due to deflection or buckling toward upside of the booklet occurring when the pressing member presses the booklet, because there is no control member at the upside of the booklet.
More specifically, when skew correction and positioning of the booklet is performed, the booklet is placed in contact with a positioning stopper by a trailing end jogger plate (pressing plate) or the like and subjected to the skew correction. When the trailing end jogger pushes the trailing end (end face side) of the booklet, a deflection may occur resulting in a buckling in an uncontrolled direction of the booklet depending on the sheet type and stiffness of the booklet, and thus, there is a case in which the booklet is difficult to be pressed in the horizontal direction. In such a case, the skew correction of the booklet is not achieved because a predetermined amount against the abutting stopper is not obtained. In the invention disclosed in Japanese Patent No. 4134854, the uncontrolled direction corresponds to the upside of the booklet.
This will be described specifically.
The jogger 319 pushes the end face side (trailing-end side) of the booklet BT in the direction indicated by arrow D1. The pushing amount is an amount L1 determined by factors such as the size, the number of sheets, and the type of sheet of the booklet BT. The amount L1 is longer than a theoretical distance L2 from the leading end of the booklet to the positioning stopper 317 by a predetermined amount (L1>L2+α). By this setting, the booklet BT can be pressed by the predetermined amount after the leading end of the booklet BT has abutted against the positioning stopper 317, whereby the skew is corrected even if the booklet BT is obliquely traveling.
The surface of the jogger 319 for pushing the end face side of the booklet BT has generally a flat-surface shape. However, some types of sheets lack stiffness, and in that case, as illustrated in
Therefore, there is a need for a skew correction to be performed without particularly adding a controlling unit, such as a control plate, when correcting a skew of a booklet by pushing the trailing end of the booklet.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
According to an embodiment, there is provided a skew correction device for aligning a booklet that is a folded bundle of sheets on a conveying path. The skew correction device includes a first member against which a leading end of the booklet abuts in a conveying direction; a second member configured to push a trailing end of the booklet in the conveying direction so that the leading end of the booklet abuts against the first member; and a deflection generating member configured to deflect the booklet downward when the trailing end is pushed.
According to another embodiment, there is provided an image forming system that includes the skew correction device according to the above embodiment.
According to still another embodiment, there is provided a skew correction method for aligning a booklet that is a folded bundle of sheets on a conveying path. The skew correction method includes projecting a first member on the conveying path; pushing a trailing end of the booklet with a second member against the first member projecting on the conveying path so that a leading end of the booklet abuts against the first member; and deflecting the booklet downward when the trailing end of the booklet is pushed at the pushing.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
An embodiment of the present invention will be described below with reference to the accompanying drawings. Note that, in the description given below, the same parts will be given the same reference numerals, and duplicate explanations will be omitted as appropriate.
In this specification, the term “sheet” means one type of sheet-like recording media such as a sheet of paper, a recording sheet, or a transfer sheet.
The first sheet post-processing apparatus 1 is a sheet post-processing apparatus that has a function of generating a bundle of sheets and includes a stack unit that receives sheets from the image forming apparatus PR one by one, sequentially stacks and aligns the sheets, and generates a bundle of sheets. The first sheet post-processing apparatus 1 discharges the bundle of sheets from sheet bundle discharging rollers 10 to the second sheet post-processing apparatus 2 in the subsequent stage. The second sheet post-processing apparatus 2 is a saddle-stitching bookbinding apparatus that receives the bundle of sheets that has been fed, and performs saddle-stitching and middle-folding on the bundle of sheets (in this specification, the second sheet post-processing apparatus 2 is sometime referred to as the “saddle-stitching bookbinding apparatus 2”).
The saddle-stitching bookbinding apparatus 2 discharges the bound booklet to the third sheet post-processing apparatus 3. The third sheet post-processing apparatus 3 is a cutter that cuts the ends of the sheets that have been fed (in this specification, the third sheet post-processing apparatus 3 is sometimes referred to as the “cutter 3”). The booklet subjected to the cutting process in the cutter 3 is directly discharged out of the cutter, and stacked on a discharge tray (not illustrated). Alternatively, if another sheet post-processing apparatus is further connected in the subsequent stage, the booklet is directly discharged to the another sheet post-processing apparatus. The image forming apparatus PR forms a visible image on a sheet-like recording medium based on received image data or image data of a scanned image, and examples of the image forming apparatus PR include a copying machine, a printer, a facsimile apparatus, and a digital MFP provided with at least two of the functions of these devices.
A bifurcating claw 202 is provided on the downstream side of the entrance rollers 201 in the entrance conveying path 241. The bifurcating claw 202 is placed in the horizontal direction in the diagram, and switches the conveying direction of the bundle of sheets to the sheet-through conveying path 242 or the middle-folding conveying path 243. The sheet-through conveying path 242 is a conveying path that extends horizontally from the entrance conveying path 241 and guides the bundle of sheets to a post-processing apparatus or a discharge tray (both not illustrated) in the subsequent stage. The bundle of sheets is discharged to the subsequent stage by upper discharging rollers 203. The middle-folding conveying path 243 is a conveying path that extends vertically downward from the bifurcating claw 202 and is used for performing saddle-stitching and middle-folding on the bundle of sheets.
The middle-folding conveying path 243 includes an upper bundle-conveying guide plate 207 that guides the bundle of sheets above a folding plate 215 for middle folding, and a lower bundle-conveying guide plate 208 that guides the bundle of sheets below the folding plate 215. The upper bundle-conveying guide plate 207 is provided, from the top, with upper bundle-conveying rollers 205, a trailing end tapping claw 221, and lower bundle-conveying rollers 206. The trailing end tapping claw 221 is mounted in a standing manner on a trailing end tapping claw drive belt 222 driven by a driving motor (not illustrated). The trailing end tapping claw 221 aligns the bundle of sheets by tapping the trailing end of the bundle of sheets to the side of a movable fence (to be described later) using a reciprocating rotational motion of the drive belt 222. When the bundle of sheets is carried in and when the bundle of sheets is raised for middle folding, the trailing end tapping claw 221 is retracted from the middle-folding conveying path 243 on the upper bundle-conveying guide plate 207 (to a position indicated by a dashed line in
A reference numeral 294 represents a trailing end tapping claw HP sensor for detecting a home position of the trailing end tapping claw 221. The trailing end tapping claw HP sensor detects, as the home position, the position indicated by the dashed line in
The lower bundle-conveying guide plate 208 is provided, from the top, with a saddle-stitching stapler S1, a pair of saddle-stitching jogger fences 225, and a movable fence 210. The lower bundle-conveying guide plate 208 is a guide plate that receives the bundle of sheets fed through the upper bundle-conveying guide plate 207, that is arranged in the width direction thereof with the pair of saddle-stitching jogger fences 225, and that is provided therebelow with the vertically movable fence 210 that abuts against the leading end of the bundle of sheets and supports the bundle of sheets.
The saddle-stitching stapler S1 is a stapler that staples a central portion of the bundle of sheets. The movable fence 210 moves in the vertical direction while supporting the leading end of the bundle of sheets, and positions the center position of the bundle of sheets in a position that faces the saddle-stitching stapler S1, in which position a stapling process, that is, the saddle stitching is performed. The movable fence 210 is supported by a movable fence drive mechanism 210a, and is movable from the position of a movable fence HP sensor 292 illustrated above in the diagram to the lowest position. The movable range of the movable fence against which the leading end of the bundle of sheets abuts ensures a sufficient travel to process the bundle of sheets having a size varying from a minimum size to a maximum size that can be handled by the saddle-stitching bookbinding apparatus 2. Note that, for example, a rack and pinion mechanism is used as the movable fence drive mechanism 210a.
The folding plate 215, a pair of folding rollers 230, a discharged paper conveying path 244, and lower discharging rollers 231 are provided between the upper and the lower bundle-conveying guide plates 207 and 208, that is, near a central portion of the middle-folding conveying path 243. The folding plate 215 can make a reciprocating motion in the horizontal direction in the diagram. A nip of the pair of folding rollers 230 is located in the direction of motion during folding operation, and the discharged paper conveying path 244 is placed in the extension beyond the nip. The lower discharging rollers 231 are provided at the lowermost stream of the discharged paper conveying path 244, and discharge the folded bundle of sheets to the subsequent stage.
A bundle of sheets detecting sensor 291 is provided on the lower end side of the upper bundle-conveying guide plate 207, and detects the leading end of the bundle of sheets that is carried into the middle-folding conveying path 243 and passes through a middle folding position. A folded portion passage sensor 293 is provided on the discharged paper conveying path 244, and detects the leading end of the middle-folded bundle of sheets, thereby recognizing the passage of the bundle of sheets.
In the saddle-stitching bookbinding apparatus 2 structured as schematically illustrated in
The bundle of sheets SB fed into the middle-folding conveying path 243 is conveyed downward through the middle-folding conveying path 243 by the entrance rollers 201 and the upper bundle-conveying rollers 205. After the bundle of sheets detecting sensor 291 has recognized the passage of the bundle of sheets SB, the bundle of sheets SB is conveyed by the lower bundle-conveying rollers 206 to a position in which the leading end of the bundle of sheets SB abuts against the movable fence 210 as illustrated in
In this state, as illustrated in
Next, the saddle-stitching jogger fences 225 performs an aligning operation in the width direction (the direction perpendicular to the sheet conveying direction), and the movable fence 210 and the trailing end tapping claw 221 perform an aligning operation in the conveying direction, thus completing the aligning operations in the width direction and the conveying direction of the bundle of sheets SB. In these operations, the alignment is performed by adjusting the pressing amounts of the trailing end tapping claw 221 and the saddle-stitching jogger fences 225 to optimal values using the information on the sheet size, information about the number of sheets in the bundle, and information about the thickness of the bundle of sheets.
If the bundle is thick, the space in the conveying path is reduced, and it often happens that the alignment operation cannot be performed completely in one time. Accordingly, in such a case, the number of times of the aligning operations is increased. In this manner, a better alignment state can be achieved. As the number of sheets accumulates, the time for sequentially stacking the sheets increases on the upstream side, and thus, the time for receiving the next bundle of sheets SB becomes longer. As a result, systematically, there is no time loss by increasing the number of times of the aligning operations. Therefore, a good alignment state can be achieved efficiently. Consequently, the number of times of the aligning operations can also be controlled corresponding to the processing time on the upstream side.
The standby position of the movable fence 210 is normally set in a position in which the saddle-stitching position of the bundle of sheets SB faces the stapling position of the saddle-stitching stapler S1. This is because, if the aligning operation is performed in this position, the stapling process can be performed in the stacked position without having to move the movable fence 210 to the saddle-stitching position of the bundle of sheets SB. Consequently, in this standby position, a stitcher of the saddle-stitching stapler S1 is then driven in the direction of arrow b to the central portion of the bundle of sheets SB, and the stapling process is performed between the stitcher and a clincher, thus saddle-stitching the bundle of sheets SB.
The movable fence 210 is positioned by pulse control from the movable fence HP sensor 292, and the trailing end tapping claw 221 is positioned by pulse control from the trailing end tapping claw HP sensor 294. The position control processes of the movable fence 210 and the trailing end tapping claw 221 are executed by a CPU 251 of a control circuit 250 in the second sheet post-processing apparatus 2 (refer to
The bundle of sheets SB saddle-stitched in the state illustrated in
When the bundle of sheets SB reaches the position illustrated in
The bundle of sheets SB doubled in the middle in the state illustrated in
In the diagram, the cutter 3 is provided, from the upstream side along a conveying path 300 of the booklet (arrow indicates the conveying center), with a conveying unit 300a, a cutting unit 300b, and an aligning unit 300c.
The conveying unit 300a corresponds to an entrance of the cutter 3, and includes an entrance guide plate 301a, a pair of upper and lower conveying rollers 302 and 303, and the jogger 319 for pushing to align the booklet BT in the conveying direction (on the end face side) (refer to
The cutting unit 300b includes cutting blades and a pressing unit with the conveying path 300 interposed therebetween. The cutting blades, i.e., an upper cutting blade 305 and a lower cutting blade 307 forming a pair, are arranged above and below the conveying path 300 opposing each other. The upper cutting blade 305 is movable whereas the lower cutting blade 307 is fixed. The upper cutting blade 305 on the movable side moves down toward the booklet BT located above the lower cutting blade 307 on the fixed side, and cuts the end face side of the booklet BT between the two blades. In addition, a scrap receiver 320 for receiving scraps of the cut booklet is provided below the cutting unit 300b.
The pressing unit includes a pressing member 306 on the movable side and a base 308 serving as the fixed side, the former being arranged above and the latter being arranged below the conveying path 300, interposing the conveying path 300. The lower cutting blade 307 is fixed to an edge on the uppermost stream side in the conveying direction of the base 308. The fixing position is set in a position in which cutting can be performed by a cutting edge of the upper cutting blade 305 and a cutting edge of the lower cutting blade 307. The upper cutting blade 305 is driven by a drive mechanism (not illustrated) downward to advance to a position beyond the lower cutting blade 307, and driven upward to return to a position in which the upper cutting blade 305 does not obstruct the receiving of the booklet BT. The upper standby position is the initial position.
The pressing member 306 located above the base 308 is driven by a drive mechanism (not illustrated) in the vertical direction, and has a function to hold the booklet BT by pressing it toward the base 308 near the upper cutting blade 305 when the upper cutting blade 305 moves down to cut the booklet BT. The upper cutting blade 305 and the pressing member 306 are driven by the respective drive mechanisms (not illustrated) each using a motor and a speed reduction mechanism connected to the motor. However, the drive mechanisms can be each structured to perform the driving in the vertical direction using hydraulic pressure instead of the motor and the speed reduction mechanism.
The aligning unit 300c includes a lower unit 300c1 and an upper unit 300c2, the lower unit 300c1 being located below and the upper unit 300c2 being located above the conveying path 300, interposing the conveying path 300. The lower unit 300c1 includes a first conveying belt 310 on the fixed side, the positioning stopper 317, and the guide plate 318. The first conveying belt 310 is wound between a driving pulley 309a and a driven pulley 309b. The upper surface of the first conveying belt 310 is located in the same plane as the upper surface of the base 308, and serves also as a reference plane of conveyance of the booklet BT.
The upper unit 300c2 includes a second conveying belt 312, a driving pulley 311a, a driven pulley 311b, a support member 313, guide shafts 315, a pressing plate 316, and compression springs 314. The second conveying belt 312 is wound between the driving pulley 311a and the driven pulley 311b. The support member 313 supports the second conveying belt 312, the driving pulley 311a, and the driven pulley 311b in an integrated manner. The guide shafts 315 are mounted on the upper surface of the support member 313, and equipped with the pressing plate 316 in a vertically movable manner. The guide shafts 315, between the support member 313 and the pressing plate 316, are also equipped with the compression springs 314 that provide elastic forces in a direction in which the support member 313 and the pressing plate 316 move away from each other. The second conveying belt 312, the driving pulley 311a, the driven pulley 311b, the support member 313, the guide shafts 315, and the pressing plate 316 are vertically movable in an integrated manner as the upper unit 300c2. Thus, a distance between the upper surface of the first conveying belt 310 and the lower surface of the second conveying belt 312 can be relatively changed.
With this structure, when the first and the second conveying belts 310 and 312 sandwich the booklet BT, the distance therebetween can be reduced. In this process, a distance between the pressing plate 316 and the support member 313 can also be changed. Therefore, when the pressing plate 316 is moved further down after the second conveying belt 312 presses the upper surface of the booklet BT, the compression springs 314 are further compressed, and thus, a holding force, or a pressing force, to the booklet BT can be increased. A drive mechanism (not illustrated) for driving the upper unit 300c2 in the vertical direction includes a motor, a power transmission mechanism, and a guide in the vertical direction that directly move the pressing plate 316 in the vertical direction. When the pressing plate 316 is moved in the vertical direction with the distance between the pressing plate 316 and the support member 313 kept at an initial value, the entire upper unit 300c2 moves in the vertical direction. In the state in which the second conveying belt 312 is in contact with the upper surface of the booklet BT, when the pressing plate 316 is moved further downward, the compression springs 314 are compressed, and thus, a pressure by the compression springs 314 is produced by that much. This pressure serves as the holding force, or the pressing force, to the booklet BT. Note that the term “pressing” means to produce a pressure by pushing, and the “pressing force” is a pressure produced by the pressing action, in other words, a pushing force. Note also that a phrase “when something is pressed” means “when the pressing action is performed”, that is, “when the object is pushed”.
The first conveying belt 310, together with the second conveying belt 312, has a function to convey the booklet BT, and also has a function as a guide during alignment of the sheets. The first and the second conveying belts 310 and 312 have the additional function as a guide during skew correction. Therefore, materials used for surfaces coming in contact with the booklet BT have each a low coefficient of friction against the sheet, and moreover, the coefficients of friction of the two conveying belts 310 and 312 are set to be almost equal to each other. In this manner, when the booklet is pressed, the forces applied to the upper side and the lower side of the booklet are low and almost equal to each other. Consequently, misalignment can be reduced when the booklet is pressed.
In the present embodiment, the first and the second conveying belts 310 and 312 have also a guiding function as guide units. However, it is also possible to provide the guide plate 318 along the first conveying belt 310 on the lower side as illustrated in
In addition, in the present embodiment, the first conveying belt 310 on the lower side is fixed, and the second conveying belt 312 on the upper side performs the up and down operations. However, it is also possible to structure the second conveying belt 312 on the upper side so as to serve as a fixed side and the first conveying belt 310 on the lower side so as to serve as a moving side, or to structure both of the first and the second conveying belts 310 and 312 so as to move.
Furthermore, the positioning stopper 317 installed in the aligning unit 300c includes a moving mechanism (not illustrated) that can move the stopper in the booklet conveying direction. Based on the information such as the size and the cutting amount of the booklet BT, the moving mechanism moves the stopper to a predetermined position, whereby the spine side of the booklet BT abuts against the stopper and thus positioned. The moving mechanism includes a motor and a transmission mechanism of the driving force of the motor.
In the image forming system according to the present embodiment illustrated in
That is, each part of each of the sheet post-processing apparatuses 1, 2, and 3 is controlled by each of the CPUs 151, 251, and 351 mounted in each of the apparatuses, and the CPU PR1 of the image forming apparatus PR controls the entire system. The apparatuses perform control as follows: The CPUs 151, 251, and 351 of the respective apparatuses read program codes stored in the ROM of each of the apparatuses, and perform control based on a computer program defined by the program codes while using the RAM as a work area and a data buffer. The CPU 151 of the first sheet post-processing apparatus 1 can mutually communicate with the CPU PR1 of the image forming apparatus PR from the communication port 161 via the communication port PR2 of the image forming apparatus PR. In addition, the CPUs 251 and 351 of the second and the third sheet post-processing apparatuses 2 and 3 can mutually communicate with the CPU PR1 of the image forming apparatus PR via the communication ports and the CPUs in the previous stages. With such a structure, information required for control by the CPU PR1 of the image forming apparatus PR is sent from the CPUs 351, 251, and 151 of the third sheet post-processing apparatus 3, the second sheet post-processing apparatus 2, and the first sheet post-processing apparatus 1 to the image forming apparatus PR side, and control signals from the CPU PR1 of the image forming apparatus PR are sent to the CPU 151, the CPU 251, and the CPU 351.
With reference to the operation explanatory diagrams of
The positioning stopper 317 moves to a position in which the sheets are positioned based on the information such as the size and the cutting amount of the booklet. When the movement is completed, the pair of conveying rollers 302 and 303 and the first and the second conveying belts 310 and 312 start rotating and start receiving the booklet BT. In order to match the phases between the first and the second conveying belts 310 and 312, the drives of driving pulleys 309a and 311a are coupled. In the state as described above, at the time when a predetermined time has passed from the time when the entrance sensor SN1 has detected the leading end of the spine (folded portion) of the booklet BT carried into the cutter 3, the first and the second conveying belts 310 and 312 stop rotating, and the leading end (leading end of folded portion or spine) of the booklet BT stops at a predetermined distance short of the positioning stopper 317.
As a method for abutting the booklet BT against the positioning stopper 317, it is also possible to employ a method in which the booklet BT is moved by the first and the second conveying belts 310 and 312. However, if a conveying force of the first and the second conveying belts 310 and 312 is large, turning up of a surface sheet of the booklet BT can occur. In that case, the conveying force needs to be set so that the first and the second conveying belts 310 and 312 do not cause any turning up in the booklet BT. In the present embodiment, the trailing end jogger 319 is used in order to avoid such turning up phenomenon from occurring.
In that operation, after the first conveying belt 310 has abutted against the upper surface of the booklet BT, the pressing plate 316 is further moved down. In this manner, the elastic forces of the compression springs 314 are applied as a pressure to the booklet BT while the booklet BT is held at a minimum thickness. Accordingly, the pressure applied to the booklet BT can be controlled by changing or setting the amount of downward movement of the pressing plate 316. The amount of downward movement of the upper unit 300c2 (gap distance between the first and the second conveying belts 310 and 312) and the amount of downward movement of the pressing plate 316 are determined corresponding to the booklet information such as the sheet thickness, the sheet size, the number of bound sheets, and the paper type (such as special paper). The distance d3 is a distance sufficient to press the booklet BT down to the minimum thickness and complete it to a final thickness while each sheet of the booklet BT is stretched, that is, a distance enabling to press and fix the booklet BT.
The database that is referred to with respect to the first to the third distances d1, d2, and d3, and with respect to the amount of downward movement of the pressing plate 316 is formed as follows: by using an actual apparatus before shipment, the optimal values for the distances d1, d2, and d3 and the amount of downward movement are obtained in advance with respect to combinations of elements such as the sheet thickness, the sheet size, the number of bound sheets, and the paper type (such as special paper) of booklets BT that can be subjected to the cutting process in the cutter 3, and the obtained values are formed into the database. For example, when the CPU PR1 of the image forming apparatus PR sends to the CPU 351 of the cutter 3 the booklet information that the sheet thickness is normal thickness (thickness of normal paper when divided into thin paper, normal paper, and thick paper; represented by e.g., metric basis weight in g/m2), the sheet size is A3, the number of bound sheets is 10, the paper type is plain paper, the CPU 351 refers to the database in the memory to obtain the first to the third distances d1, d2, and d3 and the amount of downward movement of the pressing plate 316 corresponding to the booklet information, and determines the first to the third distances d1, d2, and d3 and the amount of downward movement of the pressing plate 316. This operation allows the cutting process to be performed in the state of holding the booklet BT with an optimal holding force or pressing force.
By holding the booklet BT in this manner, the booklet BT is suppressed from being deflected, and, when pressed by the pressing member, prevented from being misaligned, and thus, accurate sheet processing can be performed.
In (a) of
When the trailing end of the sheet P is scooped up toward the most recessed portion of the first and the second inclined surfaces 319b and 319c of the jogger 319, the trailing end of the sheet P moves to the intersection 319d in a sliding manner, and the jogger 319 results in pushing the sheet P in the horizontal direction (direction of arrow D5). That is, neither the component force in the direction perpendicular to the inclined surface nor the component force in the direction along the inclined surface is generated. However, the sheet P smoothly moves in the horizontal direction without buckling because the downward deflection has been generated in the sheet P before.
The above-described operation also applies to the booklet BT. Also in the case of the booklet BT, the booklet BT is deflected downward, and thus, is curved so as to be convex downward, consequently increasing the stiffness of the sheet in contact with the guide plate 318 on the lower side. Through this effect, the booklet BT does not buckle when the jogger 319 pushes the end of the booklet BT and moves the booklet BT. As a result, the positioning and the skew correction can be performed in a reliable manner.
L>M/2 (1)
This is because a problem occurs as illustrated in
Illustrated in (a) of
When the jogger further moves in the direction of arrow D1 in this state, a further force acts in the direction of arrow D7, and thus, the force acts in the direction of increasing the deflection. As a result, buckling occurs as illustrated in (c) of
On the other hand, if the height L of the intersection 319d and the maximum processable booklet thickness M are set as given by Inequality (1) defined above, the trailing end BT1 corresponding to the most trailing end of the booklet BT abuts against the first inclined surface (upward slant surface) 319b or the intersection 319d as illustrated in
As described above, according to the present embodiment, the following effects are produced.
1) When the jogger 319 pushes the trailing end BT1 in the conveying direction of the booklet BT so as to cause the leading end BT2 of the booklet BT to abut against the positioning stopper 317 during alignment of the booklet BT formed by folding the bundle of sheets SB on the conveying path 300, the force acting while the trailing end BT1 is pushed, deflects the booklet BT downward. Accordingly, the deflection is controlled by the guide plate 318 that guides the booklet BT, preventing buckling. In this manner, the moving amount of the booklet BT is ensured, and the booklet BT is pushed in a reliable manner by the jogger 319 toward the positioning stopper 317, thus enabling to press the leading end BT2 of the booklet BT against the positioning stopper 317. As a result, the skew of the booklet can be corrected in a reliable manner. In addition, the skew correction requires no other members or devices such as a controlling plate because the booklet BT is deflected toward the guide plate 318 (downward) when being pushed by the jogger 319.
2) In order to generate the deflection in the downward direction of the booklet, the pressing surface 319a of the jogger 319 is composed of the two inclined surfaces 319b and 319c such that the cross section of the pressing surface 319a has a recessed shape with respect to the trailing end BT1 of the booklet BT. This simple structure enables the booklet BT to be deflected downward.
3) The pressing surface 319a is formed to be a recessed surface composed of the first inclined surface 319b that has the upward inclination where the upstream side in the conveying direction is located above the downstream side, and the second inclined surface 319c that has the downward inclination where the upstream side in the conveying direction is located below the downstream side. In addition, the height L of the intersection 319d where the first and the second inclined surfaces 319b and 319c intersect each other from the guide plate 318 is set to a height of a position higher than half the allowable maximum thickness M of the booklet BT conveyed along the conveying path 300. This structure enables the trailing end of the booklet BT to be pushed by the first inclined surface 319b having the upward inclination, and thus, the deflection can be directed downward in a reliable manner.
4) The cutting unit 300b is provided between the positioning stopper 317 and the jogger 319, and the end of the booklet BT that has been subjected to the skew correction is cut by the upper cutting blade 305 and the lower cutting blade 307 in the cutting unit 300b.
Therefore, a bookbinding process can be performed with the end cleanly trimmed.
5) The skew correction device according to the present embodiment is provided in the cutter 3 of the image forming system including the image forming apparatus PR, the first post-processing apparatus 1, the second post-processing apparatus (saddle-stitching apparatus) 2, and the third post-processing apparatus (cutter) 3. Accordingly, the steps of forming an image on each sheet, aligning a bundle of sheets, saddle-stitching and middle-folding the bundle of sheets, and then cutting the end thereof can be performed as a series of processes, and thus, an efficient simple bookbinding process can be performed with the end neatly trimmed.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2011-146410 | Jun 2011 | JP | national |