This invention relates to release bindings used in alpine ski touring, also known as “Randonnee”.
Alpine touring bindings allow the heel of the user's footwear (such as a ski boot) to be latched to a snow travel aid (such as a ski) for sliding downhill (the “downhill mode”) and allow the heel to be released for walking and climbing (the “touring mode”). Thus, the binding allows for selective holding of the footwear heel to the snow travel aid so that the user may select between the downhill mode and the touring mode. Modem alpine touring bindings allow the footwear to release from the snow travel aid when in the downhill mode, in case of a fall. When in the touring mode, the user may climb or walk with a great degree of freedom since the footwear is pivotally engaged with the aid near the toe of the footwear while the heel of the footwear is free to move upward and downward relative to the aid. A historical collection of such bindings can be viewed in the “Virtual Museum of Backcountry Skiing Bindings” at www.wildsnow.com, authored by Louis Dawson.
Alpine touring bindings sold under the brand DYNAFIT are bindings that take advantage of the fact that modern alpine touring boots have a rigid sole. Thus, it is unnecessary to provide a bar, plate or other arrangement connecting the toe and heel units, as is the case with many other alpine touring bindings (see patent publications EP0199098, EP0519243, EP1559457, and AT402020).
The DYNAFIT™ binding system comprises a toe unit which has a set of jaws that pivotally engage a special insert in the footwear sole. The toe unit is mountable at an appropriate location on the upper surface of a snow travel aid. A separate heel unit is mountable at a particular region on the upper surface rearward of the toe unit, the location of which is dictated by the length of the footwear sole. The toe and heel units function independently in retaining the footwear attached to the snow travel aid. The heel unit comprises projections (typically a pair of pins) which extend forward to engage opposite sides of a fitting placed over a cavity in the rear of the footwear heel. Under forward release conditions, the pins are intended to be forced apart against spring pressure to respective release positions to disengage from the fitting and the heel. The pins typically communicate with a spring or springs through inclined sliding surfaces that move a block which engages the spring or springs.
Fore and aft adjustment of the DYNAFIT™ heel unit to position the pins at an optimum depth in the heel fitting and to accommodate a limited range of different footwear sizes is provided by means of a threaded adjuster that moves a main portion of the heel unit relative to a base plate which is fixed to the upper surface of the snow travel aid. This is a fine adjustment that must be carried out by means of numerous rotations of a threaded adjuster, through the application of a tool such as a screwdriver or hex key.
The heel unit of a DYNAFIT™ binding provides lateral release primarily as a result of the body of the heel unit which contains the pins being pivotally engaged on a vertical post. Variable release settings are provided by adjusting compression of a spring that is internal to the body which forces a plunger against flat regions arranged on the post circumference.
To switch between touring and downhill modes with the DYNAFIT™ system, it is necessary to rotate the heel unit so that the pins either engage the footwear heel (downhill mode) or face away from the heel (touring mode). When the pins are facing away, the footwear heel is free to move upward and downward. A series of steps on the heel unit may also be provided which, upon rotation of the heel unit to different positions in the touring mode, allow the heel to be supported at varying heights above the snow travel aid to provide comfort during climbing. In order to switch from downhill mode to touring mode it is necessary to release the pins from the fitting on the heel such as by disengagement of the toe unit from the footwear, so that the footwear completely exits from the binding system whereupon the heel unit may be rotated to a position in the touring mode. A DYNAFIT™ type heel unit can also rotate on its own while in the tour mode, occasionally causing the heel unit to inadvertently switch to the downhill mode.
The snow brake for the DYNAFIT™ binding is positioned to not contact snow while in the touring mode by the user forcing the heel plate of the brake downwards while simultaneously rotating the heel unit to a position in the touring mode. This requires a manual activity on the part of the user, which can be difficult to accomplish while in deep snow or when poised in a precarious location.
A variation on a DYNAFIT™ type of binding is shown in WO 2009/105866 where the heel unit is adapted to translate forward and rearward, preferably by a single motion of an actuator to allow for engagement and disengagement of pins from the heel fitting without rotation of the heel unit. This allows the user to change the binding between downhill and touring modes while keeping the boot engaged with a toe piece. The type of binding illustrated in WO 2009/105866 does not rotate except during lateral release whereupon the binding returns to a normal position as a result of a biasing force exerted by lateral (Mz) release components of the binding. Also, translation forward and rearward of the binding in WO 2009/105866 may be used to change a ski brake from a stowed position for use in touring to a release position for use in downhill skiing whereby release of a boot from the binding in a fall will result in the snow brake being engaged with the snow surface.
Various embodiments of this invention provide an apparatus for selective holding of a footwear heel to a snow travel aid. The apparatus may comprise: a base mountable to the snow travel aid and an upper portion slidably engageable with the base and having a connector for connecting the upper portion to the heel. The upper portion may comprise Mz and My release components. The upper portion is rotatable on a generally vertical axis between a downhill position and at least one lateral release position. The upper portion further comprises at least one camming surface such that rotation of the upper portion results in the at least one camming surface contacting a stop causing the upper portion to translate away from the stop (which would be in a rearward direction when mounted on the snow travel aid) against the biasing force of a biasing device. The Mz and My release components typically include biasing devices and the aforementioned biasing device for urging the upper portion against the stop is separate from any biasing devices of the Mz and My release components.
In some embodiments, the stop against which the upper portion is biased may be on a chassis which is also slidably engaged with the base plate. The chassis may be used for mounting a snow brake. The upper portion or the upper portion in combination with such a chassis may be positionable as a unit by means of an adjustor such a threaded screw for adjusting the position of the heel unit components relative to the heel of a user's footwear. The connector may be one or more pins which are adapted to engage in a fitting in the heel. The heel unit may be adjusted to have a gap between the upper portion and the heel or may be adjusted so that there is very little or no clearance between the upper portion and the heel when the binding is in the downhill mode. The latter positioning allows for constant placement of the boot heel fitting relative to the connector. Where the connector is one or more pins as in a DYNAFIT™ binding, consistent placement of the boot heel relative to the pins allows for more consistent release characteristics. In order to compensate for compressive forces on the ski that causes the heel unit to be pushed forward against the heel of the footwear, the upper portion of the heel unit will translate rearward relative to the footwear heel against the force of the biasing device. Upon release of a compressive force, the biasing device will cause the upper portion of the heel unit to return to its normal position in the downhill mode. In some embodiments, such a biasing device can be used to pre-load the heel unit against the footwear heel to achieve higher release values.
Rotation of the heel unit to a touring position causes the upper portion to translate rearward relative to the stop against the force of the biasing device. A catch or other means may be provided to restrain the heel unit in the touring position so that it will not return to the downhill position under the force exerted by the biasing device unless intended by the user. A locking device may also be provided to hold the upper portion in the touring position to prevent accidental dislodgement and return of the upper portion to the downhill position which may occur with snow build up, etc.
Embodiments of this invention permit the use of a rotatable-type heel unit which can be translated rearward to provide sufficient clearance for the footwear heel in the touring position. This allows for placement of the heel unit close to or against the heel of the footwear to provide for more consistent release characteristics.
The feature of the present invention whereby the upper portion of the heel unit is translated rearward when changing to a touring position allows for the use of a snow brake which is engaged or disengaged as a result of forward/rearward translation of the heel unit. Advantages of such a snow brake as compared to the snow brake of a DYNAFIT™ binding are described in WO 2009/105866. Such a brake comprises a brake holder movable in response to movement of the upper portion for holding the brake in a raised position when the upper portion is in a touring position.
Various embodiments of this invention provide the aforementioned apparatus mounted to a snow travel aid. In some embodiments, the snow travel aid is a ski and the footwear is a ski boot.
Various embodiments of this invention provide a binding kit comprising toe and heel units, each unit for selectively holding a footwear to a snow travel aid. The heel unit is a heel unit as described above. The toe unit will be configured to function independently from the heel unit to retain the footwear toe on the snow travel aid while permitting forward and rearward movement of the footwear. The kit may further comprise instructions for one or more of installation, maintenance, adjustment and use of the toe and heel units. The kit may further comprise fasteners such as appropriate threaded fasteners for attachment of the toe and heel units to a snow travel aid. In some embodiments, the toe and heel units will not be connected except through mounting on a snow travel aid.
Snow travel aids as contemplated herein are devices that support a user and are adapted to slide on a snow surface. Examples include skis, other snow sliding devices shaped like a ski and snowboards. This includes devices known as “split-boards” (which are snowboards that can be separated longitudinally into at least two portions, the two portions then functioning in a manner similar to a pair of skis). Examples of such other devices include “ski blades”, “snow blades”, “ski boards”, and “sliding” or “gliding snow shoes”. An example of the latter device is the configurable snow shoe/ski device described in WO 2000/044846.
In this specification, reference to “Mz” refers to the lateral release characteristic that involves torque applied about an axis that is generally perpendicular to the upper surface of a snow travel aid. The term “My” refers to the forward release characteristic whereby torque is applied about an axis that is generally parallel to the upper surface and generally perpendicular to the longitudinal axis of the snow travel aid.
In this specification, reference to “generally vertical” is intended to indicate a general direction upwards or downwards from a reference but does not require perpendicularity to such reference. Conversely, the term “generally horizontal” includes directions that are perpendicular to those which are “generally vertical” but is not limited to situations involving a line or a plane parallel to the reference. The terms “generally horizontal” and “generally parallel” as used herein include lines or planes that are parallel to a reference as well as those which form an angle of less than 45 degrees with the reference. The term “generally perpendicular” is not limited to a 90 degree orientation but includes orientations that form an angle to a reference of greater than 45 degrees and less than 135 degrees.
In order to switch from the downhill mode shown in
In the prior art bindings illustrated in
A prior art DYNAFIT™ mounting plate could be sandwiched between base plate 7 and the ski surface to provide a second position adjuster allowing for about 50 mm of movement of the heel unit on the ski. This allowed for greater freedom of use of a particular ski-binding set up for rental purposes. Photographs showing top, side perspective and bottom views of such a DYNAFIT™ rental plate are shown in
As will be discussed below, various aspects of this invention relate to an apparatus for holding a footwear heel to a snow travel aid. The apparatus comprises a base mountable to the snow travel aid and an upper portion slidable relative to the base and having at least one forward connector for connecting the upper portion to the heel. The upper portion is rotatable on a generally vertical axis between a downhill position and at least one lateral release position. The apparatus further comprises at least one camming surface positioned such that rotation of the upper portion toward the lateral release position results in the upper portion translating rearwardly against an opposing force provided by a forward biasing device. The apparatus may further comprise Mz and My biasing devices separate from the forward biasing device. The camming surface may be a lobe connected to the upper portion. Such a lobe may have an axis of rotation that is generally the same as the axis of rotation of the upper portion. The camming surface may contact a boss that is connected to the base. The apparatus may comprise two lobes on opposite sides of the upper portion, wherein the upper portion is rotatable in opposite directions. The boss may be on a chassis, the chassis being positionable on the base by an adjustor and wherein the upper portion is slidably engaged with the chassis. The apparatus may further comprise a snow brake mounted on the chassis. The upper portion may be releasably retained in a rotated position against the force provided by the forward biasing device. The releasable retaining may be provided by a detent in the camming surface. The detent may engage the boss. The releasable retaining may be provided by the lobe engaging a depression that is fixed relative to the upper portion, with the lobe engaging the depression in the rotated position. The engagement may be facilitated by flexibility of the lobe. The depression may be behind a ramp on which the lobe rides while rotating to the rotated position. Weighting the apparatus by a user may restrict the lobe from disengagement from the depression. This invention also relates to a system or combination that comprises a snow travel aid and a touring binding mounted to the snow travel aid and a boot placed in the binding. The touring binding comprises an apparatus of this invention which may be positioned such that there is no clearance between the heel of the boot and the upper portion of the apparatus, when the apparatus is in the downhill mode (for example, when a pair of pins as described herein are engaged with the boot heel).
The cross section view in
Alternate means for restraining and/or locking the upper portion of the heel unit when in the touring position may also be used and may be appropriately adapted to the amount of load on spring 76 and the consequent tendency for the upper portion of the heel unit to tend to return to the downhill position.
Use of a heel unit of this invention where the upper portion is translated rearward relative to the footwear heel when in the touring position is advantageous, particularly when moving through bumpy terrain which can result in significant flexing of the ski. This invention allows for the provision of clearance between the heel unit and the footwear heel in the touring position even if the heel unit is adjusted so that it will be at or near or even pressed against the heel of the footwear when in the downhill mode. Placing the upper portion of the heel unit at a consistent location on or immediately adjacent to footwear heel results in more consistent release characteristics even when the ski is compressed causing the heel unit to be biased forward. The biasing device which holds the upper portion in position against a stop allows the upper portion to translate rearward under force when in the downhill position, to allow for proper functioning of the binding during compression forces being exerted in the ski. In situations where a heel unit of this invention is positioned so that when in engaged with the heel of the footwear, biasing device 76 pre-loads the upper portion of the heel unit against the heel (i.e. to provide for higher release settings), it may be advantageous to provide for a ramp or other means for forcing the heel unit rearwards when engaging the heel of the footwear. Such a ramp may be positioned at a location such as one as inclined region 130 illustrated in
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of skill in the art in light of the teachings of this invention that changes and modification may be made thereto without departing from the spirit or scope of the invention. All patents, patent applications and publications referred to herein are hereby incorporated by reference.
This applications claims the benefit of U.S. provisional application No. 61/844,229 filed Jul. 9, 2013, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61844229 | Jul 2013 | US |