The present invention is in the field of ski and snowboard boots, and specifically in the field of ski boot and ski binding accessories.
Ski boots are generally uncomfortable whereas snowboard boots provide more long lasting comfort for the wearer. The outer shell of ski boots is comprised of hard plastic and is thus makes the boot difficult to maneuver in when not latched into skis. The flexible leather that comprises the synthetic shell of a snowboard boot provides more comfort and motility. The thick hard soles of ski boots can be ruined once worn off of the snow and restrict cushioning on the feet. The soles of snowboarding boots are similar to those of athletic shoes, which allows them to be more versatile as well as provides more cushioning for the feet. Many skiers have switched to snowboarding due to the more comfortable boot.
Disclosed herein is a boot frame comprising: a) a base; b) two side supports; c) a toe binding; d) a heel binding; e) an ankle support; f) a calf support; and g) at least one strap configured to secure a boot to the boot frame, wherein the side supports are independently adjustable, and wherein adjusting the side supports allows for a boot to line up at an angle relative to the base.
The following is a detailed description of certain specific embodiments of the boot frames disclosed herein. In this description reference is made to the drawings.
In one aspect, disclosed herein is a boot frame comprising: a) a base; b) two side supports; c) a toe binding; d) a heel binding; c) an ankle support; d) a calf support; and e) at least one strap configured to secure a boot to the boot frame, wherein the side supports are independently adjustable, wherein adjusting the side supports allows for a boot to line up at an angle relative to the base, and wherein the base is comprised of iron, steel, titanium, composite metal, wood, plastic, carbon fiber, fiber glass, hard plastic, rubber or combinations thereof.
Referring to
In some embodiments, the base 102 has an adjustable length. In these embodiments the base 102 comprises two interconnected pieces, a front piece and a rear piece. When the length of the base 102 is adjusted, the front of the base 102 moves closer to, or further away, from the rear of the base 102. The adjustable length allows the user to adjust the frame 100 to fit the user's boot size. In other embodiments, the base 102 has a fixed length. In these embodiments, frames 100 of various lengths are manufactured and the user uses a frame 100 that fits the user's boot size.
The base 102 comprises a toe binding 104 at the front end of the frame 100. The toe binding 104 is configured to secure the frame 100 into an alpine toe ski binding 204 which is mounted to the alpine ski via mounts 204 the way a typical ski boot would latch in. As shown in
The base 102 comprises a heel binding 106 at the rear end of the frame 100. The heel binding 106 is configured to secure the frame 100 into an alpine heel ski binding 210 which is mounted to the alpine ski via mounts 206 the way a typical ski boot would latch in. In some embodiments, the heel binding 106 comprises metal. In certain embodiments the heel binding 106 is made of one or more material including, but not limited, to iron, steel, titanium, composite metals, wood, a synthetic material, such as, but not limited to, plastics, carbon fiber, fiber glass, and the like, hard plastic or rubber. In some embodiments, the heel binding 106 is located at the far rear of the base 102. In other embodiments, the base 102 extends farther to the rear than where the heel binding 106 is located. In some embodiments, the heel binding is comprised of iron, steel, titanium, composite metal, wood, plastic, carbon fiber, fiber glass, hard plastic, rubber or combinations thereof.
The International Standard ISO 5355, “Alpine ski-boots—Requirements and test methods”, Fourth edition 2205-07-01, corrected version 2006-03-15, sets forth the requirements of alpine ski boots and test methods. As disclosed with the International Standard ISO 5355, “[t]his International Standard specifies the requirements, test methods and marking of ski-boots which are used with current systems of alpine ski-bindings with attachment at the boot toe and boot heel, the proper release function of which depends on the dimensions and design of the interfaces. For ski-binding systems that function irrespective of the sole shape or that have different requirements for the sole dimensions, it is not always necessary for the ski-boot soles to comply with this International Standard in order to achieve the desired degree of safety.” (See The International Standard ISO 5355, “Alpine ski-boots—Requirements and test methods”, Fourth edition 2205-07-01, corrected version 2006-03-15 at p. 1). In particular, the International Standard ISO 5355, set forth requirements for the dimensions of a boot toe and heel, which are applicable to the boot frame disclosed herein. In some embodiments, the boot frame meets the requirements of the International Standard ISO 5355. In some embodiments, the heel binding and toe binding each meet the heel and toe dimensional requirements of the International Standard ISO 5355.
In some embodiments, the boot is held in place on the frame 100 by at least two side supports 108. In some embodiments, the boot side supports 108 are connected near the front of the frame 100. In some embodiments they are located towards the rear of the frame 100 or in the middle of the frame 100. In some embodiments the side supports 108 are comprised of solid metal and in some embodiments they are comprised of perforated metal. In certain embodiments the side supports 108 is made of one or more material including, but not limited, to iron, steel, titanium, composite metals, wood, a synthetic material, such as, but not limited to, plastics, carbon fiber, fiber glass, and the like, hard plastic or rubber. In some embodiments the side supports curve around the shape of the boot and in other embodiments the side supports have various shapes including but not limited to vertical and parallel bars. Some embodiments comprise one set of parallel side supports 108. Other embodiments comprise more than one set of parallel side supports 108 for example two or three sets. Some embodiments, for example the one shown in
In some embodiments, for example that shown in
Often times, when a person stands, the natural inclination of the feet is to either turn in, i.e., with toes facing toward each other and inward, or turn out, i.e., with toes tending away from each other and outward. Regular ski boots force everyone's feet to line up parallel with the skis. This unnatural positioning of the feet puts great pressure on the skier's knees and causes knee and hip injuries over time. By adjusting the side supports 408, a skier can allow for the boot to line up at an angle to the base 102, which angle is the natural angle of the skier's feet when the skier stands. This way, the base 102 lines up with the skis and the skier's feet rest at their natural and comfortable angle, thereby reducing the pressure on knees and hips.
The boot is held in place at the rear of the frame 100 by an ankle support 110. In some embodiments the ankle support 110 comprises a curved bar that is connected to either side of the base 102. In other embodiments the ankle support 110 comprises various bars are connected to either side of the base 102, for example, two bars intersecting each other, multiple bars attached vertically from the base of the base 102, or multiple curved bars attached starting from the heel leading up to the ankle. In some embodiments the ankle support 110 comprises metal for example a solid or perforated metal. In certain embodiments the ankle support 110 is made of one or more material including, but not limited, to iron, steel, titanium, composite metals, wood, a synthetic material, such as, but not limited to, plastics, carbon fiber, fiber glass, and the like, hard plastic or rubber.
In some embodiments, a calf support 112 is connected to the ankle support 110. The calf support 112 can be attached anywhere from the front to the rear of the ankle support 110. In some embodiments the calf support 112 comprises a curved metal bar attaching to either side of the ankle support 110. In other embodiments the calf support 112 comprises various bars attaching to either side of the ankle support 110, for example, two or more bars intersecting each other, multiple bars attached vertically from the base of the frame 102 or base of the ankle support 110, or multiple curved bars attached starting from the top of the ankle leading up to the calf. In some embodiments the calf support 112 comprises metal for example a solid or perforated metal. In certain embodiments the calf support 112 is made of one or more material including, but not limited, to iron, steel, titanium, composite metals, wood, a synthetic material, such as, but not limited to, plastics, carbon fiber, fiber glass, and the like, hard plastic or rubber.
Referring to
In some embodiments, the height of the heel is adjustable. In an embodiment shown in
In other embodiments (not shown), the user can turn a dial that cranks an adjustable heel height portion up or down and adjusts it to the desired height. By changing the height of the heel the user raises or lowers the height of the boot heel, which results in a more comfortable stance on the skis and provides greater control while skiing.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained. It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural references unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items. As used herein, the term “comprising” means including elements or steps that are identified following that term, but any such elements or steps are not exhaustive, and an embodiment can include other elements or steps.
The term “front” refers to the area where the toe section of a boot would fit in the disclosed device, and “rear” refers to the area where the heel section of a boot would fit in the disclosed device.
The term “boot” refers to a snowboard boot, hiking boot, high top sneaker, work boot, etc.
As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” “greater than,” “less than,” and the like, include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member.
While certain embodiments have been illustrated and described, it should be understood that changes and modifications can be made therein in accordance with ordinary skill in the art without departing from the technology in its broader aspects as defined in the following claims.
The present disclosure is not to be limited in terms of the particular embodiments described in this application. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and devices within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods or devices, which can of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
All publications, patent applications, issued patents, and other documents referred to in this specification are herein incorporated by reference as if each individual publication, patent application, issued patent, or other document was specifically and individually indicated to be incorporated by reference in its entirety. Definitions that are contained in text incorporated by reference are excluded to the extent that they contradict definitions in this disclosure.
This application is a continuation-in-part of applicant's co-pending application Ser. No. 14/055,767, filed Oct. 16, 2013, the entire contents of which is hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2764418 | Shimizu | Sep 1956 | A |
3764155 | Perryman | Oct 1973 | A |
3851892 | Swenson | Dec 1974 | A |
3944237 | Teague, Jr. | Mar 1976 | A |
4142734 | Bentley | Mar 1979 | A |
4367885 | Ramer | Jan 1983 | A |
4767127 | Olivieri | Aug 1988 | A |
5577756 | Caron | Nov 1996 | A |
5615901 | Piotrowski | Apr 1997 | A |
5741023 | Schiele | Apr 1998 | A |
5815953 | Kaufman | Oct 1998 | A |
6527293 | Roy | Mar 2003 | B1 |
6557865 | Reuss | May 2003 | B1 |
6588773 | Van Riet | Jul 2003 | B1 |
6691434 | Couturier | Feb 2004 | B1 |
7246811 | Martin | Jul 2007 | B2 |
7823905 | Ritter | Nov 2010 | B2 |
8191918 | Pupko | Jun 2012 | B2 |
8696013 | Saunders | Apr 2014 | B2 |
8876123 | Bradshaw | Nov 2014 | B2 |
20100102522 | Kloster | Apr 2010 | A1 |
20110121543 | Lyons | May 2011 | A1 |
20110227317 | Holbird, Jr. | Sep 2011 | A1 |
20140159345 | Indulti | Jun 2014 | A1 |
20160199722 | Ritter | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
19915844 | Oct 2000 | DE |
102008006069 | Jul 2009 | DE |
WO 0200313 | Jan 2002 | DK |
WO 0200313 | Jan 2002 | DK |
2414342 | Aug 1979 | FR |
2655870 | Jun 1991 | FR |
Number | Date | Country | |
---|---|---|---|
20160206948 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14055767 | Oct 2013 | US |
Child | 15086827 | US |