The invention relates to an attachment for a ski pole, in particular for downhill or cross-country skiing, having a tip attachment which has an upwardly directed accommodating region for a pole shaft, as well as a downwardly directed pole tip and a stiff basket region which extends essentially along a plane perpendicular, or at an angle of between 60-120°, to the axis of the pole shaft.
In downhill skiing and also in cross-country skiing, use is made of poles in order, on the one hand, to provide lateral support on the ground and, on the other hand, to initiate forward movement. For this purpose, the poles have a handle, an actual shaft and a tip, this tip additionally having a basket. The tip is provided for penetrating into the underlying surface, for example, snow or ice, and the basket serves to limit this penetration, by the basket providing a large bearing surface area for bearing on the underlying surface.
Such baskets may be in different forms; the classic form here comprises, for example, a ring which is connected to the pole via connecting elements. It is likewise known for the pole tip to be designed such that it is possible to fasten different baskets of different sizes, colors, etc.
In particular at the elite end, for example, of cross-country skiing, for instance for so-called skating, it is critical to have precisely the correct size of basket available. This size depends, inter alia, on the nature of the underlying surface from which the pole is used for pushing off. If the snow, for example, is soft, then a comparatively large bearing surface area is necessary; however, if the snow is hard and, for example, frozen, then the smallest basket surface area possible could well be desired in order to reduce weight and also to prevent sticking in the snow.
Accordingly, there is a need for variably adjustable pole tips and/or in particular for the associated basket regions to be variably adjustable, wherein this variability is to be provided, as far as possible, without high outlay being involved, a straightforward changeover between different sizes is possible and, nevertheless, optimum shaping of the basket is provided.
U.S. Pat. No. 4,921,275, for example, discloses designs in which the basket can be swung round, that is to say there is a first position, in which the basket is active and prevents the pole from sinking into soft material, and a second, swung-up or collapsed position, in which the pole basket essentially does not perform any function.
Also known are designs (see, for example, FR 2 249 686, DE 20 27 461, DE 29 52 149 or U.S. Pat. No. 3,645,553) in which the basket can be swung open virtually like an umbrella for a supporting position and can be collapsed for a retracted position.
Accordingly, the invention is based, inter alia, on the object of providing such an improved design.
In particular the aim is to improve an attachment for a pole, e.g. for downhill or cross-country skiing (e.g. Nordic skiing or skating), but also for hiking poles or Nordic walking poles, having a tip attachment which preferably has an upwardly directed accommodating region for a pole shaft, as well as a downwardly directed pole tip and a stiff basket region which extends essentially along a plane perpendicular, or at an angle of between 60-120°, to the axis of the pole shaft.
Such attachments are produced for example from (hard) plastics material by injection molding. It is normally the case, as has been said, that the plane of the basket is essentially perpendicular to the direction of the pole shaft, but it is also possible to provide, if appropriate, a slight inclination, in particular such that the plane of the basket is tilted about an axis perpendicular to the direction of travel and perpendicular to the pole shaft, for example by being drawn slightly upward to the rear. Such inclination, however, is normally only slight, and the deviation from the position perpendicular to the shaft is normally less than 30°, preferably less than 10 or 15°.
This object is achieved in that a separate and additional basket plate is arranged on the basket region such that it can be fastened both in a first position and in at least a second position, which is displaced essentially along the plane of the basket region in relation to the first position, the bearing surface area which is active on the underlying surface being larger in the second position than in the first position. A larger bearing surface area here is to be understood in the sense that the basket plate projects beyond the basket region preferably at least over a circumferential region of the basket of 90°, in particular preferably of at least 180°, and this circumferential region is also enlarged by virtue of the basket plate being displaced. The displacement also means that enlargement takes place preferably asymmetrically, that is to say displacement of the basket plate enlarges the basket essentially in one direction. It is typically the side which is directed to the rear, as seen in relation to the direction of travel, which is enlarged.
The core of the invention thus consists in rendering the design, virtually in two parts, wherein a first part, the basket region, is of rigid design and virtually provides for the stiffness. A second part, the basket plate, then, can be fastened on this basket region so as to make possible at least the abovementioned two or more positions with different bearing surface areas. With a first position and a second position, this second position provides a larger bearing surface area for the basket. This ensures a design in which variability is possible without any additional components having to be carried along by the user. In addition, this two-part design gives rise to optimum stability and a straightforward, robust construction.
According to a first preferred embodiment of the invention, the attachment is characterized in that the basket plate is arranged on the underside of the basket region. Therefore, all that is necessary, in essence, is for the basket plate to be fixed on the basket region from beneath, and the basket region located thereabove stabilizes the basket plate. Accordingly, the basket plate itself, rather than having to be completely stiff, may consist of a partially flexible material. As an alternative to this, however, it is also possible for the basket plate to consist of a flexurally rigid material, e.g. hard plastics material.
A particularly preferred embodiment of the attachment is characterized in that the basket region has concave curvature on its underside, and in that the basket plate is fastened in this curvature from beneath such that the inherently planar basket plate essentially continues, or assumes, the curved shape of the basket region, at least in part, in at least one of the two positions, preferably in both positions. Furthermore, this design gives rise to the basket plate being curved as it is fastened on the underside, which, on the one hand, makes it possible for the basket plate to be inherently planar and for the definitive shaping to be produced virtually by attachment to the basket region and, furthermore, the curvature of the basket plate following the fastening gives rise to stabilization. Following the fastening, as a result of the curvature, the basket plate is able to deform to a significantly lesser extent under loading.
Such baskets formed concavely or, as it were, with a depression on the underside are known, in particular, in cross-country skiing. Typically, they are additionally of asymmetrical design, that is to say the basket extends rearwards virtually essentially only in the direction of travel. The curved shape of the basket gives rise to optimum behavior in the underlying surface when the pole is introduced obliquely into the underlying surface for pushing-off purposes.
This embodiment is advantageous since it is possible to provide a cost-effective basket plate made of an inherently planar material. For example, it is possible to produce (cut, punch) the basket plate from a flat plastics-material panel of a few millimeters in thickness, and the actual optimum 3-dimensional shaping is then predetermined only by virtue of the basket plate being fastened on the basket region from beneath. In order to ensure this adaptation to the shape of the basket region, the fastening means, rather than being arranged on the edge of the basket region, are preferably arranged in the central region, i.e. the region which is slightly offset depthwise, in order that the basket plate effectively assumes the curvature of the basket region.
As has already been mentioned, the basket region is preferably of asymmetrical design. In this case it essentially does not project in particular toward the front side and the main extent of the basket region is directed toward the rear side. The basket region in particular preferably is of circular, elliptical or approximately lenticular design.
It is possible for the basket plate to consist of a stiff material and to have its own three-dimensional shape from the outset. For example, the basket plate may be formed from an essentially flexurally rigid material, e.g. hard plastics material, and therefore be essentially stiff and/or hard. It is possible here for the basket plate to consist of the same material as the basket region, wherein it is preferred if the basket plate has essentially the same curvature as the basket region. However, as has already been mentioned, it may preferably consist simply of a planar plate which is possibly flexible, in which case its shape on the pole is predetermined by being fastened on the basket region. The basket plate preferably has a cutout which is open, in particular preferably, on one side and is intended for the pole tip and/or an extension which carries the pole tip. This cutout may be, for example, a U-shaped or V-shaped cutout. The basket plate may consist of a plastics material, preferably of PE, PET, PP, PU, PA or other thermoplastics or mixtures thereof, in particular preferably having a thickness ranging from 0.1-0.4 cm.
According to a further preferred embodiment of the invention, the basket region preferably has at least one hole, but preferably two or more holes, in a region which is offset to the rear in relation to the pole shaft, wherein the basket plate has at least one front hole, but preferably a pair of front holes, and at least one rear hole, but preferably a pair of rear holes, and wherein fastening means, in particular preferably in the form of screws (or also rivets, staples, pins, etc.), are provided to engage through these holes and to fasten the basket plate on the basket region. Of course, the converse situation is also possible, that is to say the situation where the basket plate has only one pair of holes and the basket region has at least two pairs of holes arranged one behind the other.
The preferred version, however, is that in which the basket plate has a number of pairs (also more than two pairs are possible for a multiplicity of different positions) of holes since, in this case, the basket region is not weakened by holes and, in addition, in the case of a basket plate being fastened from beneath, the holes which are not being used are not visible from above.
According to an alternative embodiment, the basket region has just one hole, which is preferably arranged in the center. Additionally, the basket plate and/or the basket region preferably have/has at least one means for preventing rotation of the basket plate on the basket region. The number of holes in the basket plate advantageously corresponds to the number of adjusting positions of the basket plate on the basket region. The at least one means for preventing rotation of the basket plate on the basket region may be, for example, a ribbed region or a toothing formation, wherein preferably the ribbing or toothing formation in the basket plate advantageously engages in a corresponding ribbing or toothing formation in the basket region. The ribbing or toothing formation here may be provided in a downwardly directed edge of the basket region which runs all the way round the rear region. In addition to stabilization and prevention of rotation, such a ribbing formation has the further advantage that the pole basket provides a better hold or grip in the snow or in other soft underlying surfaces. This alternative embodiment is preferably a hard and/or stiff or essentially flexurally rigid basket plate.
Moreover, other mechanisms are also conceivable in principle, for example a rail which runs in the direction of travel and integrally formed and/or provided, for example, on the underside of the basket region, the basket plate being guided in this rail via a complementary rail. Via a snap-in mechanism or the like, for example, it is then possible to reach and secure the individual positions of the basket plate by, for example, a locking tongue being pushed down and, as a result, the basket plate can be displaced over the rail to a further latching position. Also possible is stepless adjustability, in which case the positions can be secured via a force fit (e.g. clamping).
In the case of the abovementioned holes, it has proven to be advantageous if there is a pair of holes in each case (no rotation of the basket plate). It is also possible to use a central screw with a rotation-prevention means, which may be configured, for example, in the form of a guide rail, groove/tongue, protuberances/recesses, etc. It is further preferable if the screws are screws in which the one, first screw has an internal thread in the screw shank and a second screw has a corresponding external thread on the screw shank, these threads engaging one inside the other in the hole(s). It is possible here for the first screw to be mounted in a rotationally fixed manner in the basket region. Rotation can also be prevented, however, by alternative means, for example a ribbing or toothing formation in the basket plate and/or basket region.
It is preferably possible to fasten basket plates which differ in respect of size, shape, flexibility and/or color.
According to a further preferred embodiment, the basket plate, in the first position, essentially does not project beyond the basket region at the front edge, which is directed toward the front side, and projects beyond the basket region by between 0.2-1.5 cm laterally and/or at the rear edge, which is directed toward the rear side. If the basket plate, in the second position, has been displaced toward the rear side, then it projects beyond the basket region by between 0.5-2.5 cm at the rear edge, which is directed toward the rear side.
As has already been explained, according to a preferred embodiment, the tip attachment consists of hard plastics material (for example PE, PET, PP, PU, PA or other thermoplastics or mixtures thereof) and the tip attachment, in particular preferably on the top side, has at least one essentially vertically running stiffening rib between the basket region and the accommodating region.
The present invention also relates to a method by means of which a ski pole, in particular for downhill or cross-country skiing, having an attachment as has been outlined above is adapted to different conditions in the underlying surface, in particular different snow conditions.
The method is characterized, inter alia, in that, for a comparatively hard underlying surface, the basket plate is arranged in the first position, and in that, for a comparatively soft underlying surface, the basket plate is arranged in the second position.
Further preferred embodiments of the invention are described in the dependent claims.
The invention will be explained in more detail hereinbelow with reference to exemplary embodiments and in conjunction with the drawings, in which:
The invention will now be explained with reference to the figures. The exemplary embodiments given below are to serve merely as an illustration of the invention, but should not be used to limit the actual idea of the invention as defined in the appended claims.
The tip attachment 3 also comprises a basket region 5, which is arranged essentially perpendicularly to the direction of the pole shaft 1. As can be seen, in particular, from
A basket plate 9 which is flexible at least to a certain extent is then fastened on the underside of this molding produced from rigid plastics material (for example an injection molding made of a plastics material such as PE, PET, PP, PU, PA or other thermoplastics or mixtures thereof).
In this context, more details should be given for the specific formation of the basket region 5. On its underside, i.e. on the side which is directed toward the pole tip 8, the basket region is configured with inner curvature, that is to say with a hollow-like depression, i.e. it is of three-dimensional conical configuration. This results in optimal engagements in the underlying surface. As can be seen, in addition, from
The essential factor with this concave depression in the underside, then, is the fact that it is possible, according to the invention, for the flexible basket plate 9 to be fitted on the basket region 5 from beneath such that the basket region 5 forces the basket plate 9 into this shape and the basket plate 9 continues this shape. This is possible by for example using fastening screws 10 for fastening purposes, as can be seen from
As a result of being fastened in the concave region of the underside of the basket region 5 by the screws 10, then, the basket plate 9 is pressed onto the underside of the basket region 5 such that the inherently planar basket plate 9 is deformed and assumes the concave shape of the basket region 5. As an alternative, or in addition, it is also possible, however, for the basket plate 9 to be preformed. In order also to be able to ensure optimum adaptation in the front region, the basket plate 9 has a cutout 11 for the extension 7.
It is thus possible to provide a very straightforward design of such a basket plate 9. The basket plate 9 may be punched or cut, in the form of a plastic-material plate, out of a large panel and needs not initially have any three-dimensional shaping. The three-dimensional shaping is predetermined by the basket plate being fastened on the basket region 5, although it may also be already preformed to a slight extent or be produced by injection molding. The basket plate 9 or 9b preferably has sufficient flexibility in order to assume the shape forced upon it as it is fastened on the basket region 5, but it has sufficient inherent stiffness in order that there is no significant deformation in the edge region, in particular in the rear position 16 illustrated in
As can be seen from
Of course, it is also possible for the basket plate 9 to be removed altogether if the underlying surface, for example, is very hard; the weight-induced loading is then minimal.
Such a pole, then, is particularly straightforward to use and/or to change over between the two positions. If the user establishes, either at the start of a competition or midway through skiing, that the conditions of the underlying surface have significantly changed, then, for example if the underlying surface has softened during the course of the day, he can use a straightforward screwdriver, or some other tool appropriate for the screw heads, to loosen the two screws 10, starting from a front position as illustrated in
In addition, the proposed design is advantageous insofar as it is also possible for different basket plates of different shapes, sizes, levels of flexibility, colors, etc. to be fastened on this tip attachment 3. For example, it is possible to provide different colors for different sizes, and since the basket plates 9, when not fastened on the underside of the basket region, are simply flat disks, different sizes of the same can easily be carried along. Depending on the conditions, pole baskets of significantly different sizes can then be made available. These can then be fastened in turn, depending on the conditions, in two positions.
An adjusting marking 23 is labeled in
Those lateral edge regions of the basket plate 9 which are illustrated in
Number | Date | Country | Kind |
---|---|---|---|
1059/06 | Jun 2006 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2007/000320 | 6/29/2007 | WO | 00 | 12/29/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/000109 | 1/3/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3645553 | Hinterholzer | Feb 1972 | A |
4221392 | Aho | Sep 1980 | A |
4921275 | Santanen et al. | May 1990 | A |
4955969 | Jansson et al. | Sep 1990 | A |
5290064 | Leon et al. | Mar 1994 | A |
Number | Date | Country |
---|---|---|
14 78 108 | Aug 1969 | DE |
20 27 461 | Dec 1971 | DE |
29 52 149 | Jul 1981 | DE |
0 035 200 | Sep 1981 | EP |
1 439 543 | May 1966 | FR |
2 249 686 | May 1975 | FR |
Number | Date | Country | |
---|---|---|---|
20090194986 A1 | Aug 2009 | US |