The present invention generally relates to skis, e.g., skis used for alpine or downhill snow skiing and other ski-like devices, and more particularly to a ski structure and a method for making skis that provides improved edging characteristics.
Skis conventionally are made to be used in a variety of snow conditions encountered on ski slopes, ranging from loose powder to ice. Typically, skis have a structure which includes a central structural core, often made of composite materials, to which lateral metallic edges are attached. The skis typically have sidecut contours shaped, e.g., in the form of a parabola, and when the ski is rotated about its longitudinal axis by the skier the edges dig into and grip the snow and cause the ski, and skier, to turn and thereby maneuver down the ski slope. In known fashion, the bottom surfaces of the lateral edges are often ground at a small angle to the bottom of the ski and/or slightly dulled to promote a slight skid and to prevent the skier from “catching an edge” and losing control.
A problem with conventional ski structures has arisen in that in icy conditions or hard-packed snow conditions edging becomes difficult: if the ski is not held at a very precise angle to the surface with proper angulation and weighting, the edges do not dig in and grip the surface to cause a turn, but instead slide across the ice or snow with an accompanying loss of control that may cause the skier to fall or collide with another skier or obstruction. Icy conditions sometimes are widespread, but often they occur intermittently on slopes in areas that receive heavy traffic, and thus changing the edge grind is rarely a practical solution to this problem.
Ski designers and manufacturers have attempted to maximize edging capabilities while at the same time developing and refining the other handling and performance characteristics of their skis. Ski design parameters which affect how a ski will hold an edge on hard snow or ice are camber, sidecut, stiffness, damping and torsional rigidity. These characteristics all affect edging, but they are strongly interrelated and also affect a ski's overall performance and other handling parameters. Thus edging capability has been seen as but one design element intertwined with other performance characteristics and incapable of being enhanced independently.
Accordingly, there is a need to provide a ski structure that is able to provide improved edging characteristics, especially in hard or icy conditions, but also is able to retain its ability to perform well in a variety of other snow conditions.
There is a need to provide a ski design that effectively separates the ski's edging function from the ski's other performance and handling characteristics. There is a further need for a ski that allows skiers of modest ability and strength to edge effectively, and that allows skiers of great ability, such as racers, to edge effectively in high speed or severe slope conditions. Additionally, there remains a need to provide a ski structure and ski-making method that allows skis to be made simply and economically, and that at the same time assist the skier to edge the skis properly in icy conditions.
Briefly, the present invention in one aspect includes a ski with an improved edging feature. The edging feature includes a structure and method that provides a lateral blade or edge on the inside of the ski that can extend beneath the bottom surface of the ski. When the ski is tilted during a turn (i.e., rotated about its longitudinal axis) the extended inside edge of the downhill ski digs into the snow surface to provide improved gripping and control. The extended edge is located adjacent the skier's boot, and allows the skier's weight to be concentrated over a relatively small area for increased surface penetration and improved edging.
In a first aspect of the invention, the ski has a central structural core forming a bottom surface and hard lateral edges attached to each side of the structural core and extending lengthwise of the ski and generally downward to the bottom surface of the ski. The structural core has a footbed region that supports a boot attachment mechanism (typically referred to as a binding). Attached to the ski in the vicinity of the footbed, on the inside of the ski (i.e., the side that would be between the skier's feet) is an edge that is adapted to extend below the bottom surface of the ski to provide improved edge gripping when the ski is turned.
In another aspect of the invention, the extended edge is attached to the ski in lateral alignment with the lateral inside edge and extending below the bottom surface of the ski.
In another aspect of the invention, the extended edge extends below the bottom surface of the ski a distance of about 0.01 to 0.03 inches.
In another aspect of the invention, the extended edge has a bottom surface that is ground differently from the lateral inside edge, e.g., with a hollowed or concave surface similar to that used on ice skates, or with a beveled bottom surface.
In another aspect of the invention, the extended edge is adapted to be removably secured to the ski, e.g., with screw fasteners, and in addition may be adjusted vertically to vary the distance the extended edge extends below the bottom surface of the ski.
In another aspect of the invention, the bottom surface of the ski in the region adjacent to the extended edge is arranged to yield under pressure, to expose the extended edge when vertical force is applied to the bottom surface of the ski during a turn.
In another aspect of the invention, the yielding bottom surface of the ski is formed from an elastomeric material that compresses under pressure to expose the extended edge.
In another aspect of the invention, the yielding bottom surface of the ski is formed with a substantially incompressible bottom layer over a resilient layer or component that compresses under pressure to expose the extended edge.
In another aspect of the invention, the extended edge is attached to the ski in lateral alignment with and co-planar with the bottom surface of the lateral inside edge, and the bottom surface of the ski in the region adjacent to the extended edge is arranged to yield under pressure, to expose the extended edge when vertical force is applied to the bottom surface of the ski during a turn.
In another aspect of the invention, a method provides for making skis with improved edging characteristics. In accordance with the method, a ski is formed by providing a central structural core, forming a bottom surface on the structural core, attaching hard lateral edges to each side of the structural core that extend lengthwise of the ski and generally downward to the bottom surface of the ski, providing a footbed region of the structural core for supporting a boot attachment mechanism (binding), and attaching to the ski in the vicinity of the footbed, on the inside of the ski (i.e., the side that would be between the skier's feet) an edge that is adapted to extend below the bottom surface of the ski to provide improved edge gripping when the ski is turned.
In another aspect of the invention, the method for making skis with improved edging characteristics provides a central structural core with a footbed region for supporting a boot attachment mechanism (binding), forms a bottom surface on the structural core, attaches hard lateral edges to each side of the structural core that extend lengthwise of the ski and generally downward to the bottom surface of the ski, and provides in the vicinity of the footbed, on the inside of the ski (i.e., the side that would be between the skier's feet) a portion of the bottom surface that is arranged to yield under pressure, and an edge that is adapted to be exposed by and extend below the yielded bottom surface of the ski to provide improved edge gripping when the ski is turned.
In still another aspect of the invention, the method of making skis with improved edging characteristics provides the portion of the bottom surface that is arranged to yield under pressure by applying an elastomeric material between the central structural core and the bottom surface layer.
The present invention has several advantages. It enables a ski to be created that is capable of assisting skiers to improve edging in hard or icy conditions yet is useful in a variety of snow conditions. It enables a ski to be created with edging characteristics effectively separated from other performance parameters. Thus, the torsional rigidity heretofore necessary for edging capability, and which reduces the longitudinal ski flexibility necessary for softer snow conditions, can be reduced and a ski can be constructed which is forgiving and easy on soft snow but still achieve tenacious edging on hard-pack or ice.
Moreover, the present invention enables a ski to be created that allows conventional skiing techniques to be used yet provides improved performance. Another advantage is that ski lengths may be made much shorter yet with greater control on hard or icy surfaces. A conventional ski's edging and stability are largely dependent on edge length. The present invention reduces the need for edge length to maintain control, and consequently skis may be made 5 to 25 cm. shorter and still achieve better edging, together with the greater maneuverability, faster learning, control and directional stability and reduced cost that shorter skis provide. Another advantage is that skiers that do not have optimum muscle tone and strength to effectively edge a conventional ski will be able to effectively edge skis constructed according to the invention. A further advantage is reduction of muscle fatigue, which allows skiers to ski longer and with less risk of injury. Still other advantages include enabling a ski with improved edging characteristics to be created using available ski materials and conventional manufacturing techniques.
The foregoing summary of the invention, as well as the following detailed description of the preferred embodiments, is better understood when read in conjunction with the accompanying drawings, which are included by way of example and not by way of limitation with regard to the claimed invention:
As shown in
In accordance with the invention, the skis 10L and 10R are each provided with an extended edge or blade 30 that is attached to the central structural core 20 on the inside edge of the ski, and that is arranged as shown in
The inventors have determined empirically that improved edging characteristics, consistent with minimal interference with other ski uses, are obtained when the distance d is about 0.01 to 0.03 inches. As further shown in
The extended edges 30 are attached to the central structural core 20 in side recesses 32 that preferably are located so that the extended edges 30 are aligned laterally with inside edges 22i and together with them form a continuous edge contour along the length of the ski.
A ski provided with the extended edge 30 as described above provides improved edging characteristics. When the skier maneuvers the ski into a turn (rotates it about a longitudinal axis), the extended edge 30 has a large portion of the skier's weight concentrated above it to produce a force and pressure that digs the extended edge 30 into the snow or ice surface, avoids slipping, and produces effective edging. Moreover, because the extended edge 30 and inside edge 22i are aligned, the extended edge 30 digs a groove or channel into the snow surface that the trailing portion of the inside edge 22i will fit into and track along, which increases the edging effectiveness of the ski. In addition, the extended edge 30 can also provide desirable stiffening in the footbed region 16L, 16R. Many skiers, particularly racers, add a metal plate under the boot to increase longitudinal stiffening. The extended edge 30 can supply much of the stiffening such plates are intended to provide. Alternatively, the extended edge can be made in a number of individual segments to provide a controlled longitudinal flex.
Because the extended edge 30 extends a limited length L along the ski, it can be provided with a bottom shape 30s that will promote edging in turns without making the overall ski too “grabby” or prone to catch an edge unintentionally and undesirably at other times. Accordingly, as shown in
As shown in
As shown in
When the extended edge 30 is removably secured to structural core 20 with horizontal fasteners 34, it is possible to vary the distance d by which the extended edge extends beneath the bottom ski surface 24. As shown in
As shown in
The compressible layer 126, as shown in
Compressible layer 126 may be formed from an elastomeric material that will provide the desired resilience and compressibility at the temperatures encountered when skiing. One example of an elastomeric material thought to be useful for this purpose is Sorbothane, a visco-elastic polymer manufactured by Sorbothane, Inc. of Kent, Ohio, further details and properties of which appear at www.sorbothane.com.
Alternatively, as shown in
The extended edge 130 may be positioned to extend a positive distance d beneath bottom surface 124 when compressible layer 126 is in its uncompressed state. In this arrangement, the extended edge will be further exposed and the distance d will increase as pressure is applied to the bottom of the ski and compressible layer 126 compresses, thereby increasing the ability of extended edge 130 to bite or dig into the snow surface for enhanced edging capability.
Alternatively, the extended edge 130 may be arranged to be flush with bottom surface 124 when compressible layer 126 is in its uncompressed state. In this arrangement, the extended edge will begin to be exposed and the distance d will increase from zero to a positive amount as pressure is applied to the bottom of the ski and compressible layer 126 compresses, thereby allowing the extended edge 130 to bite or dig into the snow surface for enhanced edging capability. In this arrangement, the edge 130 does not extend beneath the bottom surface except when pressure is applied as the ski is turned, and the ski behaves like a conventional ski when edging is not being performed. In this arrangement, the inside edges 122i and the extended edge 130 will have their bottom surfaces in alignment, but because the compressible layer 126 is provided only in the central or footbed region 116L, 116R, only the extended edge 130 will become exposed and extend beneath the bottom surface 124 when pressure is applied during a turn. In such an arrangement, the inside edges 122i and extended edge 130 may be formed from a single piece of metal or separately.
The extended edge 130 may be provided with a bottom surface 130s that is concave or beveled as shown in
The foregoing description has illustrated the invention in the context of conventional downhill skis, applied to the inside edges of a pair of skis designed to be attached independently to skier's legs. It will be apparent that the edging advantages of the present invention will be applicable to other ski-like snow traversing devices which involve edging, such as snowboards, and the term “ski” as used in this description is meant to apply generically to skis, snowboards, and other ski-like devices designed to slide over snow surfaces and having side edges used to grip the snow as the device is tilted (rotated about its longitudinal axis) in the process of making a turn. As applied to snowboards, the single snowboard to which both feet of the rider are attached will have the extended or extendable edges of the present invention located on both lateral sides adjacent the region where the feet are attached to the board. As the board is tilted to either side to make a turn, the extended edge on that side will dig into the snow or ice surface and provide improved edging characteristics of the board. Other examples of ski-like devices to which the invention is applicable are “uni-skis,” single skis used by one-legged skiers, to which the extended edges would be applied to both sides, and steerable ski-like sleds or “scooters” or sled runners arranged to tilt while turning.
Thus, a feature for improved edging has been described. The improved edging feature includes a structure and method. While the present invention has been described with reference to preferred and exemplary embodiments, it will be understood by those of ordinary skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the scope thereof. Different materials may be used than that shown and suggested that may comprise other implementations of the present invention. For example, other core and edge configurations, and other core, edge and bottom surface and compressible materials may be used. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention include all embodiments falling within the scope of the appended claims.
This application is a divisional of application Ser. No. 11/081,172, which issued as U.S. Pat. No. 7,445,227 on Nov. 4, 2008.
Number | Date | Country | |
---|---|---|---|
Parent | 11081172 | Mar 2005 | US |
Child | 12288790 | US |