The present disclosure relates to skin closure devices applied over a surgical incision and preferably secured by a polymerizable adhesive, with the devices capable of forming drainage openings and absorbent flaps for removal of wound exudates and wound inspection.
A number of devices and methods exist for closing skin or tissue having a surgical incision, opening, cut, wound, or dissection. With these devices, skin or tissue parts separated by the incision are approximated or brought into close proximity forming as narrow a gap as possible in the area of the surgical incision or cut, and then covered by an adhesively attached tape which holds the skin or tissue in closed apposed arrangement until wound healing occurs after which the tape is removed.
Commercially available DERMABOND® PRINEO® Skin Closure System comprises a mesh having a pressure sensitive adhesive and a polymerization initiator disposed on the mesh. The mesh is applied onto the skin over a wound, and a polymerizable cyanoacrylate-based adhesive is then applied on the mesh and bonds the mesh to the skin.
PCT Publication WO2014/195710, SUTURELESS WOUND CLOSURE, discloses a sutureless wound closure device comprising: a) a base layer for attaching the device to skin; and b) an upper tensioning layer having a first end anchored to the base layer and a second, opposite end including fixing means to attach the end to the base layer, wherein the base layer includes an aperture that, in use, is covered by the upper tensioning layer.
U.S. Pat. No. 8,603,053, PRIMARY DRESSING, discloses a liquid-permeable primary dressing (100) in the form of a flexible thermoplastic material section (1.1; 1.2; 1.3; 1.4; 1.5), comprising: a first surface (4) of the material section (1.1; 1.2; 1.3; 1.4; 1.5), a second surface (5) of the material section (1.1; 1.2; 1.3; 1.4; 1.5) facing away from the first surface (4), a plurality of three-dimensional perforations (2; 2″; 21) whose walls (3), starting from the first surface (4), run out into an edge projection with a free edge (8) and impart a rough grip to the second surface (5), characterized in that at least one of the free edges (8) merges into a section (12) bent approximately vertically to a perforation axis (A), the first surface is smooth, and each free edge is substantially equidistant from the first surface.
European Patent Application Publication No. EP0730874A2, CLOSURE TAPE FOR IMPROVED WOUND OR INCISION HEALING AND ITS USE, discloses use of a tape comprising: (i) a polymeric elastic film that is substantially impermeant to microorganisms, and (ii) a hydrocolloid adhesive coating on one face of the film and having fluid absorbing capacity, for the manufacture of a closure tape for use in closing a breach of the skin of the type that has typically been closed with sutures.
U.S. Pat. No. 5,308,313, VENTED WOUND DRESSING, discloses a vented wound dressing comprising a thin conformable sheet material a portion of which is adopted for placement as a dressing covering a wound and skin surrounding the wound. The dressing has a periphery defined by opposed edges of the sheet material, the sheet material having opposed surfaces, one of the surfaces carrying a layer of a pressure-sensitive adhesive, the adhesive in that portion for placement on the wound being applied to provide repeating spaced areas containing no adhesive. At least a portion of only the repeating areas of the sheet material containing no adhesive having slits extending through the opposed surfaces of the sheet material to permit transfer of wound fluids through the sheet material purportedly unimpeded by a presence of adhesive material which can clog the slits and thereby inhibit fluid transfer therethrough. Each of the slits having smaller dimensions than the repeating areas of the sheet material containing no adhesive whereby each slit occupies only a portion of the area containing no adhesive having a slit. The dimensions and number of the slits is described as being such as to retain sufficient moisture to provide a moist healing wound dressing. The adhesive around the periphery of the sheet material being present as a continuous layer uninterrupted by repeating areas containing no adhesive for securing the dressing to skin. The continuous peripheral layer of adhesive defines the portion of the sheet material adapted for placement on a wound, the continuous peripheral layer of adhesive further maintaining a barrier function against bacteria and other external contaminants as well as helping to ensure that no wound fluids escape laterally.
U.S. Pat. No. 5,106,362, Vented Absorbent Dressing, discloses a dressing for a wound of a patient, comprising: a base sheet for contacting the skin of the patient, said base sheet having an opening for placement over the wound, and means for securing the base sheet to the skin of a patient; and vent means for providing controlled leakage of fluid along a tortuous path from the wound through the opening of the base sheet. The vent means comprises a sheet material secured to said base sheet and covering said opening, said sheet material purported to reduce evaporation through said opening while controlling said leakage of fluid along a tortuous path, purportedly helping to insure a moist environment for said wound.
U.S. Patent Application Publication No. 20140024989, WOUND DRESSING, discloses a wound dressing comprising: a perforated material including through-holes; and a low-adhesive resin coating at least one face of the perforated material without closing the through-holes; wherein the perforated material is a knitted fabric or a woven fabric formed of a multifilament, and the perforated material has an average opening area of the through-holes of 0.02 to 1.2 mm2 and an average number of through-holes of 40 to 220 cm2.
U.S. Patent Application Publication No. 20130317405, MODULAR WOUND DRESSING, describes a medical dressing comprising two backing layers. In particular, the two backing layers are in overlapping relation to one another and entirely surround an opening to form a window.
U.S. Pat. No. 9,000,251, Draining Wound Dressing, discloses a medical dressing made of multiple layers and includes a collection chamber that is in fluid communication with a drainage channel.
U.S. Pat. No. 6,787,682, Absorbent Foam Wound Dressing, discloses a wound dressing comprising a foam layer of soft, hydrophilic polymeric foam having bodyside and backside surfaces, A base layer of elastomeric film is adhered to said bodyside surface of said foam layer; said base layer having at least one generally centrally located opening therein exposing said foam layer through said opening and having a bodyside surface coated with a hypoallergenic pressure-sensitive adhesive for adhesively contacting wound and surrounding skin surfaces at a wound site. A vapor-permeable liquid-impermeable elastomeric backing layer extends over said backside surface of said foam layer and said backing layer being unattached to said backside surface of said foam layer over said centrally located opening of said base layer.
U.S. Pat. No. 5,662,599, Disposable Wound Dressing and Support Unit, discloses a disposable wound dressing and support unit for holding a gauze pad in place on top of a wound and providing for access to the wound. The unit is purportedly adaptable for conforming to various parts of the anatomy of a patient and comprises: an elongated wrap having a top and a bottom, said wrap having a window opening therethrough, said window opening adapted for receipt above and on top of the gauze pad disposed on top of the wound. Fastener means is disposed on the bottom of said wrap and along a side of said window opening for permanently engaging a portion of the gauze pad. Securing means is attached to a first end portion of said wrap for engaging a portion of said wrap at any desired location along its length and securing said wrap on the patient.
U.S. Pat. No. 5,456,660, Wound Dressing Support Device, discloses a reusable wound dressing support device for holding a gauze pad in place on top of a wound and providing for access to the wound. The device is purportedly adaptable for conforming to various parts of the anatomy of a patient and comprises: an elongated wrap having a top and a bottom, said wrap having a window opening therethrough, said window opening adapted for receipt above and on top of the gauze pad disposed on top of the wound. A non-adhesive fastener means is disposed on the bottom of said wrap and along at least one side of said window opening for releasably engaging a portion of the gauze pad. Securing means are attached to opposite ends of said wrap for securing said wrap on the patient.
PCT Publication WO2015135351A1, LIQUID-ABSORPTION WOUND DRESSING HELPING TO OBSERVE WOUND SURFACE, discloses a liquid-absorbent wound dressing characterized in that it comprises a sheet-like liquid absorbent material.
U.S. Patent Application Publication No. 20150314114, COLLAGEN DEVICE, discloses a device adapted for dressing and treating wounds, skin lesions/ulcers, sores and burns, comprising at least one biocompatible membrane and at least one catheter coupled to said membrane.
U.S. Patent Application Publication No. 20140121649, WOUND DRESSING ASSEMBLY WITH ABSORBENT LAYER, discloses a surgical wound dressing assembly for a surgical tube wound or other device entrance into the body, comprising: a cover layer, with adhesive on the outer perimeter of the underside of the cover layer; an absorbent ring secured to the underside of the cover; an interior clear window allowing the nurse or other medical personnel to view the wound site through the window for inspection for infection or bleeding; and a port formed in the window area to allow a tube or other device to pass through the wound dressing.
U.S. Pat. No. 6,245,960, Inherent Healing Accelerator, discloses a dressing for open wounds, comprising an elastomer sheet having a plurality of fenestrations, wherein said fenestrations comprise openings penetrating through said elastomer sheet whereby granulation tissue may grow from the open wound through said fenestrations so as to substantially cover said elastomer sheet; wherein each of said fenestrations comprise a maximum dimension of around 4 millimeters to around 6 millimeters.
U.S. Pat. No. 4,795,435, Device for Protecting a Wound, discloses a device for protecting a wound comprising a pad of skin-protective and skin-curative adhesive material having secured thereto a foldable sheet of liquid impermeable material of larger area than the pad, marginal portions of said foldable sheet provided with a layer of pressure-sensitive adhesive, and said sheet folded over itself and sealed in liquid-tight fashion around its edges to define a compartment whereby the marginal portions can be manually pulled apart if desired.
U.S. Pat. No. 5,449,340, Bandage for Replaceable Dressing, discloses a bandage for retraining a dressing against a patient's skin comprising a tape having an adhesive inner layer surface with pressure sensitive adhesive thereon and a non-adhesive outer surface. The tape further comprising a base portion including said inner surface for adhesive securement to said patient's skin, opening means in said base portion for placement over a wound on said patient's skin for receiving a dressing when said base portion is secured to said patient's skin and tab means for overlying said opening means. The tab means is formed from said tape being bent back on itself with said adhesive inner surface secured in a face-to-face relationship, an exposed portion of said inner adhesive surface on said tab means, said exposed portion of said inner adhesive surface being located so that it is in facing relationship to said opening means in said base portion and pad means adhesively secured to said exposed portion of said inner adhesive surface of said tab means for overlying said opening means and securing means for securing facing portions of said tab means and said outer surface of said base portion containing said opening means to each other to secure said tab means to said base portion with said pad means located in said opening means and position between said tab means and said patient's skin.
PCT Publication WO1995004511. IMPROVEMENTS IN AND RELATING TO DRESSINGS, discloses a dressing comprising a skin patch having a top and bottom surface, said bottom surface having an adhesive area; a cover flap attached to said skin patch, the attachment allowing the cover flap to be positioned over at least a portion of the top surface of said skin flap; said dressing including fastening means for holding the cover flap over the top surface of said skin patch.
U.S. Pat. No. 5,086,763, Protective Reclosable Wound Dressing, discloses a disposable, protective, reclosable wound dressing bandage providing access to a wound. The dressing comprising: an adhesive tape for adhering said bandage to a body part, said tape having an opening such that the wound is circumscribed therein; a soft pad frame affixed to said adhesive tape and said soft pad frame having an opening in registry with said opening in said adhesive tape, said soft pad frame providing an outward offset from said adhesive tape; a pad frame secured to said soft pad frame, said pad frame having an opening in registry with said openings in said adhesive tape and in said soft pad frame, respectively, said pad frame being fabricated from a fabric used to adhere to a micro hook material; a gauze pad having dimensions such that said gauze pad fits within said openings in registry with said adhesive tape, said soft pad frame and said pad frame; a removable inspection, medication covering flap having micro hook material on a substantial portion of a side thereof for detachably securing said flap to said pad frame and to said gauze pad, said flap having a tab for use by a care provider so as to open, close and remove said flap.
However, skin closure systems may benefit from means to enable removal and drainage of wound exudates for wounds closed using skin closure systems, when required. Because skin closure systems seal the wound tightly, it can be beneficial to relieve any exudate pressure buildup or minimize the onset of skin maceration when the amount of exudates is significant.
Skin closure devices and dressings having porated or porous or apertured tape structure can release the pressure of wound exudates and provide for drainage, however these systems will also leave the incision and wound open to ingress of contaminates through the pores or apertures, potentially resulting in infection. There continues to be a need for improved devices, systems, and methods for holding skin areas around the dissection in apposed arrangement and covered and isolated from ingress of contaminants, while still providing for drainage of exudates and capability to non-disruptively inspect the wound conditions under the wound closure device
In one embodiment, the invention relates to a device for application onto incisions or wounds with a liquid rapidly polymerizable adhesive for forming skin closure systems, comprising a device for application onto incisions or wounds with a liquid rapidly polymerizable adhesive for forming skin closure systems, comprising a flat porous mesh elongated along a longitudinal axis and having an upper side and an opposing lower or wound facing side and a central portion in immediate vicinity of the axis; further having a plurality of pores and windows in said mesh, said windows substantially larger than said pores and arranged along said longitudinal axis in said central portion; a crosslinking or polymerization accelerator or initiator disposed in or on said mesh; and a pressure sensitive adhesive disposed on at least a portion of the lower surface of said mesh.
In some embodiments, there is provided a flat cover attached to said mesh at an edge of said mesh; said cover configured to be foldable over the upper side of said mesh in a book-like fashion and sized to as least partially cover said mesh and to fully cover said windows.
In some embodiments, there are provided absorbent pads attached to said mesh at the edge of said mesh and sized to cover said windows, said absorbent pads disposed in a book-like arrangement between said flap and said mesh and foldable over the upper side of said mesh.
In some embodiments, there is provided a mask comprising an elongated, flexible, flat strip comprising a plurality of masking segments arranged along said strip and interconnected by narrow connectors; said mask having a mesh-facing surface and an opposing top surface; said masking segments configured and sized to completely cover said windows when the mask is disposed on the mesh; with spacing between masking segments matching corresponding spacing between windows with the masking segments in registration over the windows; said mask further comprising a lift-up tab linearly extending at one end of the mask; said mask removably attached with mesh-facing surface onto the upper side of the mesh with the masking segments covering the windows.
According to another embodiment, a method is provided of using the device for application onto incisions or wounds with a liquid rapidly polymerizable adhesive for forming skin closure systems on a wound for skin incision closure, comprising the steps: positioning the device with the lower side facing the wound; orienting the axis in alignment with the incision ensuring the axis is approximately overlapping the incision; approximating edges of the incision to each other with the device and adhering the device to the skin; applying a polymerizable adhesive onto the upper side of the mesh but not through the windows, allowing the adhesive to penetrate through the mesh and contact the skin; allowing the adhesive to react with the initiator or accelerator of polymerization and polymerize thus bonding the mesh to the skin; folding said cover over the upper side of said mesh in a book-like fashion and at least partially covering said mesh and fully covering said windows. The methods can further comprise the steps of applying a polymerizable adhesive onto the upper side of the mesh and the top surface of the mask; allowing the adhesive to penetrate through the mesh and contact the skin; allowing the adhesive to react with the initiator or accelerator of polymerization and at least partially polymerize thus bonding the mesh to the skin; peeling off the mask from the mesh.
Embodiments with Windows
Referring now to
Mesh 20 has a plurality of large openings or large apertures or windows 30, generally arranged in a central portion of mesh 20 along longitudinal axis 21. Windows 30 are sized to be much larger than perforations 25, such as at least 10 times larger (by area) such as 10, 15, 20, 30, 50, 100, 200, 500, 1000 times larger. Windows 30 can be of any shape, including rectangular, triangular, elliptical, etc., with rectangular windows 30 shown in
Further reference is made to
Referring now to
In use, and further referring to
Generally longitudinal axis 21 is aligned and superimposed over the wound 110. The positioning of device 10 over the surgical incision or wound 110 is performed so that axis 21 is as much as possible aligned with the surgical incision or wound 110 and overlaps with the surgical incision or wound 110 i.e., axis 21 is in registration the surgical incision or wound 110.
Polymerizable or cross-linkable adhesive 50 (not shown) is then uniformly applied over the whole of mesh 20 upper surface 22, with the exception of windows 30, penetrating through mesh 20 and establishing contact with skin 100. Adhesive 50 is not applied on top of or through windows 30. Adhesive 50 can be expressed from a container having a porous tip impregnated with a polymerization or cross-linking accelerator or initiator. In a preferred embodiment, adhesive 50 is expressed from an applicator not having polymerization or cross-linking accelerator or initiator, with such polymerization or cross-linking accelerator or activator/initiator present on or in mesh 20 in a releasable or reactive form, i.e., available for rapid reaction when contacted with adhesive 50.
Liquid adhesive 50 then polymerizes and/or cross-links and solidifies, establishing secure bond with skin 100 and mesh 20. Skin closure by device 10a is thus completed with surgical incision under mesh 20 securely covered and closed, with windows 30 providing areas of wound 110 which are non-covered by adhesive 50, allowing for drainage, inspection, and access.
Embodiments with Windows and Flap or Cover
Referring now to
Flap 60 can have an optional PSA coating on a portion or on all surface of flap 60 facing mesh 20, in order to removably fixate flap 60 onto mesh 20 and protect wound areas visible in windows 30. After attachment by PSA, flap 60 can be lifted upwards for inspection of wound 110 and then reclosed as needed. Alternatively to PSA covering all surface of flap 60 facing mesh 20, flap 60 can have a PSA zone only on a portion of surface of flap 60 facing mesh 20, such as a narrow PSA strip 64 positioned alone the edge opposite edge 24 and hinge 62 as shown in
Flap or cover 60 provides covering preventing contamination of wound and tissue exposed in windows 30 and ingress of contaminants, infectious microorganisms, etc., while simultaneously allowing drainage, access and inspection. Flap 60 can be transparent for ease of inspection or opaque in which case flap 60 is lifted for inspection.
In use of device 10b, similarly to the above description of device 10a, after removal of optional liner 40 material covering lower side 23, device 10b is positioned on tissue or skin 100 covering wound 110 with lower side 23 facing the wound 110 and upper side 22 facing away from the wound 110. Mesh 20 is secured to wound surface 100 (such as skin) by traces 27 of PSA. Optionally, mesh 20 is used to approximate and hold in apposition or close approximation the edges of surgical incision or wound 110, using traces 27 of PSA for securement of mesh 20 and for securing in close approximation or apposition the edges of surgical incision or wound 110. Generally longitudinal axis 21 is aligned and superimposed over the wound 110.
Flap 60 is lifted up form contact with upper side 22 prior to application of adhesive 50 so as to not cover upper side 22 and windows 30 by flap 60. Polymerizable or cross-linkable adhesive 50 is then uniformly applied over the whole of mesh 20 upper surface 22, with the exception of windows 30, penetrating through mesh 20 and establishing contact with skin 100. Adhesive 50 is not applied on top of or through windows 30. Adhesive 50 can be expressed from a container having a porous tip impregnated with a polymerization or cross-linking accelerator or initiator. In a preferred embodiment, adhesive 50 is expressed from an applicator not having polymerization or cross-linking accelerator or initiator, with such polymerization or cross-linking accelerator or activator/initiator present on or in mesh 20 in a releasable or reactive form, i.e., available for rapid reaction when contacted with adhesive 50.
Liquid adhesive 50 then polymerizes and/or cross-links and solidifies, establishing secure bond with skin 100 and mesh 20. After full polymerization and/or cross-linking and solidifying of liquid adhesive 50, flap 60 is closed in a book-like fashion over upper side 22 covering upper side 22 and contacting upper side 22. Skin closure by device 10b is thus completed with surgical incision under mesh 20 securely covered and closed, with windows 30 providing areas of wound 110 which are non-covered by adhesive 50, allowing for drainage, inspection, and access, and windows 30 further covered and protected by openable flap 60.
Embodiments with Absorbent Insert
Referring now to
Embodiments with Mask
In order to facilitate rapid and efficient application of polymerizable or cross-linkable adhesive 50 over the whole of mesh 20 upper surface 22 with the exception of windows 30, a sacrificial mask 70 is provided covering all windows 30 prior to application of adhesive 50. Referring now to
Masking segments 72 configured and sized so as to completely cover windows 30 and are sized either exactly as windows 30, or more preferably are sized slightly larger than windows 30, such as extending outside of windows 30 or overlapping windows 30 on all sides by 0.25-2.5 mm on all sides, such as extending outside of windows 30 by 0.5, 1, 1.5, 2 mm on all sides. As an example, if window 30 is a rectangle 6 mm by 10 mm, masking segment 72 can be dimensioned as a rectangle 8 mm by 12 mm, thus extending 1 mm over and outside of window 30 when positioned in registration over window 30. Mask 70 is configured with spacing between masking segments 72 match corresponding spacing between windows 30. Mask 70 is configured to completely cover all windows 30 when mask 70 is positioned on top of mesh 20 with masking segments 72 in registration over windows 30.
Referring now to
Lift-up tab 76 is shown linearly extending from masking segment 72a at one end of mask 70, extending beyond and outside of mesh 20. Lift-up tab 76 is shown having an optional grasping portion 77, which a larger and wider area of lift-up tab positioned outside of mesh 20.
There is an optional pressure sensitive adhesive (not shown) applied on mask 70 surface facing mesh 20, facilitating mask 70 being peelably or removably immobilized on upper side 22 of mesh 20. Pressure sensitive adhesive also helps to prevent adhesive 50 penetrating and contacting areas of wound in the areas of windows 30. In one embodiment, there is no PSA on connectors 74 surfaces facing mesh 20, to facilitate adhesive 50 flowing under connectors 74, but only PSA present is PSA on masking segments 72 surfaces facing mesh 20 and windows 30, to further prevent adhesive 50 penetrating under masking segments 72 and contacting areas of wound in the areas of windows 30.
Embodiments with mask 70 can be applied to any of the shown device embodiments 10a, 10b, 10c, i.e. mask 70 can be utilized with and without flap 60, and absorbent insert 68.
In one embodiment, there is a pH modifying coating on top of connectors 74 and masking segments 72 that slows down or inhibits polymerization. The coating can be any chemistry that prevents or slows down polymerization, such as acidic based materials, acids, salts, and buffers, which are characterized in bringing neutral pH=7 to pH values below 7.0 when dissolved in water.
Examples include salts of ammonium (NH4+); methyl ammonium (CH3NH3+); ethyl ammonium (CH3CH2NH3+); anilinium (C6H6NH2+) as well as salts with hydrolysable protons in the anion, including e.g. bisulfate (HSO4−); dihydrogen citrate (H2C6H5O7−); bioxalate (HO2C2O−). Examples of salts can include NaHSO4, NaH2PO4, NH4Cl, anilinium chloride, etc.
Referring now to
Preferably, the dimensions of connectors 74 are selected so that when mask 70 positioned on top of mesh 20 is covered by a liquid polymerizable adhesive 50, adhesive is penetrating under connectors 74 and substantially or fully covers areas of mesh 20 under connectors 74, preventing formation of areas devoid of adhesive 50 under connectors 74. As used herein, “substantially cover(s)” is intended to describe sufficient covering of the device with adhesive to maintain the wound or incision in a closed or approximated state sufficient for the intended purpose of closing the wound or incision.
Advantageously, dimensions of windows 30 and masking segments 72 are selected so that adhesive 50 is not fully penetrating under masking segments 72 and substantially not covering areas of windows 30, while dimensions of connectors 74 are selected so that adhesive 50 is penetrating under connectors 74 and substantially or fully covers areas of mesh 20 under connectors 74.
Experimental testing of width of connectors 74 as strips of masking films was performed on simulated skin substrates. Polymerizable adhesives with varying viscosity were used, specifically viscosity ˜8 cP and 200 cP. Adhesive was applied over strips of shielding film of varying width immobilized on a mesh using PSA. Within 0.5-5 minutes of application, shielding film strips were lifted or peeled and the penetration of liquid adhesive under strips of shielding film was evaluated. The results show that liquid adhesives of 8 cP viscosity have fully penetrated under strips 3 mm wide, partially penetrated under strips 7 mm wide, and not substantially penetrated under strips 11 mm wide. Liquid adhesives of 200 cP viscosity have partially penetrated under strips 3 mm wide, and not substantially penetrated under strips 7 and 11 mm wide.
According to some embodiments, connectors 74 width is selected to ensure full penetration of liquid adhesive used (with a given viscosity) under connectors 74. According to some embodiments, masking segments 72 width is selected to ensure no penetration or only minor limited penetration of liquid adhesive used (with a given viscosity) under masking segments 72.
According to one embodiment, width of connectors 74 is 3 mm or less, while width of masking segments 72 is 7 mm or more. According to another embodiment width of masking segments 72 is 11 mm or more. According to one embodiment, the mask as described is sized for use with adhesives having 8 cP viscosity or 200 cP viscosity.
According to one embodiment, the mask as described is sized for use with adhesives having viscosity from 8 cP to 200 cP.
In use, and further referring to
Generally longitudinal axis 21 is aligned and superimposed over the wound. The positioning of device 10a over the surgical incision or wound is performed so that axis 21 is as much as possible aligned with the surgical incision or wound and overlaps with the surgical incision or wound i.e., axis 21 is in registration the surgical incision or wound.
Liquid polymerizable or cross-linkable adhesive 50 is then uniformly and rapidly applied over the whole of mesh 20 upper surface 22, including over mask 70, which is shown schematically in dashed lines as fully covered by adhesive 50. The liquid adhesive is also applied over areas corresponding to windows 30 (not visible in
Advantageously, use of mask 70 enables rapid application of adhesive 50 over the whole surface of device 10, with no need in carefully applying adhesive around windows 30 and avoiding adhesive getting into windows 30. This facilitates fast and easy to deploy application of devices 10, including embodiments 10a, 10b, 10c. Advantageously, after such rapid application of adhesive 50 over the whole surface, rapid manual removal of mask 70 leaves tissue and/or wound and/or skin exposed through windows 30.
Sizes/Dimensions/Materials
Flexible mesh 20, liner 40, flap or cover 60, mask 70, are made of any suitable biocompatible polymeric material, natural, synthetic polymer, or combinations thereof. Exemplary materials include polyethylene, polypropylene, polyester, etc. Absorbent and removable insert 68 can be made of any fluid-absorbing, biomedically compatible material such as natural or synthetic polymer, or combinations thereof. It can comprise polyethylene, polypropylene, polyester, cellulose, oxidized cellulose, carboxymethylcellulose, cotton, modified cotton, or generally any absorbent and/or spongy and/or fibrous biocompatible material.
Mesh 20 can be of any elongated shape to cover a wound, such as elliptical, rectangular, and similar. Mesh 20 can have ratio of length to width of about 1:2 to about 1:20, such as 1:5. The length of mesh 20 is from about 10 cm to about 50 cm, such as 25 cm. The width of mesh 20 is from 2 cm to 10 cm, such 3 cm, 5 cm.
Elongated traces 27 of pressure sensitive adhesive (PSA) have width from about 0.5 mm to about 7 mm, more preferably 1 mm to 5 mm, such as 1, 1.5, 2, 3, 4 mm. The length of elongated traces 27 is from about 50% of the width of mesh 20 to about 300% of the width of mesh 20, such as 10, 15, 20, 30, 40, 50, 60 mm. The length of elongated traces 27 is from about 50% to about 100% of the length of mesh 20, such as 50, 100, 200, 300 mm.
PSA
PSA materials are exemplified by water soluble pressure sensitive adhesives, including hydrocolloids; homo-polymer emulsion (PVA); water-based acrylic adhesives; polyurethane dispersions (PUDs); polyethylene glycol; dextrin/starch-based adhesives; N-vinyl pyrrolidone copolymers; polyvinyl alcohol; cellulose ethers; methylcellulose; carboxymethylcellulose; polyvinylpyrrolidone; polyvinyl acetates, or by water insoluble pressure sensitive adhesives, including acrylic adhesives; cyanoacrylate adhesives; epoxy; silicone based adhesives; and urethane.
Initiator
In a preferred embodiment, initiators and/or accelerators or rate modifiers of adhesive polymerization or cross-linking can be releasably disposed on mesh 20 or releasably incorporated into mesh 20. For example, one or more chemical substances may be dispersed in or on mesh 20 such as being chemically bound, physically bound, coated, absorbed, or adsorbed to it.
For example, a polymerization initiator or accelerator or rate modifier may be loaded in or on mesh 20 so that the initiator or rate modifier provides the desired initiation or rate modification effect to a subsequently applied polymerizable adhesive composition. The polymerization initiator or rate modifier may be immobilized in or on mesh 20, so that the initiator or rate modifier does not become detached from mesh 20 and its residues are dispersed in the resultant polymeric material. Alternatively, for example, the polymerization initiator or rate modifier may be initially attached to mesh 20, but only in such a manner that it becomes mobilized or solubilized by a subsequently applied polymerizable adhesive composition and dispersed in the resultant polymeric material.
If desired, a combination of chemical substances may also be provided in or on mesh 20, to provide multiple effects. For example, a first chemical species (such as a polymerization initiator or rate modifier) may be immobilized in or on mesh 20, while a second, different chemical species (such as a bioactive material) may be detachably attached to mesh 20. Other combinations of chemical species and resultant effects are also envisioned.
When present in or on mesh 20, the chemical substances (i.e., polymerization initiator, rate modifier, and/or bioactive materials, or other additives), may be incorporated in or on mesh 20 in any suitable manner. For example, the chemical substance may be added to mesh 20 by contacting mesh 20 with a solution, mixture, or the like including the chemical substances. The chemical substance may be added to mesh 20, for example, by dipping, spraying, roll coating, gravure coating, brushing, vapor deposition, or the like. Alternatively, the chemical substance may be incorporated into or onto mesh 20 during manufacture of mesh 20, such as during molding.
The polymerization initiator or rate modifier loaded in or on mesh 20 may provide a number of advantages for example, so as to provide faster polymerization time. The concentration of polymerization initiator or rate modifier may be increased to provide even faster polymerization time. Because the polymerization initiator or rate modifier is loaded directly in or on mesh 20, it is not necessary to mix the polymerizable adhesive composition with a polymerization initiator or rate modifier prior to application. This may allow a longer working time, where the polymerizable monomer composition may be more precisely and carefully applied over a longer period of time. Such suitable initiators are known in the art and are described, for example, in U.S. Pat. Nos. 5,928,611 and 6,620,846, both incorporated herein by reference in their entireties, and U.S. Patent Application No. 2002/0037310, also incorporated herein by reference in its entirety. Quaternary ammonium chloride and bromide salts useful as polymerization initiators are particularly suitable. By way of example, quaternary ammonium salts such as domiphen bromide, butyrylcholine chloride, benzalkonium bromide, acetyl choline chloride, among others, may be used. Benzalkonium or benzyltrialkyl ammonium halides such as benzyltrialkyl ammonium chloride may be used. When used, the benzalkonium halide may be benzalkonium halide in its unpurified state, which comprises a mixture of varying chain length compounds, or it can be any suitable purified compound including those having a chain length of from about 12 to about 18 carbon atoms, including but not limited to C12, C13, C14, C15, C16, C17, and C18 compounds. By way of example, the initiator may be a quaternary ammonium chloride salt such as benzyltrialkyl ammonium chloride (BTAC).
Other initiators or accelerators may also be selected by one of ordinary skill in the art without undue experimentation. Such suitable initiators or accelerators may include, but are not limited to, detergent compositions; surfactants: e.g., nonionic surfactants such as polysorbate 20 (e.g., Tween 20™ from ICI Americas), polysorbate 80 (e.g., Tween 80™ from ICI Americas) and poloxamers, cationic surfactants such as tetrabutylammonium bromide, anionic surfactants such as sodium tetradecyl sulfate, and amphoteric or zwitterionic surfactants such as dodecyldimethyl(3-sulfopropyl)ammonium hydroxide, inner salt; amines, imines and amides, such as imidazole, arginine and povidine; phosphines, phosphites and phosphonium salts, such as triphenylphosphine and triethyl phosphite; alcohols such as ethylene glycol, methyl gallate; tannins; inorganic bases and salts, such as sodium bisulfite, calcium sulfate and sodium silicate; sulfur compounds such as thiourea and polysulfides; polymeric cyclic ethers such as monensin, nonactin, crown ethers, calixarenes and polymeric-epoxides; cyclic and acyclic carbonates, such as diethyl carbonate; phase transfer catalysts such as Aliquat 336; organometallics such as cobalt naphthenate and manganese acetylacetonate; and radical initiators or accelerators and radicals, such as di-butyl peroxide and azobisisobutyronitrile.
Mixtures of two or more, such as three, four, or more, initiators or accelerators may be used. A combination of multiple initiators or accelerators may be beneficial, for example, to tailor the initiator of the polymerizable monomer species. For example, where a blend of monomers is used, a blend of initiators may provide superior results to a single initiator. For example, the blend of initiators can provide one initiator that preferentially initiates one monomer, and a second initiator that preferentially initiates the other monomer, or can provide initiation rates to help ensure that both monomer species are initiated at equivalent, or desired non-equivalent, rates. In this manner, a blend of initiators can help minimize the amount of initiator necessary. Furthermore, a blend of initiators may enhance the polymerization reaction kinetics.
Adhesive
In one embodiment, liquid or semi-liquid adhesive 50 is polymerized or is crosslinked polymerized or is cross-linked after coming in contact with initiators and/or accelerators of adhesive polymerization and/or cross-linking, including naturally found initiators on the tissue, such as moisture, traces of proteins, etc. Such initiators and/or accelerators can be coated or disposed non-releasably, i.e. immobilized in or on the mesh 20 while retaining activity to initiate or accelerate polymerization and/or cross-linking. In one embodiment, initiators and/or accelerators are disposed releasably, i.e., they can be at least partially released into and mix with flowing adhesive 50.
In a preferred embodiment, adhesive 50 is polymerized or is cross-linked after coming in contact with initiators and/or accelerators releasably disposed in or on mesh 20. Rapid polymerization and/or crosslinking of adhesive 50 results in bonding of device 10 to tissue.
Adhesive 50 can be any type of biocompatible and rapidly cross-linkable and/or polymerizable compound or mixture of compounds. Rapidly cross-linkable and/or polymerizable means that after initiators or accelerators are added, or after the adhesive is formed from two or more components, it is capable of curing, i.e. cross-linking and/or polymerizing within 0.2 min to about 20 min, more preferably within 0.5 min to 10 min, such as 1, 2, 3, 5 min.
In one embodiment, adhesive 50 is formed prior to application onto mesh 20, for instance by mixing two components contained in separate barrels or a two-barrel syringe, by passing these two components through a mixing tip. In this embodiment, there is no crosslinking initiator or accelerator disposed inside of mesh 20. In one embodiment, adhesive 50 is formed by mixing fibrinogen and thrombin together.
In one embodiment, adhesive 50 comprises fibrinogen, and crosslinking initiator or accelerator disposed inside of mesh 20 comprises thrombin.
In a preferred embodiment, the polymerizable adhesive composition may comprise a polymerizable monomeric adhesive. In embodiments, the polymerizable adhesive composition comprises a polymerizable 1,1-disubstituted ethylene monomer formulation. In embodiments, the polymerizable adhesive composition comprises a cyanoacrylate formulation. In embodiments, synthetic polymerizable adhesive materials such as polyurethane, polyethylene glycol, acrylates, glutaraldehyde and biologically based adhesives may be used.
Suitable .alpha.-cyanoacrylate monomers which may be used, alone or in combination, include alkyl .alpha.-cyanoacrylates such as 2-octyl cyanoacrylate; dodecyl cyanoacrylate; 2-ethylhexyl cyanoacrylate; butyl cyanoacrylate such as n-butyl cyanoacrylate; ethyl cyanoacrylate; methyl cyanoacrylate or other .alpha.-cyanoacrylate monomers such as methoxyethyl cyanoacrylate; 2-ethoxyethyl cyanoacrylate; 3-methoxybutyl cyanoacrylate; 2-butoxyethyl cyanoacrylate; 2-isopropoxyethyl cyanoacrylate; and 1-methoxy-2-propyl cyanoacrylate. In embodiments, the monomers are ethyl, n-butyl, or 2-octyl .alpha.-cyanoacrylate. Other cyanoacrylate monomers which may be used include alkyl ester cyanoacrylates, such as those prepared by the Knoevenagel reaction of an alkyl cyanoacetate, or an alkyl ester cyanoacetate, with paraformaldehyde, subsequent thermal cracking of the resultant oligomer and distillation.
Many other adhesive formulations can be used and are known to a skilled artisan. For example, mixtures containing PEG succinimidyl glutarate can be used as a flowable adhesive.
Use of the Inventive Skin Closure Systems
In one embodiment, application of the inventive devices to a wound is performed in the following sequence of steps. Please refer to the figures for identification of reference numerals used below.
Follow standard surgical practice for wound preparation for thorough wound cleansing before application of inventive devices 10a, 10b, 10c, i.e., cleanse, irrigate, debride, obtain hemostasis and close deep layers such that there is no tension on the skin edges. The skin edges must be closely approximated prior to application of the instant devices, so that that significant manual approximation is not required during mesh 20 application.
Pat the wound dry with dry, sterile gauze to ensure direct tissue contact for adherence of mesh 20 and the adhesive 50 to the skin 100.
Aseptically transfer device 10a, 10b, or 10c and liquid adhesive in a suitable container to the sterile field.
Referring in particular to
Hold mesh 20 by the corners of the liner 40, ensuring pressure-sensitive adhesive (PSA) 27 will be on the mesh 20 lower side 23 that will be adhered to the patient's skin 100.
Position mesh 20 so one half is on either side of the incision or wound 110, ensuring approximately 1 cm of mesh 20 extends from the beginning of incision 110. Press gently to ensure intimate contact of mesh 20 to the selected side of incision 110. Gently pull mesh 20 perpendicularly over incision 110 while adjusting with fingers or forceps to achieve skin edge approximation and affix the remainder of mesh 20 to the other side of incision 110. If there are areas where mesh 20 is loose, gently pass a gloved finger or instrument over the affected area to ensure complete adherence of mesh 20 to the skin 100.
Remove remaining liner 40 segments, such as segments 40a, 40c.
Trim mesh 20 if necessary, ensuring at least 1 cm of mesh 20 extends beyond the end of incision 110. Ensure that mesh 20 is in intimate contact with skin 100 prior to application of liquid adhesive 50.
The liquid adhesive 50 should be applied over mesh 20 immediately after mesh 20 has been placed. Pat the deployed mesh 20 dry gently with dry sterile gauze in the event of bodily fluid seepage without disturbing skin edge approximation prior to spreading the adhesive over mesh 20.
Referring generally to
For embodiments without mask 70, apply liquid adhesive 50 on top of mesh 20 avoiding windows 30, i.e. without applying adhesive through windows 30.
For embodiments with mask 70, apply liquid adhesive 50 on top of mesh 20 and also on top of mask 70, i.e. covering areas of windows 30 covered by mask 70.
After applying liquid adhesive 50, for embodiments with mask 70, lift and discard mask 70 immediately, preferably prior to complete polymerization of adhesive 50.
Once applied to mesh 20, after about 1 min, check that polymerization is complete by gently dabbing along the length of mesh 20 with a gloved finger, checking for tackiness. When no liquid or tackiness is apparent, the polymerization process is complete. Once the liquid adhesive is polymerized, flap 60 of embodiments 10b, 10c can be closed over mesh 20 by folding over upper side 22.
It should be understood that the foregoing disclosure and description of the embodiments of the present invention are illustrative and explanatory thereof and various changes in the size, shape and materials as well as in the description of the preferred embodiment may be made without departing from the spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
167162 | French | Aug 1875 | A |
1656199 | Ensley | Jan 1928 | A |
2399545 | Davis | Apr 1946 | A |
2508855 | Brown | May 1950 | A |
2721858 | Joyner et al. | Oct 1955 | A |
2722220 | Mestrand | Nov 1955 | A |
2807262 | Lew | Sep 1957 | A |
2905174 | Smith | May 1959 | A |
3085572 | Blackford | Apr 1963 | A |
3254111 | Hawkins et al. | May 1966 | A |
3402716 | Baxter | Sep 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3731683 | Zaffaroni | May 1973 | A |
3888247 | Stenvall | Jun 1975 | A |
3940362 | Overhults | Feb 1976 | A |
3983878 | Kawchitch | Oct 1976 | A |
3995641 | Kronenthal et al. | Dec 1976 | A |
4068664 | Sharp et al. | Jan 1978 | A |
4080348 | Korpman | Mar 1978 | A |
4126130 | Cowden et al. | Nov 1978 | A |
4140115 | Schonfeld | Feb 1979 | A |
4263906 | Finley | Apr 1981 | A |
4313865 | Teramoto et al. | Feb 1982 | A |
4340043 | Seymour | Jul 1982 | A |
4364876 | Kimura et al. | Dec 1982 | A |
4390519 | Sawyer | Jun 1983 | A |
4460369 | Seymour | Jul 1984 | A |
4560723 | Millet et al. | Dec 1985 | A |
4584355 | Blizzard et al. | Apr 1986 | A |
4585836 | Homan et al. | Apr 1986 | A |
4591622 | Blizzard et al. | May 1986 | A |
4612230 | Liland et al. | Sep 1986 | A |
4614183 | McCracken et al. | Sep 1986 | A |
4630603 | Greenway | Dec 1986 | A |
4655767 | Woodard et al. | Apr 1987 | A |
4671266 | Legnyel et al. | Jun 1987 | A |
4720513 | Kameyama et al. | Jan 1988 | A |
4728380 | Jones et al. | Mar 1988 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4767401 | Seiderman | Aug 1988 | A |
4793887 | Card et al. | Dec 1988 | A |
4793888 | Card et al. | Dec 1988 | A |
4795435 | Steer | Jan 1989 | A |
4852571 | Gadsby et al. | Aug 1989 | A |
4867747 | Yarger | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4950282 | Beisang et al. | Aug 1990 | A |
4966605 | Thieler | Oct 1990 | A |
4999235 | Lunn et al. | Mar 1991 | A |
5035687 | Sandbank | Jul 1991 | A |
5059424 | Cartmell et al. | Oct 1991 | A |
5086763 | Hathman | Feb 1992 | A |
5088483 | Heinecke | Feb 1992 | A |
5106362 | Gilman | Apr 1992 | A |
5125907 | Philpott | Jun 1992 | A |
5164444 | Bernard | Nov 1992 | A |
5173302 | Holmblad et al. | Dec 1992 | A |
5232958 | Mallya et al. | Aug 1993 | A |
5254132 | Barley et al. | Oct 1993 | A |
5259835 | Clark | Nov 1993 | A |
5266371 | Sugii et al. | Nov 1993 | A |
D347059 | Mota | May 1994 | S |
5308313 | Karami et al. | May 1994 | A |
5328687 | Leung et al. | Jul 1994 | A |
5336209 | Porzilli | Aug 1994 | A |
5415626 | Goodman et al. | May 1995 | A |
5429592 | Jensen | Jul 1995 | A |
5445597 | Clark et al. | Aug 1995 | A |
5449340 | Tollini | Sep 1995 | A |
D363126 | Dusek | Oct 1995 | S |
5456660 | Reich et al. | Oct 1995 | A |
5476440 | Edenbaum | Dec 1995 | A |
5486547 | Matsuda et al. | Jan 1996 | A |
D370258 | Newman | May 1996 | S |
D373750 | Gunderson | Sep 1996 | S |
5571079 | Bello et al. | Nov 1996 | A |
5575997 | Leung et al. | Nov 1996 | A |
5582834 | Leung et al. | Dec 1996 | A |
5599858 | Buchanan et al. | Feb 1997 | A |
5620702 | Podell et al. | Apr 1997 | A |
5623011 | Bernard | Apr 1997 | A |
5624669 | Leung et al. | Apr 1997 | A |
5637080 | Geng | Jun 1997 | A |
D382343 | Wandell et al. | Aug 1997 | S |
5653769 | Barley, Jr. et al. | Aug 1997 | A |
D383211 | Dunshee et al. | Sep 1997 | S |
5662599 | Reich et al. | Sep 1997 | A |
D387169 | Dunshee et al. | Dec 1997 | S |
D389244 | Dunshee et al. | Jan 1998 | S |
5705551 | Sasaki et al. | Jan 1998 | A |
D391639 | Dunshee et al. | Mar 1998 | S |
5749895 | Sawyer et al. | May 1998 | A |
5762955 | Smith | Jun 1998 | A |
5780048 | Lee | Jul 1998 | A |
5782788 | Widemire | Jul 1998 | A |
5823983 | Rosofsky et al. | Oct 1998 | A |
5823986 | Peterson | Oct 1998 | A |
D402371 | Haynes et al. | Dec 1998 | S |
D403425 | Hinds et al. | Dec 1998 | S |
D404139 | Young | Jan 1999 | S |
5861348 | Kase | Jan 1999 | A |
5876745 | Muraoka et al. | Mar 1999 | A |
5902443 | Kanakubo et al. | May 1999 | A |
5928611 | Leung | Jul 1999 | A |
5931800 | Rasmussen et al. | Aug 1999 | A |
5947917 | Carté et al. | Sep 1999 | A |
5951505 | Gilman et al. | Sep 1999 | A |
5998694 | Jensen et al. | Dec 1999 | A |
D424699 | Allen | May 2000 | S |
6093465 | Gilchrist et al. | Jul 2000 | A |
6125265 | Yamamoto et al. | Sep 2000 | A |
6140548 | Hansen et al. | Oct 2000 | A |
6143352 | Clark et al. | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6183593 | Narang et al. | Feb 2001 | B1 |
D439973 | Choksi | Apr 2001 | S |
6217603 | Clark et al. | Apr 2001 | B1 |
6238692 | Smith | May 2001 | B1 |
6245960 | Eaton | Jun 2001 | B1 |
6284941 | Cox et al. | Sep 2001 | B1 |
6310166 | Hickey et al. | Oct 2001 | B1 |
6329564 | Lebner | Dec 2001 | B1 |
6352704 | Nicholson et al. | Mar 2002 | B1 |
D458687 | Dale et al. | Jun 2002 | S |
6410818 | Oyaski | Jun 2002 | B1 |
6439789 | Balance et al. | Aug 2002 | B1 |
D463564 | Siegwart et al. | Sep 2002 | S |
6455064 | Narang et al. | Sep 2002 | B1 |
6479725 | Brothers | Nov 2002 | B1 |
6482431 | Smith | Nov 2002 | B2 |
6512023 | Malofsky et al. | Jan 2003 | B1 |
D471984 | Dunshee et al. | Mar 2003 | S |
D472319 | Oltmann | Mar 2003 | S |
6559350 | Tetreault et al. | May 2003 | B1 |
6579469 | Nicholson et al. | Jun 2003 | B1 |
6582713 | Newell et al. | Jun 2003 | B2 |
D477076 | Wall | Jul 2003 | S |
6589269 | Zhu et al. | Jul 2003 | B2 |
6595940 | D'Alessio et al. | Jul 2003 | B1 |
6596917 | Oyaski | Jul 2003 | B2 |
6599318 | Gabbay | Jul 2003 | B1 |
6620846 | Jonn et al. | Sep 2003 | B1 |
D480879 | Boehm et al. | Oct 2003 | S |
6632450 | Gregory | Oct 2003 | B1 |
6635272 | Leaderman | Oct 2003 | B2 |
6652559 | Tetreault et al. | Nov 2003 | B1 |
6667051 | Gregory | Dec 2003 | B1 |
6712839 | Lönne | Mar 2004 | B1 |
6787682 | Gilman | Sep 2004 | B2 |
6837027 | Hickey | Jan 2005 | B2 |
6841716 | Tsutsumi | Jan 2005 | B1 |
6942683 | Dunshee | Sep 2005 | B2 |
D515701 | Horhota et al. | Feb 2006 | S |
D516728 | Wall | Mar 2006 | S |
D520639 | Dodd et al. | May 2006 | S |
7041124 | Purcell | May 2006 | B2 |
7044982 | Milbocker | May 2006 | B2 |
7066934 | Kirsch | Jun 2006 | B2 |
7122712 | Lutri et al. | Oct 2006 | B2 |
7144390 | Hannigan et al. | Dec 2006 | B1 |
7164054 | Mori et al. | Jan 2007 | B2 |
D548348 | Nash | Aug 2007 | S |
7252837 | Guo et al. | Aug 2007 | B2 |
D562461 | Nash et al. | Feb 2008 | S |
7371400 | Borenstein et al. | May 2008 | B2 |
D574962 | Atkins et al. | Aug 2008 | S |
D580553 | Nash | Nov 2008 | S |
D581467 | Winningham et al. | Nov 2008 | S |
7457667 | Skiba | Nov 2008 | B2 |
D582561 | Sachi | Dec 2008 | S |
D584415 | Sachi | Jan 2009 | S |
7576257 | LaGreca, Sr. | Aug 2009 | B2 |
D611156 | Dunshee | Mar 2010 | S |
7713463 | Reah et al. | May 2010 | B1 |
D618810 | Tanigawa et al. | Jun 2010 | S |
D621052 | Kase | Aug 2010 | S |
D621053 | Kase | Aug 2010 | S |
D624190 | Neri | Sep 2010 | S |
D632398 | Bray et al. | Feb 2011 | S |
D636881 | Clemens et al. | Apr 2011 | S |
7943811 | Da Silva Macedo, Jr. | May 2011 | B2 |
7981136 | Weiser | Jul 2011 | B2 |
7982087 | Greener et al. | Jul 2011 | B2 |
D646789 | Barth | Oct 2011 | S |
8343606 | Marchitto et al. | Jan 2013 | B2 |
8353966 | Day et al. | Jan 2013 | B2 |
D676490 | Bratter et al. | Feb 2013 | S |
8372051 | Scholz et al. | Feb 2013 | B2 |
D679098 | Ogawa | Apr 2013 | S |
D679402 | Conrad-Vlasak et al. | Apr 2013 | S |
D679403 | Heinecke et al. | Apr 2013 | S |
D679405 | Arbesman | Apr 2013 | S |
D679819 | Peron | Apr 2013 | S |
D679820 | Peron | Apr 2013 | S |
D685484 | Brambilla | Jul 2013 | S |
8528730 | Grossman | Sep 2013 | B2 |
D691730 | Smith et al. | Oct 2013 | S |
D692566 | Adoni | Oct 2013 | S |
D693010 | Mosa et al. | Nov 2013 | S |
D694892 | Chan et al. | Dec 2013 | S |
8603053 | Riesinger | Dec 2013 | B2 |
D697216 | Chan et al. | Jan 2014 | S |
8642831 | Larsen et al. | Feb 2014 | B2 |
8663171 | Tambourgi et al. | Mar 2014 | B2 |
D705429 | Cheney et al. | May 2014 | S |
D707829 | Chan et al. | Jun 2014 | S |
D708751 | Chan et al. | Jul 2014 | S |
8777986 | Straehnz et al. | Jul 2014 | B2 |
D712045 | Thornton | Aug 2014 | S |
D713534 | Manley, Jr. | Sep 2014 | S |
D713967 | Adoni | Sep 2014 | S |
D714575 | Mah | Oct 2014 | S |
8884094 | Lockwood et al. | Nov 2014 | B2 |
D718812 | Sukhbaatar | Dec 2014 | S |
9000251 | Murphy et al. | Apr 2015 | B2 |
RE45510 | Hisamitsu | May 2015 | E |
D728803 | Sinda et al. | May 2015 | S |
D745688 | Chan et al. | Dec 2015 | S |
D745689 | Chan et al. | Dec 2015 | S |
D746479 | Arefieg | Dec 2015 | S |
RE45864 | Peron | Jan 2016 | E |
D746996 | Karlsson et al. | Jan 2016 | S |
D750789 | Mackay et al. | Mar 2016 | S |
D757950 | Karlsson et al. | May 2016 | S |
9339417 | Ogawa | May 2016 | B2 |
9381284 | Cornet et al. | Jul 2016 | B2 |
9440010 | Locke | Sep 2016 | B2 |
9492171 | Patenaude | Nov 2016 | B2 |
9623142 | Jonn et al. | Apr 2017 | B2 |
D786350 | Nakai et al. | May 2017 | S |
D786351 | Nakai et al. | May 2017 | S |
D786352 | Nakai et al. | May 2017 | S |
D786353 | Nakai et al. | May 2017 | S |
D786972 | Nakai et al. | May 2017 | S |
9642621 | Belson | May 2017 | B2 |
9655622 | Jonn | May 2017 | B2 |
D790071 | Ahsani | Jun 2017 | S |
D824525 | Lacy et al. | Jul 2018 | S |
D833526 | Nakai et al. | Nov 2018 | S |
10434211 | Jonn et al. | Oct 2019 | B2 |
10470935 | Quintero | Nov 2019 | B2 |
10993708 | Quintero | May 2021 | B2 |
20010002432 | Bugge | May 2001 | A1 |
20010028943 | Mashiko et al. | Oct 2001 | A1 |
20010037077 | Wiemken | Nov 2001 | A1 |
20020018689 | Badejo et al. | Feb 2002 | A1 |
20020019652 | DaSilva et al. | Feb 2002 | A1 |
20020037310 | Jonn et al. | Mar 2002 | A1 |
20020039867 | Curro et al. | Apr 2002 | A1 |
20020049503 | Milbocker | Apr 2002 | A1 |
20020185396 | Mainwaring et al. | Dec 2002 | A1 |
20020192107 | Hickey | Dec 2002 | A1 |
20020193721 | Vandruff | Dec 2002 | A1 |
20030031499 | Heard et al. | Feb 2003 | A1 |
20030050590 | Kirsch | Mar 2003 | A1 |
20030093024 | Falleiros et al. | May 2003 | A1 |
20030100955 | Greenawalt et al. | May 2003 | A1 |
20030109819 | Tsuruda et al. | Jun 2003 | A1 |
20030125654 | Malik | Jul 2003 | A1 |
20030175824 | Pishko et al. | Sep 2003 | A1 |
20030220596 | Dunshee | Nov 2003 | A1 |
20030225355 | Butler | Dec 2003 | A1 |
20040001879 | Guo et al. | Jan 2004 | A1 |
20040060867 | Kriksunov et al. | Apr 2004 | A1 |
20040106888 | Lutri et al. | Jun 2004 | A1 |
20040120849 | Stewart et al. | Jun 2004 | A1 |
20040142041 | MacDonald et al. | Jul 2004 | A1 |
20040162512 | Liedtke et al. | Aug 2004 | A1 |
20040220505 | Worthley | Nov 2004 | A1 |
20050015036 | Lutri et al. | Jan 2005 | A1 |
20050043820 | Browning | Feb 2005 | A1 |
20050085757 | Santanello | Apr 2005 | A1 |
20050147457 | Badejo et al. | Jul 2005 | A1 |
20050153090 | Marchitto et al. | Jul 2005 | A1 |
20050154340 | Schlussel | Jul 2005 | A1 |
20050182443 | Jonn | Aug 2005 | A1 |
20050208100 | Weber et al. | Sep 2005 | A1 |
20050288706 | Widomski et al. | Dec 2005 | A1 |
20060009099 | Jonn et al. | Jan 2006 | A1 |
20060058721 | Lebner et al. | Mar 2006 | A1 |
20060141012 | Gingras | Jun 2006 | A1 |
20060173394 | Stroock et al. | Aug 2006 | A1 |
20060265005 | Beese | Nov 2006 | A1 |
20070106195 | Marcoux et al. | May 2007 | A1 |
20070218101 | Johnson et al. | Sep 2007 | A1 |
20070272211 | Kassner | Nov 2007 | A1 |
20070282238 | Madsen et al. | Dec 2007 | A1 |
20070299542 | Mathisen et al. | Dec 2007 | A1 |
20080051687 | Rogers | Feb 2008 | A1 |
20080154168 | Lutri | Feb 2008 | A1 |
20080086113 | Tenney et al. | Apr 2008 | A1 |
20080109034 | Mather et al. | May 2008 | A1 |
20080110961 | Voegele et al. | May 2008 | A1 |
20080167633 | Vannucci | Jul 2008 | A1 |
20080228219 | Weiser | Sep 2008 | A1 |
20080228220 | Weiser | Sep 2008 | A1 |
20080280037 | Sheridan et al. | Nov 2008 | A1 |
20080302487 | Goodman et al. | Dec 2008 | A1 |
20090074842 | Hsu | Mar 2009 | A1 |
20100106120 | Holm | Apr 2010 | A1 |
20100198161 | Propp | Aug 2010 | A1 |
20100262091 | Larsson | Oct 2010 | A1 |
20100298791 | Jones et al. | Nov 2010 | A1 |
20110047766 | McAulay et al. | Mar 2011 | A1 |
20110071415 | Karwoski et al. | Mar 2011 | A1 |
20110092874 | Baschnagel | Apr 2011 | A1 |
20110130699 | Madsen et al. | Jun 2011 | A1 |
20110208102 | Chawki | Aug 2011 | A1 |
20110253303 | Miyachi et al. | Oct 2011 | A1 |
20120052230 | Olsson et al. | Mar 2012 | A1 |
20120220912 | Shang | Aug 2012 | A1 |
20120238933 | Murphy et al. | Sep 2012 | A1 |
20120277645 | Kikuta et al. | Nov 2012 | A1 |
20130012988 | Blume et al. | Jan 2013 | A1 |
20130041337 | Aali et al. | Feb 2013 | A1 |
20130066365 | Belson et al. | Mar 2013 | A1 |
20130084323 | Riebman et al. | Apr 2013 | A1 |
20130138068 | Hu et al. | May 2013 | A1 |
20130143326 | Tai et al. | Jun 2013 | A1 |
20130144399 | Tai et al. | Jun 2013 | A1 |
20130204077 | Nagale et al. | Aug 2013 | A1 |
20130218125 | Stopek et al. | Aug 2013 | A1 |
20130245784 | Tan et al. | Sep 2013 | A1 |
20130274717 | Dunn | Oct 2013 | A1 |
20130282049 | Peterson et al. | Oct 2013 | A1 |
20130317405 | Ha et al. | Nov 2013 | A1 |
20140024989 | Ueda | Jan 2014 | A1 |
20140107561 | Dorian et al. | Apr 2014 | A1 |
20140121649 | Calco | May 2014 | A1 |
20140155916 | Hodgkinson et al. | Jun 2014 | A1 |
20140171888 | Croizat et al. | Jun 2014 | A1 |
20140257348 | Priewe et al. | Sep 2014 | A1 |
20140257517 | Deichmann et al. | Sep 2014 | A1 |
20150057491 | Goddard et al. | Feb 2015 | A1 |
20150209186 | Abbott et al. | Jul 2015 | A1 |
20150257938 | Pensier | Sep 2015 | A1 |
20150297413 | Blanco | Oct 2015 | A1 |
20150314114 | La Rosa | Nov 2015 | A1 |
20150351767 | Zoll et al. | Dec 2015 | A1 |
20160030248 | Potters | Feb 2016 | A1 |
20160089145 | Quintero et al. | Mar 2016 | A1 |
20160296673 | Sambusseti | Oct 2016 | A1 |
20170035422 | Belson et al. | Feb 2017 | A1 |
20170056568 | Shelton, IV et al. | Mar 2017 | A1 |
20170056569 | Vendely et al. | Mar 2017 | A1 |
20170189159 | Bartee et al. | Jul 2017 | A1 |
20170273837 | Brueckner | Sep 2017 | A1 |
20170367806 | Gingras et al. | Dec 2017 | A1 |
20180085103 | Quintero et al. | Mar 2018 | A1 |
20180085259 | Quintero | Mar 2018 | A1 |
20180085260 | Quintero | Mar 2018 | A1 |
20190381207 | Jonn et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2005-215776 | Sep 2005 | AU |
2262408 | Aug 2000 | CA |
1697639 | Nov 2005 | CN |
201441532 | Apr 2010 | CN |
101965169 | Feb 2011 | CN |
202376307 | Aug 2012 | CN |
102755216 | Oct 2012 | CN |
102781433 | Nov 2012 | CN |
203234898 | Oct 2013 | CN |
204766892 | Nov 2015 | CN |
0532275 | Mar 1993 | EP |
0730874 | Sep 1996 | EP |
0746293 | Dec 1996 | EP |
1161212 | Aug 2000 | EP |
2359782 | Aug 2011 | EP |
2377498 | Oct 2011 | EP |
2731563 | May 2014 | EP |
2531155 | Oct 2014 | EP |
2805698 | Nov 2014 | EP |
3574875 | Dec 2019 | EP |
2078763 | Jan 1982 | GB |
59-500046 | Jan 1984 | JP |
61-203020 | Dec 1986 | JP |
62-87624 | Jun 1987 | JP |
01-265967 | Oct 1988 | JP |
2-140948 | Nov 1990 | JP |
3-56429 | May 1991 | JP |
06-509966 | Nov 1994 | JP |
7-016258 | Jan 1995 | JP |
2001-265967 | Sep 2001 | JP |
1130927 | Nov 2001 | JP |
2002-512980 | May 2002 | JP |
2002-521139 | Jul 2002 | JP |
2002-537068 | Nov 2002 | JP |
2003-052741 | Feb 2003 | JP |
2003-153949 | May 2003 | JP |
58-124123 | Jan 2004 | JP |
2004-24905 | Jan 2004 | JP |
2006-061263 | Mar 2006 | JP |
2006-509966 | Mar 2006 | JP |
2007-522882 | Aug 2007 | JP |
3147394 | Dec 2008 | JP |
2009-022730 | Feb 2009 | JP |
1359502 | May 2009 | JP |
2011-004850 | Jan 2011 | JP |
2015505689 | Feb 2015 | JP |
1571238 | Mar 2017 | JP |
2018508243 | Mar 2018 | JP |
1629290 | Apr 2019 | JP |
241113 | Oct 2006 | MX |
WO 1983002586 | Aug 1983 | WO |
WO 1993004650 | Mar 1993 | WO |
WO 1995004511 | Feb 1995 | WO |
WO 1996040797 | Dec 1996 | WO |
WO 1998026719 | Jun 1998 | WO |
WO 2000006213 | Feb 2000 | WO |
WO 2000049983 | Aug 2000 | WO |
WO 2003008002 | Jan 2003 | WO |
WO 2004049987 | Jun 2004 | WO |
WO 2005007020 | Jan 2005 | WO |
WO 2005051259 | Jun 2005 | WO |
WO 2005079674 | Sep 2005 | WO |
WO 2006017109 | Feb 2006 | WO |
WO 2008082444 | Jul 2008 | WO |
WO 2009067062 | May 2009 | WO |
WO 2010134873 | Nov 2010 | WO |
2011152368 | Dec 2011 | WO |
WO 2013009725 | Jan 2013 | WO |
WO 2014083570 | Jun 2014 | WO |
WO 2014195710 | Dec 2014 | WO |
WO 2015135351 | Sep 2015 | WO |
2016109420 | Jul 2016 | WO |
Entry |
---|
N/A, “Scar nose & Rinoplasty Surgery—New Gel+Demo: Nose Silicone Gel Sheet (beige)www.newgelplus.com”, www.youtube.com, 2012, pp. 1-3, Page Number. |
N/A, “Silagen Silicone Sheeting Strips Review|the skin spot”, www.youtube.com, 2017, pp. 1-3, Page Number. |
U.S. Appl. No. 12/207,984, filed Sep. 10, 2008, US-2009-0076542-A1, U.S. Pat. No. 9,655,622, May 23, 2017, Grant, Jonn, et al. |
U.S. Appl. No. 15/490,176, filed Apr. 18, 2017, US-2017-0216482, U.S. Pat. No. 10,434,211, Oct. 8, 2019, Grant, Jonn, et al. |
U.S. Appl. No. 15/964,538, filed Apr. 27, 2018, US-2018-0243467, U.S. Pat. No. 10,398,802, Sep. 3, 2019, Grant, Jonn, et al. |
U.S. Appl. No. 16/556,443, filed Aug. 30, 2019, US-2019-0381207, Publication, Jonn, et al. |
U.S. Appl. No. 10/779,721, filed Feb. 18, 2004, US-2005-0182443-A1, Abandoned. |
U.S. Appl. No. 16/556,471, filed Aug. 30, 2019, US-2019-0381206, Publication, Jonn, et al. |
U.S. Appl. No. 12/163,021, filed Jun. 27, 2008, US-2008-0255610-A1, U.S. Pat. No. 9,623,142, Apr. 18, 2017, Grant, Jonn, et al. |
U.S. Appl. No. 15/452,126 filed Mar. 7, 2017, US-2017-0173208, U.S. Pat. No. 10,398,800, Sep. 3, 2019, Grant, Jonn, et al. |
U.S. Appl. No. 10/887,884, filed Jul. 12, 2004, US-2006-0009099-A1, Abandoned. |
U.S. Appl. No. 14/864,033, filed Sep. 24, 2015, US-2016-0089145, Publication, Quintero, et al. |
U.S. Appl. No. 16/387,634, filed Apr. 18, 2019, US-2019-0240074, Publication, Quintero, et al. |
U.S. Appl. No. 29/635,782, filed Feb. 2, 2018, Filing, Quintero, et al. |
U.S. Appl. No. 29/503,320, filed Sep. 25, 2014, U.S. Pat. No. D. 824,525, Jul. 31, 2018, Grant, Quintero, et al. |
U.S. Appl. No. 29/648,487, filed May 22, 2018, U.S. Pat. No. D. 854,171, Jul. 16, 2019, Grant, Quintero, et al. |
U.S. Appl. No. 29/690,950, filed May 13, 2019, Filing, Quintero, et al. |
U.S. Appl. No. 15/675,159, filed Aug. 11, 2017, US-2018-0085260, U.S. Pat. No. 10,687,986, Jun. 23, 2020, Grant, Quintero, et al. |
U.S. Appl. No. 16/907,930, filed Jun. 22, 2020, US-2020-0315858, Publication, Quintero, et al. |
U.S. Appl. No. 29/613,662, filed Aug. 11, 2017, U.S. Pat. No. D. 848,624, May 14, 2019, Grant, Quintero, et al. |
U.S. Appl. No. 29/683,074, filed Mar. 11, 2019, U.S. Pat. No. D. 907,217, Jan. 5, 2021, Grant, Quintero, et al. |
U.S. Appl. No. 29/761,282, filed Dec. 8, 2020, Filing, Quintero, et al. |
U.S. Appl. No. 15/280,303, filed Sep. 29, 2016, US-2018-0085259, U.S. Pat. No. 10,470,934, Nov. 12, 2019, Grant, Quintero, et al. |
U.S. Appl. No. 16/598,249, filed Oct. 10, 2019, US-2020-0038253, Publication, Quintero, et al. |
U.S. Appl. No. 15/467,537, filed Mar. 23, 2017, US-2018-0271712, U.S. Pat. No. 10,470,935, Nov. 12, 2019, Grant, Quintero, et al. |
U.S. Appl. No. 17,143,883, filed Jan. 7, 2021, Filing, Quintero, et al. |
U.S. Appl. No. 15/490,389, filed Apr. 25, 2017, US-2018-0303967, Publication, Quintero, et al. |
U.S. Appl. No. 16/050,205, filed Jul. 31, 2018, US-2020-0038006, Publication, Quintero, et al. |
JP 7040744, 1995, English claims. |
JP 3059327, 1991, English claims. |
Japanese Office Action dated Feb. 19, 2019 for Design Appln. No. 2018-017274. |
Japanese Office Action dated Feb. 26, 2019 for Patent Appln. No. 515463. |
3M™ Steri-Strip Adhesive Closures Product Catalog Brochure, (2011) 4 pages. |
3M™ Steri-Strip Adhesive Closures Product Catalog Brochure, (2011) 8 pages. |
3M™ Steri-Strip Adhesive Closures Product Catalog Brochure, (2012) 12 pages. |
Allen, L.V. Jr et al Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 8th edition 2005 Lippincott Williams & Wilkins, Chapter 4, Dosage Form Design: Pharmaceutical and Formulation Considerations p. 131. |
Ashley et al.: Further studies involving wound closure with a rapidly polymerizing adhesive; Plastic and Reconstructive Surgery; Apr. 1963; vol. 31; pp. 333-343. |
Ashley et al.: Nonsutured closure of skin lacerations and nonsutured grafting of skin with a rapidly polymerizing adhesive; Qtrly Bull. Northwestern University (Evanston, III.) Medical School; 1962; vol. 36; pp. 189-194. |
Brombeg et al.: Nonsuture fixation of split-thickness skin grafts; Surgery, Jun. 1964; vol. 55; pp. 846-853. |
Cramer: Rapid Skin Grafting in Small Animals; Plastic and Reconstructive Surgery and the Transplantation Bull; Oct. 1962, vol. 30; pp. 149-150. |
Cramer et al.: Autograft rejection induced by homografting. A phenomenon intermediate between homograft rejection and autoimmunity; Plastic and Reconstructive Surgery; Jun. 1965; vol. 35; pp. 572-587. |
DeMaria, E. ‘New skin closure system facilitates wound healing after cardiovascular implantable electronic device surgery’ World Journal of Clinical Cases (2015) 3(8) pp. 675-677. |
Dermabond Prineo Skin Closure Systems (22 cm) Brochure (2014), 7 pages. |
Dermabond Prineo Skin Closure Systems (22 cm) Brochure (2015), 2 pages. |
Healthcare Packaging. Advanced Wound Care Products and packaging Needs. Jun. 5, 2017 (earliest online date), [site visited May 8, 2018]. Available from the Internet, URL:https://www.healthcarepackaging.com/article/applications/healthcare/advanced-wound-care-products-and-packaging-needs> (Year: 2017). |
Inou: Studies on the Surgical Use of Plastic Adhesive; Am. Journal of Proctology; 1962; vol. 13; pp. 219-226. |
Jesse et al.: Fixation of split-thickness skin grafts with adhesive; Plastic and Reconstructive Surgery; Mar. 1964; vol. 33; pp. 272-277. |
Kaplan: A technique of nonsuture wound closure with a plastic tissue adhesive; Plastic and Reconstructive Surgery; Feb. 1966; vol. 37(2); pp. 139-142. |
Keddie et al.: Intrafollicular tinea versicolor demonstrated on monomer plastic strips; Journal of Investigative Dermatology; Sep. 1963; vol. 41; pp. 103-106. |
Lazar, H.L. et al ‘Novel Adhesive Skin Closures Improve Wound Healing Following Saphenous Vein Harvesting’ J. Card Surg (2008) 23 pp. 152-155. |
Leukosan SkinLink Application Guide (2006) 1 page. |
Leukosan Skinlink. BSN Medical (2017) 1 page http://www.bsnmedical.com/products/wound%E2%80%90care%E2%80%90vascular/category%E2%80%90product%E2%80%90search/acute%E2%80%90wound%E2%80%90care/wound%E2%80%90closure/leukosanr%E2%80%90skinlink.html. |
Pam Marketing Nut. Yikes! The Social Medica Quick Fix Band-Aids are Falling Off! Jul. 2012 [earliest online date], [site visited May 8, 2018]. Available from Internet, ,URL:http://www.pammarketingnut.com/2012/07/yikes-the-social-media-quick-fix-band-aids-are-falling-off/> (Year: 2012). |
Parrish et al.: Synthetic resin adhesive for placement of skin grafts; American Surgeon; Nov. 1964; vol. 30; pp. 753-755. |
Raekallio et al.: Acute reaction to arterial adhesive in healing skin wounds; Journal of Surgical Research; Mar. 1964; vol. 4; pp. 124-127. |
Stone: Nonsuture closure of cutaneous lacerations, skin grafting and bowel anastomosis; American Surgeon; Mar. 1964; vol. 30; pp. 177-181. |
TissuGlu Surgical Adhesive Patient Information Brochure. Cohera Medical, Inc. (2014) 6 pages. |
TissuGlu FDA Summary of Safety and Effectiveness Data. Feb. 3, 2014 40 pages. |
Topaz, M. et al ‘The TopClosure 3S System, for skin stretching and a secure wound closure’ Eur J Plast Surg (2012) 35 pp. 533-543. |
TopClosure 3S System—Skin Stretching and Secure Wound Closure System Product Information Sheet (2010) 15 pages. |
Wang et al ‘Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers’ Organogenesis (2010) 6:4, pp. 212-216. |
Wolfe et al.: The application of hydrostatic pressure to the burn injury, an experimental study: Journal of Trauma: Injury Infections & critical Care; May 1962; vol. 2; pp. 262-272. |
ZipLine medical Zip Surgical Skin Closure Brochure (2013) 4 pages. |
Corrected International Search Report International Application No. PCT/US2005/004948 dated Jun. 22, 2005. |
Extended European Search Report re: 14166813.7 dated Jul. 7, 2014. |
International Preliminary Report on Patentability for International Application No. PCT/US2005/024042 dated Jan. 16, 2007. |
International Search Report for International Application No. PCT/US2005/024042 dated May 12, 2006. |
International Search Report for International Application No. PCT/US2005/004948 dated Jun. 9, 2009. |
International Search Report re: PCT/US2015/051919 dated Apr. 14, 2016. |
International Search Report re: PCT/US2017/052394 dated Nov. 21, 2017. |
International Search Report re: PCT/US2017/052383 dated Dec. 6, 2017. |
International Search Report re PCT/US2018/022842 dated Jun. 20, 2018. |
International Search Report re PCT/US2018/022834 dated Jun. 22, 2018. |
International Search Report re PCT/US2018/027790 dated Jun. 26, 2018. |
Supplementary European Search Report for Application No. EP05769387 dated Jul. 9, 2009. |
Supplementary European Search Report for Application No. EP05723162 dated Nov. 5, 2009. |
Supplementary European Search Report for Application No. EP14166813 dated Jun. 30, 2014. |
Written Opinion re: PCT/US2015/051919 dated Apr. 14, 2016. |
Written Opinion re: PCT/US2017/052394 dated Nov. 21, 2017. |
Written Opinion re: PCT/US2017/052383 dated Dec. 6, 2017. |
Written Opinion re: PCT/US2018/022842 dated Jun. 20, 2018. |
Written Opinion re: PCT/US2018/027790 dated Jun. 26, 2018. |
Written Opinion re PCT/US2018/022834 dated Jun. 22, 2018. |
Communication received from the USPTO for co-pending U.S. Appl. No. 10/887,884 dated Aug. 11, 2006. |
Communication received from USPTO for co-pending U.S. Appl. No. 10/779,721 dated Mar. 28, 2007. |
Communication received from USPTO for co-pending U.S. Appl. No. 10/779,721 dated Apr. 16, 2007. |
Communication received from the USPTO for co-pending U.S. Appl. No. 10/887,884 dated Mar. 6, 2008. |
Communication received from the USPTO for co-pending U.S. Appl. No. 10/887,884 dated Dec. 12, 2008. |
Communication received from the USPTO for co-pending U.S. Appl. No. 12/207,984 dated May 11, 2011. |
Communication received from the USPTO for co-pending U.S. Appl. No. 12/163,021 dated May 13, 2011. |
Communication received from the USPTO for co-pending U.S. Appl. No. 12/163,021 dated Feb. 2, 2012. |
Communication received from the USPTO for co-pending U.S. Appl. No. 12/163,021 dated Jun. 22, 2012. |
Communication received from the USPTO for co-pending U.S. Appl. No. 12/207,984 dated Jun. 28, 2012. |
Communication received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Jun. 22, 2012. |
In re the U.S. Appl. No. 12/163,021 the Non-Final rejection dated Aug. 14, 2013. |
In re the U.S. Appl. No. 12/163,021 the Final rejection dated Jan. 3, 2014. |
In re the U.S. Appl. No. 12/207,984 the Non-Final rejection dated Aug. 22, 2013. |
In re the U.S. Appl. No. 12/207,984 the Final rejection dated Dec. 4, 2013. |
Office action received from USPTO for co-pending U.S. Appl. No. 10/887,884 dated Apr. 25, 2006. |
Office action received from USPTO for co-pending U.S. Appl. No. 10/779,721 dated Aug. 21, 2006. |
Office action received from USPTO for co-pending U.S. Appl. No. 10/887,884 dated Oct. 12, 2006. |
Office action received from USPTO for co-pending U.S. Appl. No. 10/779,721 dated Jan. 9, 2007. |
Office Communication received from USPTO for co-pending U.S. Appl. No. 10/887,884 dated Jan. 22, 2007. |
Office Action received from USPTO for co-pending U.S. Appl. No. 10/887,884 dated Feb. 1, 2007. |
Office Action received from the USPTO for co-pending U.S. Appl. No. 12/163,021. |
Office action received from USPTO for co-pending U.S. Appl. No. 10/779,721 dated Jul. 27, 2007. |
Office Action received from USPTO for co-pending U.S. Appl. No. 10/887,884 dated Oct. 16, 2007. |
Office Action received from USPTO for co-pending U.S. Appl. No. 10/887,884 dated Mar. 6, 2008. |
Office action received from USPTO for co-pending U.S. Appl. No. 10/779,721 dated May 19, 2008. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Jan. 9, 2010. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Sep. 1, 2010. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Sep. 1, 2010. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Dec. 9, 2010. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Dec. 9, 2010. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated May 13, 2011. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Jul. 18, 2011. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Aug. 1, 2011. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Jan. 10, 2012. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Jan. 17, 2012. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Apr. 26, 2012. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated May 1, 2012. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Sep. 17, 2012. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Sep. 25, 2012. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Aug. 14, 2013. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Aug. 22, 2013. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/207,984 dated Dec. 4, 2013. |
Office action received from USPTO for co-pending U.S. Appl. No. 12/163,021 dated Jan. 3, 2014. |
Office action received from USPTO for U.S. Appl. No. 15/964,538 dated Oct. 25, 2018. |
Office action received from USPTO for U.S. Appl. No. 15/964,538 dated Dec. 27, 2018. |
Office action received from USPTO for U.S. Appl. No. 15/490,176 dated Feb. 4, 2019. |
Office action received from USPTO for U.S. Appl. No. 15/452,126 dated Nov. 16, 2018. |
Office action received from USPTO for U.S. Appl. No. 14/864,033 dated Nov. 26, 2018. |
Office action received from USPTO for U.S. Appl. No. 15/467,239 dated Feb. 28, 2019. |
Office action received from USPTO for U.S. Appl. No. 15/278,376 dated Sep. 11, 2018. |
Office action received from USPTO for U.S. Appl. No. 15/278,376 dated Feb. 21, 2019. |
Office action received from USPTO for U.S. Appl. No. 15/675,159 dated May 14, 2019. |
U.S. Appl. No. 09/430,177, filed Oct. 29, 1999. |
U.S. Appl. No. 09/430,289, filed Oct. 29, 1999. |
U.S. Appl. No. 09/430,180, filed Oct. 29, 1999. |
U.S. Appl. No. 09/385,030, filed Aug. 30, 1999. |
U.S. Appl. No. 09/176,889, filed Oct. 22, 1998. |
U.S. Appl. No. 09/919,877, filed Aug. 2, 2001. |
U.S. Appl. No. 10/779,721, filed Feb. 18, 2004. |
Number | Date | Country | |
---|---|---|---|
20210212676 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16050205 | Jul 2018 | US |
Child | 17219314 | US |