The disclosure pertains to systems and methods for transdermal drug delivery, including microneedle arrays and, in particular, to systems and methods for promoting, enhancing, dampening, suppressing, desensitizing, or otherwise modifying an immune response of a subject.
The immune system protects the body of a subject from possibly harmful substances by recognizing and responding to antigens. The body's response to antigens can be used to treat or affect various health conditions or diseases by provoking a desired immune response in the subject. However, in some cases, overactive or non-specific immune responses can result in pathology or disease. Precise control of the nature of the provoked immune response is difficult and, as a result, conventional methods suffer various shortcomings. As such, there remains a need for improved methods for promoting, enhancing, dampening, suppressing, desensitizing, or otherwise modifying an immune response in a subject.
In some embodiments, methods for reducing or desensitizing an immune response of a subject in need thereof are provided. The methods can include administering one or more sub-immunogenic doses of an allergen to a specific cutaneous microenvironment of the subject, and thereby reducing or desensitizing the immune response of the subject. In some embodiments, the one or more sub-immunogenic doses of the allergen can be contained in microneedle arrays.
In other embodiments methods can include administering one or more sub-immunogenic or non-immunogenic doses of an allergen and one or more immunoregulatory molecule to a specific cutaneous microenvironment of the subject, and thereby reducing or desensitizing the immune response of the subject. In some embodiments, the one or more sub-immunogenic or non-immunogenic doses of the allergen and adjuvant(s) can be contained in microneedle arrays.
In other embodiments, methods for promoting a pro-inflammatory and an adaptive immune response to provide a positive immunization against tumors and infectious diseases to a subject in need thereof are provide. The methods can include administering an antigen and at least one adjuvant in a cutaneous microenvironment of the subject, thereby promoting the pro-inflammatory and adaptive immune response in the subject. In some embodiments, the antigen and at least adjuvant administration can be achieved using microneedle arrays that contain the antigen and the at least one adjuvant therein.
In other embodiments, methods for promoting an immune response to a subject in need thereof are provide that include administering an antigen and at least one adjuvant in a cutaneous microenvironment of the subject, thereby promoting the immune response in the subject.
In other embodiments, a method for promoting an immune response to a subject in need thereof can include administering an antigen and at least two adjuvants in a cutaneous microenvironment of the subject, thereby promoting the immune response in the subject.
The systems and methods disclosed herein include cutaneous delivery platforms based on dissolvable microneedle arrays that can provide efficient, precise, and reproducible delivery of biologically active molecules to human skin. The microneedle array delivery platforms can be used to deliver a broad range of bioactive components to a patient. In still other embodiments, specific implementations of the methods and systems disclosed herein are achieved using microneedle arrays to deliver cargo to the desired cutaneous microenvironment of the subject.
The foregoing and other objects, features, and advantages of the disclosed embodiments will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The following description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the disclosed embodiments in any way. Various changes to the described embodiment may be made in the function and arrangement of the elements described herein without departing from the scope of the disclosure.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” As used herein, the terms “biologic,” “active component,” “bioactive component,” “bioactive material,” or “cargo” refer to pharmaceutically active agents, such as analgesic agents, anesthetic agents, anti-asthmatic agents, antibiotics, anti-depressant agents, anti-diabetic agents, anti-fungal agents, anti-hypertensive agents, anti-inflammatory agents, anti-neoplastic agents, anxiolytic agents, enzymatically active agents, nucleic acid constructs, immunostimulating agents, immunosuppressive agents, vaccines, and the like. The bioactive material can comprise dissoluble materials, insoluble but dispersible materials, natural or formulated macro, micro and nano particulates, and/or mixtures of two or more of dissoluble, dispersible insoluble materials and natural and/or formulated macro, micro and nano particulates. As used herein, the terms “controlled release” or “controlled release profile” refer to the characteristics of the release of the bioactive agent from another material (such as a composition containing the bioactive agent and a biocompatible polymer). Controlled release encompasses delayed, sustained or prolonged release, and other pre-determined release mechanisms. Use of the materials described herein allows a controlled release of the bioactive agent after delivery of the microneedle or microneedle array to the subject. The selection of the desired release profile depends on considerations known to those skilled in the art, such as the disease or indication to be treated, the treatment regimen, the patient to be treated, the route of administration and/or the site of administration, etc. In some embodiments, controlled release is achieved by combining the bioactive agent with a polymer in some manner, such as complexing the bioactive component with the polymer, encapsulating the bioactive component, or otherwise integrating the two components to provide for a change in release activity from that of the bioactive component itself.
As used herein, the terms “complexed” or “integrated” with means the bioactive component is interconnected with, intermingled with, deposited with, dispersed within, and/or bonded to another material. As used herein, the term “encapsulated” means that the bioactive component is dissolved or dispersed in another material such as a polymer.
As used herein, the term “conjugate” means two or more moieties directly or indirectly coupled together. For example, a first moiety may be covalently or noncovalently (e.g., electrostatically) coupled to a second moiety. Indirect attachment is possible, such as by using a “linker” (a molecule or group of atoms positioned between two moieties).
As used herein, the term “pre-formed” means that a structure or element is made, constructed, and/or formed into a particular shape or configuration prior to use. Accordingly, the shape or configuration of a pre-formed microneedle array is the shape or configuration of that microneedle array prior to insertion of one or more of the microneedles of the microneedle array into the patient.
As used herein, the term “sub-immunogenic” means conditions which avoid activation of antigen presenting cells. As used herein, the term “antigen” means any immunogenic moiety or agent, generally a macromolecule, that elicits an immunological response in an individual. As used herein, the term “allergen” means any substance that causes an enhanced cell response (e.g., an allergic or asthmatic response) in a susceptible subject. Allergens are commonly proteins, or chemicals bound to proteins, that have the property of being allergenic; however, allergens can also include organic or inorganic materials derived from a variety of man-made or natural sources such as plant materials, metals, ingredients in cosmetics or detergents, latexes, or the like. The term “allergy” refers to acquired hypersensitivity to a substance (allergen). An “allergic reaction” is the response of an immune system to an allergen in a subject allergic to the allergen. Allergic conditions include eczema, allergic rhinitis or coryza, hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions. As used herein, “subject” means a mammal, including but not limited to humans, dogs, cats, and rodents.
Although the operations of exemplary embodiments of the disclosed method may be described in a particular, sequential order for convenient presentation, it should be understood that disclosed embodiments can encompass an order of operations other than the particular, sequential order disclosed. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Further, descriptions and disclosures provided in association with one particular embodiment are not limited to that embodiment, and may be applied to any embodiment disclosed.
Moreover, for the sake of simplicity, the attached figures may not show the various ways (readily discernable, based on this disclosure, by one of ordinary skill in the art) in which the disclosed system, method, and apparatus can be used in combination with other systems, methods, and apparatuses. Additionally, the description sometimes uses terms such as “produce” and “provide” to describe the disclosed method. These terms are high-level abstractions of the actual operations that can be performed. The actual operations that correspond to these terms can vary depending on the particular implementation and are, based on this disclosure, readily discernible by one of ordinary skill in the art.
Tip-Loaded Microneedle Arrays
Dissolvable microneedle arrays enable efficient and safe drug and vaccine delivery to the skin and mucosal surfaces. However, inefficient drug delivery can result from the homogenous nature of conventional microneedle array fabrication. Although the drugs or other cargo that is to be delivered to the patient are generally incorporated into the entire microneedle array matrix, in practice only the microneedles enter the skin and therefore, only cargo contained in the volume of the individual needles is deliverable. Accordingly, the vast majority of the drugs or other cargo that is localized in the non-needle components (e.g., the supporting structure of the array) is never delivered to the patient and is generally discarded as waste.
The systems and methods described herein provide novel microneedle array fabrication technology that utilizes a fully-dissolvable microneedle array substrate and unique microneedle geometries that enable effective delivery of a broad range of active components, including a broad range of protein and/or small molecule medicines and vaccines.
As described in more detail herein, in some embodiments, this technology can also uniquely enable the simultaneous co-delivery of multiple chemically distinct agents for polyfunctional drug delivery. Examples of the utility of these devices include, for example, (1) simultaneous delivery of multiple antigens and adjuvants to generate a polyvalent immune response relevant to infectious disease prevention and cancer therapy, (2) co-delivery of chemotherapeutic agents, immune stimulators, adjuvants, and antigens to enable simultaneous adjunct tumor therapies, and (3) localized skin delivery of multiple therapeutic agents without systemic exposure for the treatment of a wide variety of skin diseases.
In some embodiments, the systems and method disclosed herein relate to a novel fabrication technology that enables various active components to be incorporated into the needle tips. Thus, by localizing the active components in this manner, the remainder of the microneedle array volume can be prepared using less expensive matrix material that is non-active and generally regarded as safe. The net result is greatly improved efficiency of drug delivery based on (1) reduced waste of non-deliverable active components incorporated into the non-needle portions of the microneedle array, and (2) higher drug concentration in the skin penetrating needle tips. This technological advance results in dramatically improved economic feasibility proportional to the cost of drug cargo, and increased effective cargo delivery capacity per needle of these novel microneedle arrays.
As noted above, in some embodiments, individual microneedles can comprise active components only in the upper half of the microneedle. In other embodiments, individual microneedles can comprise active components only in the tips or in a narrowing portion near the tip of the microneedle. In still other embodiments, individual needles can comprise active components throughout the entire microneedle portion that extends from the supporting structure.
The following embodiments describe various exemplary methods for fabricating microneedle arrays with one or more active component concentrated in the upper halves and/or tips of microneedles in respective microneedle arrays.
Microneedle Arrays Fabricated by Sequential Micro-Molding and Spin-Drying Methods
The following steps describe an exemplary method of fabricating microneedle arrays using sequential micro-molding and spin-drying. Active components/cargo can be prepared at a desired useful concentration in a compatible solvent. As described herein, the solvents of the active component(s) can be cargo specific and can comprise a broad range of liquids, including for example, water, organic polar, and/or apolar liquids. Examples of active components are discussed in more detail below and various information about those active components, including tested and maximum loading capacity of various microneedle arrays are also discussed in more detail below.
If desired, multiple loading cycles can be performed to achieve higher active cargo loads as necessary for specific applications. In addition, multiple active cargos can be loaded in a single loading cycle as a complex solution, or as single solutions in multiple cycles (e.g., repeating the loading cycle described below) as per specific cargo-compatibility requirements of individual cargos. Also, particulate cargos (including those with nano- and micro-sized geometries) can be prepared as suspensions at the desired particle number/volume density.
a) As described in more detail below in the micromilling embodiments, an active cargo's working stock solution/suspension can be applied to the surface of microneedle array production molds at, for example, about 40 μl per cm2 surface area.
b) The microneedle array production molds with active cargo(s) can be centrifuged at 4500 rpm for 10 minutes to fill the microneedle array production molds needles with the working cargo stock.
c) The excess cargo solution/suspension can be removed and the surface of the microneedle array production molds, washed with 100 μl phosphate buffer saline (PBS) per cm2 mold-surface area, or with the solvent used for the preparation of the active cargo's working stock.
d) The microneedle array production molds containing the active cargo stock solution/suspension in the needle's cavity can be spin-dried at 3500 rpm for 30 minutes at the required temperature with continues purging gas flow through the centrifuge at 0-50 L/min to facilitate concentration of the drying active cargo(s) in the needle-tips. The purging gas can be introduced into the centrifuge chamber through tubular inlets. Moisture content can be reduced using a dehumidifier tempered to the required temperature with recirculation into the centrifuge chamber. The purging gas can be air, nitrogen, carbon dioxide or another inert or active gas as required for specific cargo(s). The flow rate is measured by flow-meters and controlled by a circulating pump device.
e) 100 μl 20% CMC90 hydrogel in H2O can be added to the surface microneedle array production molds' per cm2 microneedle array production molds-area to load the structural component of the microneedle array device.
f) The microneedle array production molds can be centrifuged at 4500 rpm for 10 min at the required temperature without purging gas exchange in the centrifuge chamber to fill up the microneedle array production molds needle cavities with the CMC90 hydrogel. This can be followed by a 30 min incubation period to enable rehydration of the active cargo(s) previously deposited in the microneedle array tips.
g) The microneedle array production molds can centrifuged at 3500 rpm for 3 hours or longer at the required temperature with 0-50 L/min constant purging gas flow through the centrifuge chamber to spin-dry the MNA devices to less than 5% moisture content.
h) The dried microneedle array devices can then be separated from the microneedle array production molds for storage under the desired conditions. In some embodiments, CMC90 based devices can be storable between about 50° C. to −86° C.
Examples of fabricated tip-loaded active cargo carrying microneedle arrays can be seen in
Micromilled Master Molds and Spin-Molded Microneedle Arrays
In the following embodiments, micromilling steps are preformed to create microneedle arrays of various specifications. It should be understood, however, that the following embodiments describe certain details of microneedle array fabrication that can be applicable to processes of microneedle array fabrication that do not involve micromilling steps, including the process described above in the previous example.
In the following embodiments, apparatuses and methods are described for fabricating dissolvable microneedle arrays using master molds formed by micromilling techniques. For example, microneedle arrays can be fabricated based on a mastermold (positive) to production mold (negative) to array (positive) methodology. Micromilling technology can be used to generate various micro-scale geometries on virtually any type of material, including metal, polymer, and ceramic parts. Micromilled mastermolds of various shapes and configurations can be effectively used to generate multiple identical female production molds. The female production molds can then be used to microcast various microneedle arrays.
Mastermolds can be micromilled from various materials, including, for example, Cirlex® (DuPont, Kapton® polyimide), which is the mastermold material described in the exemplary embodiment. Mastermolds can be used to fabricate flexible production molds from a suitable material, such as SYLGARD® 184 (Dow Corning), which is the production material described in the exemplary embodiment below. The mastermold is desirably formed of a material that is capable of being reused so that a single mastermold can be repeatedly used to fabricate a large number of production molds. Similarly each production mold is desirably able to fabricate multiple microneedle arrays.
Mastermolds can be created relatively quickly using micromilling technology. For example, a mastermold that comprises a 10 mm×10 mm array with 100 microneedles can take less than a couple of hours and, in some embodiments, less than about 30 minutes to micromill. Thus, a short ramp-up time enables rapid fabrication of different geometries, which permits the rapid development of microneedle arrays and also facilitates the experimentation and study of various microneedle parameters.
The mastermold material preferably is able to be cleanly separated from the production mold material and preferably is able to withstand any heighted curing temperatures that may be necessary to cure the production mold material. For example, in an illustrated embodiment, the silicone-based compound SYLGARD® 184 (Dow Corning) is the production mold material and that material generally requires a curing temperature of about 80-90 degrees Celsius.
Mastermolds can be created in various sizes. For example, in an exemplary embodiment, a mastermold was created on 1.8 mm thick Cirlex® (DuPont, Kapton® polyimide) and 5.0 mm thick acrylic sheets. Each sheet can be flattened first by micromilling tools, and the location where the microneedles are to be created can be raised from the rest of the surface. Micro-tools can be used in conjunction with a numerically controlled micromilling machine (
As discussed above, the production molds can be made from SYLGARD® 184 (Dow Corning), which is a two component clear curable silicone elastomer that can be mixed at a 10:1 SYLGARD® to curing agent ratio. The mixture can be degassed for about 10 minutes and poured over the mastermold to form an approximately 8 mm layer, subsequently degassed again for about 30 minutes and cured at 85° C. for 45 minutes. After cooling down to room temperature, the mastermold can be separated from the cured silicone, and the silicone production mold trimmed to the edge of the circular wall section that surrounds the array (
To construct the microneedle arrays, a base material can be used to form portions of each microneedle that have bioactive components and portions that do not. As discussed above, each microneedle can comprise bioactive components only in the microneedles, or in some embodiments, only in the upper half of the microneedles, or in other embodiments, only in a portion of the microneedle that tapers near the tip. Thus, to control the delivery of the bioactive component(s) and to control the cost of the microneedle arrays, each microneedle preferably has a portion with a bioactive component and a portion without a bioactive component. In the embodiments described herein, the portion without the bioactive component includes the supporting structure of the microneedle array and, in some embodiments, a base portion (e.g., a lower half) of each microneedle in the array.
Various materials can be used as the base material for the microneedle arrays. The structural substrates of biodegradable solid microneedles most commonly include poly(lactic-co-glycolic acid) (PLGA) or carboxymethylcellulose (CMC) based formulations; however, other bases can be used.
CMC is generally preferable to PLGA as the base material of the microneedle arrays described herein. The PLGA based devices can limit drug delivery and vaccine applications due to the relatively high temperature (e.g., 135 degrees Celsius or higher) and vacuum required for fabrication. In contrast, a CMC-based matrix can be formed at room temperature in a simple spin-casting and drying process, making CMC-microneedle arrays more desirable for incorporation of sensitive biologics, peptides, proteins, nucleic acids, and other various bioactive components.
CMC-hydrogel can be prepared from low viscosity sodium salt of CMC with or without active components (as described below) in sterile dH2O. In the exemplary embodiment, CMC can be mixed with sterile distilled water (dH2O) and with the active components to achieve about 25 wt % CMC concentration. The resulting mixture can be stirred to homogeneity and equilibrated at about 4 degrees Celsius for 24 hours. During this period, the CMC and any other components can be hydrated and a hydrogel can be formed. The hydrogel can be degassed in a vacuum for about an hour and centrifuged at about 20,000 g for an hour to remove residual micro-sized air bubbles that might interfere with a spincasting/drying process of the CMC-microneedle arrays. The dry matter content of the hydrogel can be tested by drying a fraction (10 g) of it at 85 degrees Celsius for about 72 hours. The ready-to-use CMC-hydrogel is desirably stored at about 4 degrees Celsius until use.
Active components can be incorporated in a hydrogel of CMC at a relatively high (20-30%) CMC-dry biologics weight ratio before the spin-casting process. Arrays can be spin-cast at room temperature, making the process compatible with the functional stability of a structurally broad range of bioactive components. Since the master and production molds can be reusable for a large number of fabrication cycles, the fabrication costs can be greatly reduced. The resulting dehydrated CMC-microneedle arrays are generally stable at room temperature or slightly lower temperatures (such as about 4 degrees Celsius), and preserve the activity of the incorporated biologics, facilitating easy, low cost storage and distribution.
In an exemplary embodiment, the surface of the production molds can be covered with about 50 μl (for molds with 11 mm diameter) of CMC-hydrogel and spin-casted by centrifugation at 2,500 g for about 5 minutes. After the initial CMC-hydrogel layer, another 50 μl CMC-hydrogel can be layered over the mold and centrifuged for about 4 hours at 2,500 g. At the end of a drying process, the CMC-microneedle arrays can be separated from the molds, trimmed off from excess material at the edges, collected and stored at about 4 degrees Celsius. The production molds can be cleaned and reused for further casting of microneedle arrays.
In some embodiments, CMC-solids can be formed with layers that do not contain active components and layers that contain active components.
CMC-solids can be prepared with defined geometry and active cargo contents in one or more layers of the prepared structure. Examples of active cargos integrated into CMC-solids are described more detail herein. Upon construction of the CMC-solids with embedded active cargo contained in at least one layer of the CMC-solid, the CMC solids can be milled to project-specific dimensions and micro-milled to fabricate microneedle devices as described herein.
In another embodiment, one or more layers of active cargo can be embedded on CMC-solids for direct micromilling of the microneedle array.
In one exemplary method, microneedle arrays can be fabricated by preparing CMC-solids with a defined geometries and without any active cargo contained therein. Then, blank CMC-solids can be milled to a desired dimension.
As shown in
The methods active cargo deposition onto the CMC-solid blank can include, for example:
Thus, a method of vertically layered deposition of active cargos in microneedles is provided by depositing one or more active cargos sequentially on the surface of the CMC-solids in contact with each other or separated by layers of CMC. In some embodiments, horizontal pattern deposition of the active cargos can result in spatial separation of the cargos. By combining vertical and horizontal patterning of active cargo deposition, 3 dimensional delivery and distribution of each of the defined active components can be achieved, further reducing waste of active components during fabrication of microneedle arrays.
Microneedle Integrated Adenovectors
The following embodiments are directed to dissolvable microneedle arrays, such as those described herein, that incorporate infectious viral vectors into the dissolvable matrix of microneedle arrays. Using this technology, for the first time, living viral vectors can be incorporated into microneedle arrays. As described herein, the incorporation of viral vectors within the disclosed microneedle arrays stabilizes the viral vectors so that they maintain their infectivity after incorporation and after prolonged periods of storage. The application of microneedle array incorporated adenovectors (MIAs) to the skin results in transfection of skin cells. In a vaccine setting, we have demonstrated that skin application of MIAs encoding an HIV antigen results in potent HIV specific immune responses. These results are described in detail in the examples below.
The microneedle integrated adenovectors preparation method described herein preserves the viability of the adenoviral particles during the preparation and in dry storage. These steps were specifically designed based on the physical and chemical properties of CMC microneedle arrays. Viral viability in CMC microneedle arrays was achieved by
1) Resuspend adenoviral particles at 2×109 particles/ml density in Trehalose-storage buffer (5% trehalose Sigma-Aldrich USA, 20 mM Tris pH7.8, 75 mM NaCl, 2 mM MgCl2, 0.025% Tween 80)
We have evaluated the potency and stability MNA incorporated recombinant adenoviral particles. Ad5.EGFP was incorporated into CMC hydrogel MNAs to fabricate a final product that contained 1010 virus particles/MNA. Control blank MNAs were prepared identically but without the virus. Batches of Ad5.EGFP and control MNAs were stored at RT, 4° C. and at −86° C. and viral stability was evaluated in infectious assays. Specific transduction activity of the MNA incorporated Ad5.EGFP virus was assessed in vitro using 293T cells. Cells were plated at 2×106/well in six well plates and transduced in duplicate with diluted virus suspension, suspension+empty MNA (control), or Ad5.EGFP MNAs stored at RT, 4° C. and −86° C. for the indicated time periods. As a negative control untransduced wells were included. Initially cell populations were analyzed after 24 h by flow cytometry for GFP expression (representative histogram is shown in
As shown in
It has been found that the infection efficiency using MNA Ad5.EGFP virus was 87.92±4.5%, which is similar to that observed for traditional −86° C. preserved Ad5.EGFP suspension (
These results demonstrate that microneedle array delivered Ad transgenes are expressed in the skin and induce potent cellular immune responses. To specifically evaluate gene expression in vivo, we determined GFP expression in skin following either traditional intradermal injection (I.D.) or microneedle array-mediated intracutaneous delivery. We delivered 108 Ad5.GFP viral particles by ID injection or topically via a single microneedle array application (
The microneedle array technology disclosed herein can also facilitate clinical gene therapy. It addresses, for example, at least two major limitations of conventional approaches. First, it enables stabilization and storage of recombinant viral vectors for prolonged periods of time. By rendering live virus vectors resistant to high and low temperatures with proven seroequivalence to frozen liquid formulations, microneedle array stabilization will relieve pressures related to the ‘cold chain.’ Further, integration in microneedle arrays enables precise, consistent and reproducible dosing of viral vectors not achievable by conventional methods. Finally, the viral vector is repackaged in the only necessary delivery device, the biocompatible and completely disposable microneedle array that directs delivery precisely to the superficial layers of the skin.
Such a gene delivery platform is useful in providing patient-friendly, clinical gene therapy. Since these microneedle arrays have been engineered to not penetrate to the depth of vascular or neural structures, gene delivery to human skin will be both painless and bloodless. In addition, the fabrication process is flexible, enabling simple and rapid low cost production with efficient scale-up potential. Also, as a final product, the MIA device it is stable at room temperature and is inexpensive to transport and store. In combination, these structural and manufacturing advantages can enable broad and rapid clinical deployment, making this gene delivery technology readily applicable to the prevention and/or treatment of a broad range of human diseases. Moreover, this approach can be extended to other vector-based vaccine platforms that are currently restricted by the same limitations (e.g., vaccinia virus, AAV etc.). For at least these reasons, the disclosed microneedle arrays and methods of using the same significantly advance the recombinant gene therapy field.
Microneedle Arrays—Exemplary Active Components
Various active components are described in detail below. For convenience, the following examples are based on an microneedle array which is 6.3×6.3 mm. This size, and hence cargo delivery can be varied by increasing or decreasing 2-100 fold.
General considerations for the maximum active cargo quantities include, for example, total needle volume in the array and solubility of the active component(s) in the solvent (generally expected to be <50%).
Vaccinia virus (immunization)
Recombinant vaccinia virus (gene therapy, genetic engineering)
Seasonal influenza
MMR (Measles, Mumps, Rubella)
Nano Scale Particles
PLG/PLA Based
Tip-loading of live adenoviruses generally includes the following modifications:
a) The presence of 5% trehalose and 2.5% CMC90 in the tip-loading hydrogel suspension.
b) The temperature of the process is maintained at 22° C.
In addition, Lenti viral vectors generally require 4° C. processing and vapor trap based humidity controls. Also, short epitope peptides generally are solubilized in DMSO, with the evaporation time of the solvent during tip-loading is 4 hours.
Microneedle Structures and Shapes
For each of the embodiments below, it should be understood that one or more layers of active components can be provided in the microneedles of the microneedle arrays as described above. Thus, for example, in some embodiments, active components are only provided in the area of the microneedle—not in the structural support of the array, such as shown in
While the volume of the pyramidal microneedles can be greater than that of the pillar type microneedles, their increasing cross-sectional profile (dimension) requires an increasing insertion force. Accordingly, the geometry of the pyramidal microneedles can result in reduced insertion depths and a reduced effective delivery volume. On the other hand, the smaller cross-sectional area and larger aspect ratio of the pillar microneedles may cause the failure force limit to be lower. The smaller the apex angle α, the “sharper” the tip of the microneedle. However, by making the apex angle too small (e.g., below about 30 degrees), the resulting microneedle volume and mechanical strength may be reduced to an undesirable level.
The penetration force of a microneedle is inversely proportional to the microneedle sharpness, which is characterized not only by the included (apex) angle of the microneedles, but also by the radius of the microneedle tip. While the apex angle is prescribed by the mastermold geometry, the tip sharpness also depends on the reliability of the mold. Micromilling of mastermolds as described herein allows for increased accuracy in mold geometry which, in turn, results in an increased accuracy and reliability in the resulting production mold and the microneedle array formed by the production mold.
The increased accuracy of micromilling permits more accurate and detailed elements to be included in the mold design. For example, as discussed in the next section below, the formation of a fillet at the base of a pillar type microneedle can significantly increase the structural integrity of the microneedle, which reduces the likelihood that the microneedle will fail or break when it impacts the skin. While these fillets can significantly increase the strength of the microneedles, they do not interfere with the functional requirements of the microneedles (e.g., penetration depth and biologics volume). Such fillets are very small features that can be difficult to create in a master mold formed by conventional techniques. However, the micromilling techniques described above permit the inclusion of such small features with little or no difficulty.
Mechanical Integrity and Penetration Capabilities
Microneedle arrays are preferably configured to penetrate the stratum corneum to deliver their cargo (e.g., biologics or bioactive components) to the epidermis and/or dermis, while minimizing pain and bleeding by preventing penetration to deeper layers that may contain nerve endings and vessels. To assess the mechanical viability of the fabricated microneedle arrays, tests were performed on the pyramidal and pillar type microneedle arrays as representative variants of array geometry (shown, e.g., in
The pyramidal microneedles presented a continuously increasing force signature with no clear indication of point of failure. To identify the failure limit for the pyramidal microneedles, interrupted tests were conducted in which the microneedles were advanced into the artifact by a certain amount, and retreated and examined through optical microscope images. This process was continued until failure was observed. For this purpose, the failure was defined as the bending of the pyramidal microneedles beyond 15 degrees.
To further analyze the failure of the microneedles, the finite-elements model (FEM) of the microneedle arrays shown in
Using this data, a series of FEM simulations were conducted. It was predicted from the FEM models that failure limit of pyramidal and sharp-pillar (width=134 μm) microneedles with 600 μm height, 30 degree apex angle, and 20 μm fillet radius were 400 mN (pyramid) and 290 mN (sharp-pillar) for asymmetric loading (5 degrees loading misorientation). Considering that the minimum piercing force requirement is about 40 mN, pyramid and sharp-pillar microneedles would have factors of safety of about 10 and 7.25, respectively.
When the fillet radius is doubled to 40 μm, the failure load for the pillar was increased to 350 mN, and when the fillet radius is reduced to 5 μm, the failure load was reduced to 160 mN, which is close to the experimentally determined failure load. The height and width of the pillars had a significant effect on failure load. For instance, for 100 μm width pillars, increasing the height from 500 μm to 1000 μm reduced the failure load from 230 mN to 150 mN. When the width is reduced to 75 μm, for a 750 μm high pillar, the failure load was seen to be 87 mN.
To evaluate penetration capability, pyramidal and sharp-pillar microneedle arrays were tested for piercing on water-based model elastic substrates and on full thickness human skin.
The model elastic substrate comprised about 10% CMC and about 10% porcine gelatin in PBS gelled at about 4 degrees Celsius for about 24 hours or longer. The surface of the elastics was covered with about 100 μm thick parafilm to prevent the immediate contact of the needle-tips and the patch materials with the water based model elastics. To enable stereo microscopic-imaging, trypan blue tracer dye (Sigma Chem., cat #T6146) was incorporated into the CMC-hydrogel at 0.1% concentration. The patches were applied using a spring-loaded applicator and analyzed after about a 4 minute exposure. Based on physical observation of the dye in the target substrates, the dissolution of the microneedles of the two different geometries was markedly different.
The sharp-pillar needles applied to the model elastic substrate released substantially more tracer dye to the gel matrix than that observed for the pyramidal design (
To further evaluate penetration and to assess delivery effectiveness to human skin, CMC-microneedle arrays were fabricated with BioMag (Polysciences, Inc., cat #. 84100) beads or fluorescent particulate tracers (Fluoresbrite YG 1 μm, Polysciences Inc., cat #. 15702). The pyramidal CMC-microneedle arrays containing fluorescent or solid particulates were applied to living human skin explants as described previously. Five minutes after the application, surface residues were removed and skin samples were cryo-sectioned and then counterstained with toluene blue for imaging by light microscopy (
Pyramidal CMC-microneedles effectively penetrated the stratum corneum, epidermis, and dermis of living human skin explants, as evidenced by the deposition of Biomag beads lining penetration cavities corresponding to individual needle insertion points (representative sections shown in
These results further demonstrate that the CMC microneedle arrays described herein can effectively penetrate human skin and deliver integral cargo (bioactive components), including insoluble particulates. They are consistent with effective delivery of particulate antigens to antigen presenting cells in human skin, currently a major goal of rational vaccine design.
To further address microneedle array delivery in vivo, the cutaneous delivery of particulate antigen in vivo was modeled by similarly applying fluorescent particle containing arrays to the dorsal aspect of the ears of anesthetized mice. After 5 minutes, patches were removed and mice resumed their normal activity. Three hours or 3 days, ear skin and draining lymph nodes were analyzed for the presence of fluorescent particles. Consistent with observations of human skin, particulates were evident in the skin excised from the array application site (data not shown). Further, at the 3 day time point, substantial numbers of particles were evident in the draining lymph nodes.
To quantitatively evaluate the effects of needle geometry on cargo delivery using microneedle arrays, 3H-tracer labeled CMC-microneedle arrays were constructed. The CMC-hydrogel was prepared with 5% wt ovalbumin as a model active component at 25 wt % final dry weight content (5 g/95 g OVA/CMC) and trace labeled with 0.1 wt % trypan blue and 0.5×106 dpm/mg dry weight 3H-tracer in the form of 3H-thymidine (ICN Inc., cat #2406005). From a single batch of labeled CMC-hydrogel-preparation four batches of 3H-CMC-microneedle arrays were fabricated, containing several individual patches of pyramidal and sharp-pillar needle geometry. The patches were applied to human skin explants as described above and removed after 30 min exposure. The patch-treated area was tape-striped to remove surface debris and cut using a 10 mm biopsy punch. The 3H content of the excised human skin explants-discs was determined by scintillation counting. The specific activity of the 3H-CMC-microneedle patch-material was determined and calculated to be 72,372 cpm/mg dry weight. This specific activity was used to indirectly determine the amount of ovalbumin delivered to and retained in the skin. The resulting data is summarized in Table 1 below.
The tested types of patches were consistent from microneedle array to microneedle array (average standard deviation 24-35%) and batch to batch (average standard deviation 7-19%). The intra-batch variability for both needle geometry was lower than the in-batch value indicating that the insertion process and the characteristics of the target likely plays a primary role in the successful transdermal material delivery and retention. The patch-material retention data clearly demonstrate the foremost importance of the microneedle geometry in transdermal cargo delivery. Pillar-type needle geometry afforded an overall 3.89 fold greater deposition of the 3H labeled needle material than that of the pyramidal needles. On the basis of the deposited radioactive material, it is estimated that the pyramidal needles were inserted about 200 μm deep while the pillar-type were inserted about 400 μm or more.
Desirably, the microneedle arrays described herein can be used for cutaneous immunization. The development of strategies for effective delivery of antigens and adjuvants is a major goal of vaccine design, and immunization strategies targeting cutaneous dendritic cells have various advantages over traditional vaccines.
The microneedle arrays described herein can also be effective in chemotherapy and immunochemotherapy applications. Effective and specific delivery of chemotherapeutic agents to tumors, including skin tumors is a major goal of modern tumor therapy. However, systemic delivery of chemotherapeutic agents is limited by multiple well-established toxicities. In the case of cutaneous tumors, including skin derived tumors (such as basal cell, squamous cell, Merkel cell, and melanomas) and tumors metastatic to skin (such as breast cancer, melanoma), topical delivery can be effective. Current methods of topical delivery generally require the application of creams or repeated local injections. The effectiveness of these approaches is currently limited by limited penetration of active agents into the skin, non-specificity, and unwanted side effects.
The microneedle arrays of the present disclosure can be used as an alternative to or in addition to traditional topical chemotherapy approaches. The microneedle arrays of the present disclosure can penetrate the outer layers of the skin and effectively deliver the active biologic to living cells in the dermis and epidermis. Delivery of a chemotherapeutic agents results in the apoptosis and death of skin cells.
Further, multiple bioactive agents can be delivered in a single microneedle array (patch). This enables an immunochemotherapeutic approach based on the co-delivery of a cytotoxic agent with and immune stimulant (adjuvants). In an immunogenic environment created by the adjuvant, tumor antigens releases from dying tumor cells will be presented to the immune system, inducing a local and systemic anti-tumor immune response capable of rejecting tumor cells at the site of the treatment and throughout the body.
In an exemplary embodiment, the delivery of a biologically active small molecule was studied. In particular, the activity of the chemotherapeutic agent Cytoxan® delivered to the skin with CMC microneedle arrays was studied. The use of Cytoxan® enables direct measurement of biologic activity (Cytoxan® induced apoptosis in the skin) with a representative of a class of agents with potential clinical utility for the localized treatment of a range of cutaneous malignancies. To directly evaluate the immunogenicity of CMC microneedle array incorporated antigens, the well characterized model antigen ovalbumin was used. Pyramidal arrays were fabricated incorporating either soluble ovalbumin (sOVA), particulate ovalbumin (pOVA), or arrays containing both pOVA along with CpGs. The adjuvant effects of CpGs are well characterized in animal models, and their adjuvanticity in humans is currently being evaluated in clinical trials.
Immunization was achieved by applying antigen containing CMC-microneedle arrays to the ears of anesthetized mice using a spring-loaded applicator as described above, followed by removal of the arrays 5 minutes after application. These pyramidal microneedle arrays contained about 5 wt % OVA in CMC and about 0.075 wt % (20 μM) CpG. As a positive control, gene gun based genetic immunization strategy using plasmid DNA encoding OVA was used. Gene gun immunization is among the most potent and reproducible methods for the induction of CTL mediated immune responses in murine models, suggesting its use as a “gold standard” for comparison in these assays.
Mice were immunized, boosted one week later, and then assayed for OVA-specific CTL activity in vivo. Notably, immunization with arrays containing small quantities of OVA and CpG induced high levels of CTL activity, similar to those observed by gene gun immunization (
To evaluate the stability of fabricated arrays, batches of arrays were fabricated, stored, and then used over an extended period of time. As shown in
To evaluate the delivery of a biologically active small molecule, pyramidal CMC-microneedle arrays were fabricated with the low molecular weight chemotherapeutic agent Cytoxan® (cyclophosphamide), or with FluoresBrite green fluorescent particles as a control. Cytoxan® was integrated at a concentration of 5 mg/g of CMC, enabling delivery of approximately about 140 μg per array. This is a therapeutically relevant concentration based on the area of skin targeted, yet well below levels associated with systemic toxicities. Living human skin organ cultures were used to assess the cytotoxicity of Cytoxan®. Cytoxan® was delivered by application of arrays to skin explants as we previously described. Arrays and residual material were removed 5 minutes after application, and after 72 hours of exposure, culture living skin explants were cryo-sectioned and fixed. Apoptosis was evaluated using green fluorescent TUNEL assay (In Situ Cell Death Detection Kit, TMR Green, Roche, cat #:11-684-795-910). Fluorescent microscopic image analysis of the human skin sections revealed extensive apoptosis of epidermal cells in Cytoxan® treated skin as shown in
Direct Fabricated Microneedle Arrays
The micromilling of mastermolds described above allows the production of microneedle arrays with a variety of geometries. In another embodiment, systems and methods are provided for fabricating a microneedle array by directly micromilling various materials, such as dried CMC sheets. The same general tooling that was described above with respect to the micromilling of mastermolds can be used to directly micromilling microneedle arrays.
Direct micromilling of microneedle arrays eliminates the need for molding steps and enables a simplified, scalable, and precisely reproducible production strategy that will be compatible with large scale clinical use. Moreover, direct fabrication of the microneedle arrays through micromilling enables greater control of microneedle geometries. For example, micromilling permits the inclusion of microneedle retaining features such as undercuts and/or bevels, which cannot be achieved using molding processes.
The reproducibility of direct milling of microneedle arrays is particular beneficial. That is, in direct micromilling all of the microneedles are identical as a result of the milling fabrication process. In molding operations, it is not uncommon for some needles to be missing or broken from a given patch as a result of the process of physically separating them from the molds. For use in certain medical applications, the reproducibility of the amount of bioactive components in the array is very important to provide an appropriate level of “quality control” over the process, since irregularities in the needles from patch to patch would likely result in variability in the dose of drug/vaccine delivered. Of course, reproducibility will also be an important benefit to any application that requires FDA approval. Spincast/molded patches would require special processes to assure acceptable uniformity for consistent drug delivery. This quality control would also be likely to result in a certain percentage of the patches “failing” this release test, introducing waste into the production process. Direct micromilling eliminates or at least significantly reduces these potential problems.
Molding processes also have inherent limitations because of the need to be able to fill a well or concavity and remove the cured molded part from that well or concavity. That is because of mold geometries, undercuts must generally be avoided when molding parts or the part will not be removable from the mold. That is, a geometrical limitation of a molded part, such as a molded microneedle array, is that any feature located closer to the apex must be narrower than any feature located toward the base.
Accordingly, in view of these limitations,
This geometry can only be created through direct fabrication using the proposed micromilling technology. The negative (bevel) angle facilitates better retention of the microneedles in the tissue. In addition, because the microneedle of
Another limitation of molded parts is that it can be difficult to precisely fill a very small section of a mold. Since production molds for microneedle arrays comprise numerous very small sections, it can be difficult to accurately fill each well. This can be particularly problematic when the mold must be filled with different materials, such as a material that contains a bioactive component and a material that does not contain a bioactive component. Thus, if the production mold is to be filled with layers, it can be difficult to accurately fill the tiny wells that are associated with each microneedle. Such reproducibility is particularly important, since the microneedles are intended to deliver one or more bioactive components. Thus, even slight variations in the amounts of bioactive component used to fill production molds can be very undesirable.
Also, by using a lamination structure to form a sheet or block that can be micromilled, various active components can be integrated into a single microneedle by vertical layering. For example, in an exemplary embodiment, CMC-hydrogel and CMC-sOVA-hydrogel (80% CMC/20 wt % OVA) were layered into the form of a sheet or block. This composite sheet can be micro-machined using the direct micromilling techniques described herein.
Although the formation of a layer containing active material (e.g., antigen) and the subsequent micromilling of the layer (and any other adjacent layers) may require the use of relatively large amounts of the active material, the material can be removed (e.g., in the form of chips), recovered, and recycled. Direct machining technology is not restricted by the geometrical constraints arising from the molding/de-molding approach, and thus, is capable of creating more innovative needle designs (e.g.,
The production of sheets or blocks by forming a plurality of layers can provide a solid material that can be micro-machined and which can comprise one or more layers with a bioactive component. For example, a dissoluble solid carboxymethylcellulose polymer based block or sheet with well-defined and controlled dimensions can be fabricated by a lamination process. The resulting sheet or block can be fully machineable, similar to the machining of plastic or metal sheets or blocks. As described herein, the fabrication process can be suitable for the incorporation of bioactive components into the matrix without significantly reducing their activity levels.
As described below, a fabricated sheet of material (such as a CMC based material) can be directly micro-machined/micromilled) to produce one or more microneedle arrays suitable for delivering active ingredients through the skin. This dissoluble biocompatible CMC block-material can be used for the delivery of soluble or insoluble and particulate agents in a time release manner for body surface application.
The biocompatible material can be suitable for implants in deeper soft or hard tissue when dissolution of the scaffolding material is required and useful.
The following method can be used to prepare a carboxymethylcellulose (CMC) polymer low viscosity hydrogel to 12.5% concentration. The 12.5% carboxymethylcellulose (CMC) low viscosity hydrogel can be prepared in water or other biocompatible buffer, such as (but not limited to) PBS or HBS. During the preparation of the polymer solution, soluble agents (such as nucleic acid, peptides, proteins, lipids or other organic and inorganic biologically active components) and particulates can be added (e.g. ovalbumin, a soluble agent). Ferrous particulates carrying active ingredients at 20 w/w % of CMC can be used.
The preparation of 1000 g sterile 12.5% CMC hydrogel with no active component can be achieved as follows:
1) Measure 125 g CMC, add 875 g water or other water based solvent.
2) Stir to homogeneity in overhead mixer.
3) Autoclave homogenate to sterility at 121 degrees Celsius for 1 hour (the autoclaving step can reduce viscosity for improved layering)
4) Cool to 22 degrees Celsius.
5) Vacuum treat the resulting material at 10 torr and 22 degrees Celsius for 1 hour to remove trapped micro-bubbles.
6) Centrifuge product at 25,000 g for 1 hour in vacuum chambered centrifuge (for floating and further removing residual micro bubbles).
7) Store the CMC-hydrogel product at 4 degrees Celsius.
The preparation of 1000 g sterile 12.5 w/w % dry content 20/80% ovalbumin/CMC hydrogel can be achieved as follows:
1) Measure 100 g CMC add 650 g water or other water based solvent.
2) Stir to homogeneity in overhead mixer.
3) Autoclave homogenate to sterility at 121 degrees Celsius for 1 hour (this autoclaving step can reduce viscosity for improved layering).
4) Cool to 22 degrees Celsius.
5a) Dissolve 25 g ovalbumin in 225 g water.
5b) Sterile filter ovalbumin solution on 0.22 μm pore sized filter.
6) Mix to homogeneity, under sterile conditions the 750 g CMC hydrogel with 250 g sterile ovalbumin solution.
7) Vacuum treat the resulting material at 10 torr and 22 degrees Celsius for 1 hour to remove trapped micro-bubbles.
8) Centrifuge product at 25,000 g for 1 hour in vacuum chambered centrifuge (for floating and further removing residual micro bubbles).
9) Store the CMC-hydrogel product at 4 degrees Celsius.
The preparation of 100 g sterile 12.5 w/w % dry content 20/80% particulate-ovalbumin/CMC hydrogel can be achieved as follows:
1) Measure 10 g CMC add 87.5 g water or other water based solvent.
2) Stir to homogeneity in overhead mixer.
3) Autoclave homogenate to sterility at 121 degrees Celsius for 1 hour (this autoclaving step can reduce viscosity for improved layering).
4) Cool to 22 degrees Celsius.
5) Disperse 2.5 g particulate-ovalbumin in the 97.5 g, 22 degrees Celsius CMC-hydrogel and mix to homogeneity, under sterile conditions.
6) Vacuum treat the resulting material at 10 torr and 22 degrees Celsius for 2 hour to remove trapped micro-bubbles.
7) Centrifuge product at 3,000 g for 1 hour in vacuum chambered centrifuge (for floating and further removing residual micro bubbles).
8) Store the CMC-hydrogel product at 4 degrees Celsius.
Note in this example, particulate-ovalbumin is prepared from activated iron beads reaction to ovalbumin. However, it should be noted that the above descriptions are only exemplary embodiments and other compounds and active ingredients can be used.
A solid block/sheet carboxymethylcellulose (CMC) can be fabricated in the following manner using the low viscosity CMC-hydrogels described above.
The fabrication process can comprise a laminar spreading of the polymer at a defined thickness and a drying of the layered polymer to less than about 5% water content using sterile dried air flow over the surface of the polymer layer. The above two acts can repeated until the desired block thickness is achieved.
A method of performing a laminar CMC-hydrogel layering of a defined thickness over the casting mold assembly is described with reference to
The casting mold assembly can be constructed from acrylic (Plexiglas) and can comprise a casting bed base unit, a vertically adjustable hydrophobic casting-bed wall, and a casting-bed adjustment mechanism. The casting bed base unit (a1) can include a removable/replaceable casting bed top plate (a2) with an attached cellulose layer (a3). The cellulose layer can be about 0.5 mm in thickness. The vertically adjustable hydrophobic casting-bed wall (b) can be adjusted using the casting-bed depth adjustment mechanism, which can be comprised of lead-screw (c1) and level adjustment knob (c2). In the illustrated embodiment, a quarter turn of this knob can result in a 0.5 mm lift of the bed wall.
Initially, the adjustable casting bed wall can be set to height where the distance between the acrylic spreader and the cellulose layer of the bed is about 1 mm when the spreader is in position. A predefined volume (e.g., about 0.1 ml/cm2) of the 12.5% CMC-hydrogel can be added and layered. The layer can be evened or leveled by sliding the acrylic spreader (d) on the top surface of the adjustable casting wall to yield an even layer of about 1 mm of CMC-hydrogel. The layered CMC-hydrogel can be dried to a solid phase in the drying apparatus shown in
The layering and drying steps can be repeated until the desired layered structure (sheet) is achieved. The casting bed wall can be raised by an appropriate amount during the addition of each layer. For example, after adding each layer, the bed wall can be raised or lifted by about 0.5 mm Thus, the above-described cycle can deposit about 0.5 mm solid CMC layer. The process (e.g., the layering of material, the raising of bed wall, etc.) can be repeated until the desired block thickness achieved.
The layered CMC-hydrogel polymer can be dried in various manners. For example,
Airflow can be adjusted to affect the drying speed. In the exemplary embodiment, the airflow is controlled to be between about 0.1-2.0 msec; the temperature is between ambient and about 50 degrees Celsius. Using these configurations, the drying time of a single layer CMC-hydrogel can be about 0.5-4 hours depend on the airflow and the set temperature.
The pure CMC based product can be transparent, light off white, or amber colored. Its specific gravity can be about 1.55-1.58 g/ml. The product is desirably free of micro-bubbles and otherwise suitable for fabricating micron scale objects. The physical characterization of the final block/sheet product (hardness, tensile strength, etc.) can vary, but should generally be able to resist physical stresses associated with micromilling.
As described above, the microneedle arrays disclosed herein are capable of providing reliable and accurate delivery methods for various bioactive components. The structural, manufacturing, and distribution advantages characteristic of the above-described microneedle arrays can be particularly applicable for use in delivering vaccines. Advantages of these microneedle arrays include (1) safety, obviating the use of needles or living vectors for vaccine delivery, (2) economy, due to inexpensive production, product stability, and ease of distribution, and 3) diversity, via a delivery platform compatible with diverse antigen and adjuvant formulations.
Moreover, cutaneous immunization by microneedle array has important advantages in immunogenicity. The skin is rich in readily accessible dendritic cells (DCs), and has long been regarded as a highly immunogenic target for vaccine delivery. These dendritic cell populations constitute the most powerful antigen presenting cells (APCs) identified thus far. For example, genetic immunization of skin results in transfection and activation of dendritic cells in murine and human skin, and these transfected dendritic cells synthesize transgenic antigens, migrate to skin draining lymph nodes, and efficiently present them through the MHC class I restricted pathway to stimulate CD8+ T-cells. The immune responses induced by skin derived DCs are remarkably potent and long-lasting compared to those induced by other immunization approaches. Recent clinical studies demonstrate that even conventional vaccines are significantly more potent when delivered intradermally, rather than by standard intramuscular needle injection. Thus, microneedle arrays can efficiently and simultaneously deliver both antigens and adjuvants, enabling both the targeting of DCs and adjuvant engineering of the immune response using the same delivery platform.
Cancer Therapy Applications
Bioactive components used with the microneedle arrays described herein can include one or more chemotherapeutic agents. Effective and specific delivery of chemotherapeutic agents to tumors, including skin tumors is a major goal of modern tumor therapy. However, systemic delivery of chemotherapeutic agents is limited by multiple well-established toxicities. In the case of cutaneous tumors, including skin derived tumors (such as basal cell, squamous cell, Merkel cell, and melanomas) and tumors metastatic to skin (such as breast cancer, melanoma), topical delivery can be effective. Current methods of topical delivery generally require the application of creams or repeated local injections. The effectiveness of these approaches is currently limited by limited penetration of active agents into the skin, non-specificity, and unwanted side effects.
The microneedle arrays of the present disclosure can be used as an alternative to or in addition to traditional topical chemotherapy approaches. The microneedle arrays of the present disclosure can penetrate the outer layers of the skin and effectively deliver the active biologic to living cells in the dermis and epidermis. Delivery of a chemotherapeutic agents results in the apoptosis and death of skin cells.
Further, multiple bioactive agents can be delivered in a single microneedle array (patch). This enables an immunochemotherapeutic approach based on the co-delivery of a cytotoxic agent with and immune stimulant (adjuvants). In an immunogenic environment created by the adjuvant, tumor antigens releases from dying tumor cells will be presented to the immune system, inducing a local and systemic anti-tumor immune response capable of rejecting tumor cells at the site of the treatment and throughout the body.
In an exemplary embodiment, the delivery of a biologically active small molecule was studied. In particular, the activity of the chemotherapeutic agent Cytoxan® delivered to the skin with CMC microneedle arrays was studied. The use of Cytoxan® enables direct measurement of biologic activity (Cytoxan® induced apoptosis in the skin) with a representative of a class of agents with potential clinical utility for the localized treatment of a range of cutaneous malignancies.
To directly evaluate the immunogenicity of CMC microneedle array incorporated antigens, the well characterized model antigen ovalbumin was used. Pyramidal arrays were fabricated incorporating either soluble ovalbumin (sOVA), particulate ovalbumin (pOVA), or arrays containing both pOVA along with CpGs. The adjuvant effects of CpGs are well characterized in animal models, and their adjuvanticity in humans is currently being evaluated in clinical trials.
Immunization was achieved by applying antigen containing CMC-microneedle arrays to the ears of anesthetized mice using a spring-loaded applicator as described above, followed by removal of the arrays 5 minutes after application. These pyramidal microneedle arrays contained about 5 wt % OVA in CMC and about 0.075 wt % (20 μM) CpG. As a positive control, gene gun based genetic immunization strategy using plasmid DNA encoding OVA was used. Gene gun immunization is among the most potent and reproducible methods for the induction of CTL mediated immune responses in murine models, suggesting its use as a “gold standard” for comparison in these assays.
Mice were immunized, boosted one week later, and then assayed for OVA-specific CTL activity in vivo. Notably, immunization with arrays containing small quantities of OVA and CpG induced high levels of CTL activity, similar to those observed by gene gun immunization. Significant OVA-specific CTL activity was elicited even in the absence of adjuvant, both with particulate and soluble array delivered OVA antigen. It is well established that similar responses require substantially higher doses of antigen when delivered by traditional needle injection.
To evaluate the stability of fabricated arrays, batches of arrays were fabricated, stored, and then used over an extended period of time. No significant deterioration of immunogenicity was observed over storage periods spanning up to 80 days (longest time point evaluated). Thus, the CMC microneedle arrays and this delivery technology can enable effective cutaneous delivery of antigen and adjuvants to elicit antigen specific immunity.
To evaluate the delivery of a biologically active small molecule, pyramidal CMC-microneedle arrays were fabricated with the low molecular weight chemotherapeutic agent Cytoxan® (cyclophosphamide), or with FluoresBrite green fluorescent particles as a control. Cytoxan® was integrated at a concentration of 5 mg/g of CMC, enabling delivery of approximately about 140 μg per array. This is a therapeutically relevant concentration based on the area of skin targeted, yet well below levels associated with systemic toxicities. Living human skin organ cultures were used to assess the cytotoxicity of Cytoxan®. Cytoxan® was delivered by application of arrays to skin explants as we previously described. Arrays and residual material were removed 5 minutes after application, and after 72 hours of exposure, culture living skin explants were cryo-sectioned and fixed. Apoptosis was evaluated using green fluorescent TUNEL assay (In Situ Cell Death Detection Kit, TMR Green, Roche, cat #:11-684-795-910). Fluorescent microscopic image analysis of the human skin sections revealed extensive apoptosis of epidermal cells in Cytoxan® treated skin. No visible apoptosis was observed in fluorescent particle treated skin though these particles were evident, validating that the observed area was accurately targeted by the microneedle array.
In another embodiment, topical treatment of established tumors with doxorubicin and/or Poly(I:C) integrated into MNAs established tumor regression and durable immunity that can protect from subsequent lethal systemic tumor challenges.
Novel therapeutic approaches for treating established skin tumors were provided based on the combined effect of MNA delivered chemotherapy, MNA delivered immunostimulant therapy, and/or MNAs delivering combination chemo-immunotherapy. The B16 melanoma model was used as a model tumor to test these novel approaches. The B16 melanoma model is very well studied, and is one of the most aggressive murine skin cancers. Of all skin tumor models available, an established B16 tumor is among the most difficult to treat. Further, B16 has a very high metastatic potential, enabling a clinically relevant assessment of systemic tumor immunity.
B16 skin tumors were established in normal mice by injection. Visible established cutaneous tumors were treated once weekly for three weeks with MNAs containing either doxorubicin alone, Poly(I:C) alone, or doxorubicin and Poly(I:C) incorporated into the same MNA. The doxorubicin dose chosen corresponds to an MNA dose that induces apoptosis in human skin without causing necrosis. Tumor growth and survival were measured regularly for the duration of the study. Treatment with MNAs containing doxorubicin alone slowed tumor growth, and improved survival (30%) compared to that observed in untreated tumor bearing animals that had a 100% mortality rate. Further, treatment with MNAs containing Poly(I:C) alone slowed tumor growth, and improved survival (50%) compared to that observed in untreated tumor bearing animals that had a 100% mortality rate. Remarkably, treatment with containing both doxorubicin+Poly(I:C) substantially slowed tumor growth in all animals, and eradicated tumors completely in 8 out of 10 mice. This was reflected in 80% long term survival extending through day 70.
Surviving animals were evaluated to determine whether they developed long-term immunity against these same tumors. Specifically, systemic immunity was evaluated in these animals, including the durability of the immune response and the capacity of surviving animals to survive IV challenge. In particular, sixty days after the initial MNA treatment, mice were treated with a lethal dose of B16. Fourteen days later, mice were sacrificed and lung metastases were quantified microscopically. Treated mice demonstrated dramatically reduced numbers of lung lesions compared to naïve controls. Taken together, these results demonstrate the capacity of MNAs to deliver chemotherapeutic agents, immune stimulants, and combinations of these agents to both induce regression of established skin tumors, and to simultaneously induce durable systemic tumor specific immune responses capable of protecting the subject from subsequent tumors.
In another embodiment, Poly-ICLC can be substituted for Poly(I:C), and MNAs can be formed, for example, with Poly-ICLC in combination with at least one other chemotherapeutic agent (e.g., doxorubicin).
As discussed above, the one or more chemotherapeutic agents can include one or more immunostimulants agents (specific and non-specific) known by those skilled in the art to stimulate the immune system to reject and destroy tumors, such as Poly(I:C) and Poly-ICLC. These immunostimulants can be integrated into the MNAs along with other chemotherapeutic agents, such as cytotoxic agents like doxorubicin Immunostimulants that can be used in the manner described herein include adjuvants, toll-like receptors (TLRs), ribonucleotides and deoxyribonucleotides, double stranded RNAs (dsRNA), and derivatives of Poly(I:C).
Compositions Comprising Bioactive Components and Methods of Forming the Same
As discussed in detail above, dissolvable microneedle arrays can be used for transdermal delivery of drugs and biologics to human skin. Such microneedle arrays can include one or more bioactive components, including drugs, adjuvants, antigens, and chemotherapeutic agents such as Doxorubicin.
In some embodiments, one or more bioactive molecules can be linked to carboxymethylcellulose or similar biocompatible components. The methodology for chemically combining these agents can include methods that create a linkage designed to release one or more active components in target microenvironments by utilizing unique features of the microenvironment. This can include, for example, the acidic environment of a cellular compartment or vesicle, or the reducing environment of a tumor. In another embodiment of this invention this can include the combined delivery of carboxymethylcellulose conjugate and an agent facilitating cleavage of the conjugate that releases an active component. Delivery of the release facilitating agent can be simultaneous or sequential with delivery of the conjugate.
Advantages of providing cleavable bioactive components include the capability to deliver bioactive components in a protected fashion, limiting drug release to the target site thereby enhancing effective delivery concentrations while minimizing systemic or non-specific exposures. Further, in the event that the bioactive component is a targeting entity, drug release can be targeted to specific cell types or cells with certain metabolic features. A further advantage is the potential for protracted or sustained release delivery.
Carboxymethylcellulose or similar biocompatible components can be selected to enable fabrication into dissolvable microneedle arrays such as the arrays and methods of fabrication described herein. Alternatively, these conjugates can be delivered into the body by other means such as needle injection or ingestion.
As described herein, molecules of bioactive components, such as pharmaceutically active compounds, can be chemically conjugated to carboxymethylcellulose. In some embodiments, this is achieved using a cleavable bond capable of releasing the active chemical moiety in certain biologically natural or engineered environments. This technology can be useful for controlled and targeted drug delivery. Further, due to structural features of CMC, CMC-drug conjugates can be delivered by traditional methods including needle injection, and by novel delivery strategies by physically hardening the conjugate into solid structures that can be implanted, or that can serve as a combination drug/delivery device in the same entity. Examples of the latter would include CMC-drug conjugates fabricated into dissolvable microneedle arrays.
The example presented below includes a chemotherapeutic agent, Doxorubicin, which can be chemically linked to carboxymethylcellulose through a cleavable disulfide bond. As discussed below, this approach can be chemically compatible with a broad range of other bioactive components. Further, other known chemical linkage strategies could be utilized to conjugate a broad range of chemicals/drugs to CMC, including small molecule drugs, peptide and protein drugs. These drugs can be linked to a CMC substrate singly or in combinations, and in the presence or absence of one or more targeting molecules.
In this example, Doxorubicin is chemically linked to carboxymethylcellulose (CMC) through a cleavable disulfide bond. The synthesis strategy employed creates a sulfhydryl-bridged doxorubicin-CMC complex that is cleavable (i.e., able to release the drug) in a reductive environment such as cytosol and other cell-compartments, the extracellular space of the tumor microenvironment, or reducing environments created by cellular stress (redox). Further, the release of doxorubicin could also be triggered by targeted introduction of reducing agent such as dithiothreitol (DTT), beta-mercaptoethanol (MEA), Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) or others, together with or subsequent to drug delivery.
In this example the synthesis process is composed of 3 major steps:
1) Highly purified Doxorubicin-SH preparation by 3′ amin-conversion to sulfhydryl-group.
2) Amination of free HO-groups on dextrose units of CMC.
3) Crosslinking of Doxorubicin-SH to NH2—CMC
Detailed approaches for achieving the three above steps are provided below.
(1) Highly Purified Doxorubicin-SH Preparation by 3′ Amin-Conversion to Sulfhydryl-Group.
The process relies on linking doxorubicin to a solid support through sulfhydryl-bridge formation. After complete removal of the residual reactants the doxorubicin-SH is cleaved off of the support and released using a reductive agent (e.g., MEA). The eluted doxorubicin-SH is vacuum dried to remove the reducing agent and stored at −20° C. or reconstructed for further use. The described process ensures that only pure modified sulfhydryl-doxorubicin is recovered as final product.
Methods:
a. Preparation of NH2-Cellulose for Solid Support Using Epichlorohdrin and Ammonium Hydroxide
A two-step ammination of cellulose in alkaline environment was provided using epichlorohydrin and ammonium hydroxide.
b. Crosslinking Doxorubicin to Aminated-Cellulose Using Internally Cleavable Dithiobis[Succinimidyl Propionate] (DSP) Adapter
c. Elution and Purification of Clean Doxorubicin-SH from Cellulose Support
The doxorubicin-SH (B) after elution was further purified by vacuum-drying and reconstructed in water.
The basic reactions of the amination of CMC are performed as described above but in solution. Therefore the residual reactants are removed by repeated precipitation with ethanol since CMC is generally insoluble in organic solvents.
A two-step ammination of CMC in alkaline environment was performed using epichlorohydrinand ammonium hydroxide.
Methods:
a. Prepare 5% CMC in H2O
b. NH2-CMC Preparation Using Epichlorohdrin and Ammonium Hydroxide.
The cross-linking of Doxorubicin-SH to NH2-CMC utilizes a hetero-bi-functional adapter (N-Succinimidyl 3-(2-pyridyldithio)-propionate (SPDP)) to achieve a short extension at the 3′-NH2 of the doxorubicin upon release from the doxorubicin-S—S-CMC conjugate preserving the functionality of doxorubicin.
Methods:
Conjugation and release were validated by quantification of the active epoxide group using titration according to equation:
Other Linkable Bioactive Components
Although Doxorubicin is the bioactive component in the above-disclosed embodiment, other bioactive components can be used and be linked to a CMC or other biocompatible structural substrate. Suitable compounds that form the bioactive components may include, for instance, proteinaceous compounds, such as insulin, peptide antimicrobials (e.g., naturally occurring defensins, cathelicidins and other proteins with anti-bacterial and/or antiviral activity and synthetic derivatives of naturally occurring peptide antimicrobials including truncated or structurally modified variants), immunoglobulins (e.g., IgG, IgM, IgA, IgE), TNF-α, antiviral medications, etc.; polynucleotide agents, such as plasmids, siRNA, RNAi, nucleoside anticancer drugs, vaccines, etc.; small molecule agents, such as alkaloids, glycosides, phenols, etc.; anti-infection agents, hormones, drugs regulating cardiac action or blood flow, pain control; and so forth. Suitable compounds also include electrophilic nitro-fatty acids (FA-NO2) such as nitro-oleic acid (OA-NO2) and nitro-linoleic acid (LN-NO2) and their derivatives. Suitable compounds also include redox cycling nitroxides such as TEMPOL, as well as targeted derivatives such JP4-039 and the related family of compounds, and XJB-5-131 and the related family of compounds. Suitable compounds also include the transcription factor XBP1, its derivative XBP1s, and synthetic derivatives of XBP1 including XBP1 pathway stimulating factors. Suitable compounds also include neurokin 1 receptor (NK1R) agonists including tachykinins (e.g. substance P) and NKR1 such as aprepitant (Emend), their derivatives. A non-limiting listing of agents includes anti-Angiogenesis agents, anti-depressants, antidiabetic agents, antihistamines, anti-inflammatory agents, butorphanol, calcitonin and analogs, COX-II inhibitors, dermatological agents, dopamine agonists and antagonists, enkephalins and other opioid peptides, epidermal growth factors, erythropoietin and analogs, follicle stimulating hormone, glucagon, growth hormone and analogs (including growth hormone releasing hormone), growth hormone antagonists, heparin, hirudin and hirudin analogs such as hirulog, IgE suppressors and other protein inhibitors, immunosuppressives, insulin, insulinotropin and analogs, interferons, interleukins, leutenizing hormone, leutenizing hormone releasing hormone and analogs, monoclonal or polyclonal antibodies, motion sickness preparations, muscle relaxants, narcotic analgesics, nicotine, non-steroid anti-inflammatory agents, oligosaccharides, parathyroid hormone and analogs, parathyroid hormone antagonists, prostaglandin antagonists, prostaglandins, scopolamine, sedatives, serotonin agonists and antagonists, tissue plasminogen activators, tranquilizers, vaccines with or without carriers/adjuvants, vasodilators, major diagnostics such as tuberculin and other hypersensitivity agents. Vaccine formulations may include an antigen or antigenic composition capable of eliciting an immune response against a human pathogen or from other viral pathogens.
Other Linkage Strategies for Use with Bioactive Components and Substrates
A cleavable disulfide bond is just one chemical linkage strategy that can be used to link molecules of a bioactive component to a substrate, such as a CMC substrate. For example, in addition to disulfide bonds, other chemical linkage strategies that can be used, so long as they are cleavable in the intended environment, include crosslinking and chemical modification using primary amines (—NH2), carboxyls (—COOH), and carbonyls (—CHO).
As discussed herein, in addition to CMC, other biocompatible structural substrate can be used. For example, in another embodiment, Poly-IC or Poly-ICLC can be substituted for CMC, and MNAs can be formed, for example, with Poly-IC or Poly-ICLC in combination with the bioactive materials disclosed herein, such as doxorubicin.
Controlled Release of Bioactive Components
In some embodiments, controlled multi-drug multi-kinetic drug delivery can be provided to utilize dissolvable MNAs for drug delivery and to control the diffusion phase of individual cargos, including, for example, the bioactive components discussed herein, to achieve the desired pharmacokinetics.
Overall release kinetics of encapsulated cargo depends on the molecular characteristics of the cargo, the polymer, and the molar ratio of the polymer to other MNA scaffold materials. Differences in the properties of various sustained release polymers in combination with the matrix component of an MNA can affect the desired delivery kinetics. Specific interactions between the drug, the sustained release copolymer, and the MNA scaffold component impact the unique delivery kinetics for MNA delivery of each drug. In the following example, MNAs are formulated with integrated layers made with varying molar ratios of a drug in a given polymer.
MNAs were formulated using 0% (
To illustrate the delivery of multiple drugs with distinct release kinetics, MNAs were fabricated to delivery two distinct cargos by distinct release kinetics. Specifically, MNAs were fabricated to release the marker Toluidine Blue in an initial burst, followed by a sustained release of the marker FD&C Red40. Dyes were directly loaded in the MNA scaffold matrix (in this case CMC) of the needle tips and in some cases a second dye, encapsulated in a sustained release polymer was layer directly below. MNAs were inserted into 4% agar test-gels and removed after 1 min.
Images of dye diffusion were collected at the indicated time points (
As expected, when MNAs were fabricated with either FD&C Red40 (
Exemplary Polymers for Controlling and/or Triggering the Release of Cargo
Kinetics of the cargo release from applied MNAs controlled by the solubility and biodegradation of cargo-encapsulating polymers. In the absent of these polymers the release is immediate with burst like kinetics as the rehydration of the needle-materials occur. With reference to
(A) Sustained Release—cargo release is temporally extended, resulting in a sustained release where the rate of release is dependent on the dissolution and/or biodegradation of the control-polymer;
(B and C) Triggered Release—(B) the release of the cargo requires an external trigger which initiate a phase shift, conformational or chemical change in the control-polymer resulting in sustained or single burst like kinetics of the cargo release. Burst type repeated partial release of the bioactive payload can be achieved with the repeated application of the trigger-signal (C).
Examples of structural embedding-polymers for sustained release with different release time kinetics include:
Examples of Trigger Signals for complex release kinetics can include:
Tetradecanol (phase shifting temperature: 38-39° C.)
Hexadecanol (Cetyl alcohol, phase shifting temperature: 48-50° C.)
Octadecanol (Stearyl alcohol, phase shifting temperature: 56-60° C.)
Dodecanoic acid (phase shifting temperature: 43-46° C.)
Tridecanecarboxilic acid (Myristic acid, phase shifting temperature: 52-54° C.)
Pentadecanecarboxilic acid (Palmitic acid, phase shifting temperature: 60-63° C.)
Block polymers:
PEG-PCL, Poly(ethylene glycol)-b-poly(caprolactone),
PEG-PLGA, Poly(ethylene glycol)-b-poly(lactide-co-glycolide),
PEG-PLLA, Poly(ethylene glycol)-b-poly(L-lactide),
PEG-PDLLA, Poly(ethylene glycol)-b-poly(D,L-lactide),
PLGA-PEG-PLGA, Poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide),
Polypyrrole (PPy)
Gold-PEG-block polymer composites
Gold-Tetradecanol/Hexadecanol/Octadecanol composites
Gold-Dodecanoic/Tridecanecarboxilic/Pentadecanecarboxilic acid composites
Gold-Tetradecanol/Hexadecanol/Octadecanol composites
Gold-Dodecanoic/Tridecanecarboxilic/Pentadecanecarboxilic acid composites
These technologies are compatible with delivery of a wider range of cargos in terms of both cargo structure and cargo function, and disparet cargos can readily be combined in single MNAs for coordinated kinetic and spatial co-delivery.
Examples of bioactive materials that can be delivered using the delivery systems discussed herein (including, but not limited to, controlled release delivery) include:
Small molecules, organics: Calcipotriol (vitamin D3 derivate/analog), Daunorubicin, Doxorubicin, Cumarin (chemo therapeutics, antibiotic), Rapamycin (mTOR inhibitor, immune suppressor, antibiotic), Dexamethasone (anti-inflammatory/allergic agent), POM-1 (ecto-NTPDase inhibitor), BzATP (purinergic receptor agonist), DMXAA (tumor VDA), L733-060 (NK-1R ligand, NK-1 antagonist), R848 (TLR7/TLR8 agonist), Imidazoquinoline (TLR7 agonist), 2,4-Dinitrochlorobenzene, DNCB (irritant, immune stimulant), 2,4-Dinitrobenzenesulfonic acid, DNBS (irritant, immune stimulant), 5-fluorouracil, 5-FU thymidylate synthase inhibitor, Folinic acid, synergetic to 5-FU, Irinotecan, Camptothecin (CPT) analog, DNA topoisomerase 1 inhibitor, Cyclophosphamide (Cytoxan), synthetic antineoplastic drug, JP4-39, and Necrotin.
Antibiotics, topicals, alone and in combinations: Na-sulfacetamide, Erythromycin, Bacitracin, Neomycin, Polymyxin b, Gentamicin, Tetracycline.
Antioxidants, vitamins, topicals: Polyphenols, e.g. silymarin, proanthocyanidins, tannins, Vitamin C, Vitamin E, Nicotinamide, Coenzyme Q10 (CoQ10) and analoges, Resveratrol, 3,5,4′-trihydroxy-trans-stilbene, Lycopine, Genistein, Tempol and Tempol derivatives (including mitochondria-targeted Tempol), and other nitroxides.
Nucleic acid drugs: Aptamers (Target specific ligands to inorganic or organic molecules, protein or specific to cells of interest, small single strand DNA or RNA oligonucleotides, can serve as carriers of chemotherapeutics in guided/targeted delivery), Poly(I:C), Oligo-dG, CpG1668, CpG2006, siRNA.
Small peptide antigens, epitopes, and ligands: Substance-P1, neurokinin 1 receptor agonist, neurotransmitter, NK1R peptide, neurokinin 1 receptor agonist, TRP-2, tyrosinase-related protein 2, residues 180-188 aa, EpHA2, ADH-1, N-cadherin inhibitor, antiangiogenic cyclic pentapeptide.
Large peptides, peptides, recombinant-peptide antigens, alone or in combination with modulators/suppressors simultaneous or separate triggers for the release: DPPD (to diagnose tuberculosis, recombinant protein of M. tuberculosis), S1-MRSA, rEBOV-Gp Ebola, Trypsin (debridement of skin tissues), Papain (debridement of skin tissues), Hyaluronidase (drug dispersion in skin, opposite effects to hyaluronic acid), anti-TNFα (several versions are approved or in progress of approval), anti-IL-1bR, anti-IL22, Fezakinumab, anti-IL23, Guselkumab, anti-IL22 and 23, Briakinumab, anti-CD4, Zanolimumab, anti-CD152, Ipilimumab, anti-VEGF-A, Bevacizumab, anti-Integrin αvβ3, Etaracizumab, rHBsAg, Exbivirumab (recombinant hepatitis B surface antigen), anti-TyRP1, Flanvotumab, anti-GPNMB, Transmembrane glycoprotein NMB, Glembatumumab vedotin, BSA, OVA and other model antigens.
Radiation agents: radiation mitigating agents and radiation protection agents including, for example, GS-nitroxides (JP4-039 and XJB-5-131), the bifunctional sulfoxide MMS-350, the phosphoinositol-3-kinase inhibitor LY29400, triphenylphosphonium-imidazole fatty acid, the nitric oxide synthase inhibitor (MCF-201-89), the p53/mdm2/mdm4 inhibitor (BEB55), methoxamine, isoproterenol, propranolol, and the adenosine triphosphate-sensitive potassium channel blocker (glyburide).
Integration of Antigens and Immune-Adjuvant Molecules in MNAs for Immunization
The systems and methods described herein include carboxymethyl-cellulose (CMC) biodegradable Micro-Needle Arrays (MNA) which integrate antigens and adjuvants for immunization to prevent and treat of infectious and neoplastic diseases. As discussed below, for example, in one embodiment the integration involves of members of the class of proinflammatory tachykinins in MNAs with antigen or antigens, and with or without other known adjuvants.
Mouse and human skin dendritic cells (DC) express functional NK1R. As shown in
The role of NK1R in the skin immune function is demonstrated in
In some embodiments, each MNA can be composed of an array of 10×10 microneedles, arranged in about a 6×6 mm area (
Using the systems and methods disclosed herein, the advantages of dissolvable CMC and micro milling can produce optimized MNA geometries that uniquely enables efficient integration of multiple bioactive drugs, and their precise and reproducible delivery to skin strata. The efficiency and reproducibility of the MNAs is visually demonstrated by the delivery of MNA integrated-green fluorescent beads into mouse skin (
A quantitative comparison of MNA cargo delivery into human skin was determined using 3H TdR-OVA loaded MNAs applied to human skin organ cultures. As shown in
Agonistic signaling via NK1R significantly increases innate and adaptive immunity to DNCB Ag. The effect of different treatments in B6-WT mice was compared with n=6/experimental group. Priming with DNCB induced moderate inflammation of the epidermis and dermis and, as shown in
Administration of DNCB in the epidermis, induced inflammation in local draining lymph nodes, as determined by the presence of polimorphonuclear, mononuclear and MC (
Accordingly, methods and systems for reducing or desensitizing an immune response by deliver of sub-immunogenic doses of an allergen to the cutaneous microenvironment are provided. These methods can include delivery of such materials using the novel microneedle arrays described herein, or by other means.
Various allergens can be delivered using the methods and systems disclosed herein. For example, the following is a non-exhaustive list of possible allergens that can be delivered using the microneedle arrays described herein:
Allergen: As described above, allergens are substances that can induce an allergic or asthmatic response in a susceptible subject. The list of allergens is enormous and can include pollens, insect allergens, animal dander dust, fungal spores, food allergens, environmental allergens, and drugs (e.g. penicillin).
Examples of natural, animal and plant allergens include proteins specific to the following genera: Canine (Canis familiaris); Dermatophagoides (e.g. Dermatophagoides farinae); Felis (Felis domesticus); Ambrosia (Ambrosia artemiisfolia); Lolium (e.g. Lolium perenne or Lolium multiflorum); Cryptomeria (Cryptomeria japonica); Alternaria (Alternaria alternata); Alder; Alnus (Alnus gultinosa); Betula (Betula verrucosa); Quercus (Quercus alba); Olea (Olea europa); Artemisia (Artemisia vulgaris); Plantago (e.g. Plantago lanceolata); Parietaria (e.g. Parietaria officinalis or Parietaria judaica); Blattella (e.g. Blattella germanica); Apis (e.g. Apis multiflorum); Cupressus (e.g. Cupressus sempervirens, Cupressus arizonica and Cupressus macrocarpa); Juniperus (e.g. Juniperus sabinoides, Juniperus virginiana, Juniperus communis and Juniperus ashei); Thuya (e.g. Thuya orientalis); Chamaecyparis (e.g. Chamaecyparis obtusa); Periplaneta (e.g. Periplaneta americana); Agropyron (e.g. Agropyron repens); Secale (e.g. Secale cereale); Triticum (e.g. Triticum aestivum); Dactylis (e.g. Dactylis glomerata); Festuca (e.g. Festuca elatior); Poa (e.g. Poa pratensis or Poa compressa); Avena (e.g. Avena sativa); Holcus (e.g. Holcus lanatus); Anthoxanthum (e.g. Anthoxanthum odoratum); Arrhenatherum (e.g. Arrhenatherum elatius); Agrostis (e.g. Agrostis alba); Phleum (e.g. Phleum pratense); Phalaris (e.g. Phalaris arundinacea); Paspalum (e.g. Paspalum notatum); Sorghum (e.g. Sorghum halepensis); and Bromus (e.g. Bromus inermis).
Examples of insect allergens include bee, wasp, or hornet venoms (such as Myrmecia pilosula; Apis mellifera bee venom phospholipase A2 (PLA2) and antigen 5S, phospholipases from the yellow jacket Vespula maculifrons and white faced hornet Dolichovespula maculate, etc.), spider venom, etc. Examples of food allergens include fish, shellfish (shrimp, crab, lobster, oyster, scallops), soy, strawberries, tree nuts (walnut, hazel/filbert, cashew, pistachio, Brazil, pine nut, almond), peanuts, milk, egg protein, etc.
Allergens can include those known to be associated with anaphylaxis include food allergens (peanuts, tree nuts, fish, shellfish, cow's milk, soy, and eggs), insect allergens, particularly from stinging insects (e.g. honeybees, fire ants, yellow jackets, yellow hornets and paper wasps), drugs (e.g., β-lactams; nonsteroidal anti-inflammatory drugs (NSAIDs)), and biologic modifiers (e.g. cetuximab, infliximab and omalizumab).
Allergens can also include those responsible for allergic dermatitis caused by various arthropods, e.g. Diptera, including mosquitos (Anopheles sp., Aedes sp., Culiseta sp., Culex sp.); flies (Phlebotomus sp., Culicoides sp.) particularly black flies, deer flies and biting midges; ticks (Dermacenter sp., Ornithodoros sp., Otobius sp.); fleas, e.g. the order Siphonaptera, including the genera Xenopsylla, Pulex and Ctenocephalides felis felis.
Allergens can also include wheat and soy proteins. Wheat allergens can include, for example, Profilin (Tri a 12); Tri a 12.0101 accession P49232; Tri a 12.0102 accession P49233; Tri a 12.0103 accession P49234; Tri a 12.0104 accession B6EF35; Tri a 14.0201 accession D2T2K2; Tri a 15.0101 accession D2TGC3; Tri a 18.0101 accession P10968; Tri a 19.0101; Tri a 21.0101 accession D2T2K3; Tri a 25.0101 accession Q9LDX4; Tri a 26.0101 accession P10388; Tri a 26.0201 accession Q45R38; Tri a 27.0101 accession Q7Y1Z2; Tri a 28.0101 accession Q4WOV7; Tri a 29.0101 accession C7C4X0; Tri a 29.0201 accession D2TGC2; Tri a 30.0101 accession P17314; Tri a 31.0101 accession Q9FS79; Tri a 32.0101 accession Q6W8Q2; Tri a 33.0101 accession Q9ST57; Tri a 34.0101 accession C7C4X1; Tri a 35.0101 accession D2TE72; Tri a 36.0101 accession 335331566; Tri a 37.0101 accession Q9TOP1; Tri a 39.0101 accession J7QW61. Soy allergens can include, for example, Gly m 5 Glycine Beta-conglycinin accession CAA35691.1; Gly m 5 Glycine Beta-conglycinin accession AAA33947.1; Gly m 5 Glycine Beta-conglycinin accession AAB01374.1; Gly m 5 Glycine Beta-conglycinin accession AAB23463.1; Glycine Gly m 1 accession AAB34755.1; Glycine Gly m 1 accession ABA54898.1; Glycine Gly m 3 accession CAA1 1755.1; Glycine Gly m 3 accession 065809.1; Glycine Gly m 3 accession ABU97472.1; Glycine Gly m 4 accession P26987.1; Glycine Gly m 8 2s albumin accession AAD09630.1; Glycine Gly m Bd 28K accession BAB21619.1; Glycine Gly m Bd 28K accession ACD36976.1; Glycine Gly m Bd 28K accession ACD36975.1; Glycine Gly m Bd 28K accession ACD36974.1; Glycine Gly m Bd 28K accession ACD36978.1; Glycine Gly m Bd accession P22895.1; Glycine Gly m Bd accession AAB09252.1; Glycine Gly m Bd accession BAA25899.1; Glycine Glycinin G1 accession CAA26723.1; Glycine Glycinin G1 accession CAA33215.1; Glycine Glycinin G2 accession CAA26575.1; Glycine Glycinin G2 accession CAA33216.1; Glycine Glycinin G3 accession CAA33217.1; Glycine Glycinin G4 accession CAA37044.1; Glycine Glycinin G5 accession AAA33964.1; Glycine Glycinin G5 accession AAA33965.1; Glycine Major Gly 50 kDa allergen accession P82947.1; Glycine Trypsin inhibitor accession AAB23464.1; Glycine Trypsin inhibitor accession AAB23482.1; Glycine Trypsin inhibitor accession AAB23483.1; Glycine Trypsin inhibitor accession CAA56343.1; Glycine Glycinin G4 accession CAA60533.1; Glycine Glycinin G5 accession CAA55977.1.
In some embodiments, the allergen can be delivered in combination with one or more immune suppressant or tolerizing agent to the cutaneous environment. Such suppressants or tolerizing agents can include, for example, NKR antagonists, Fbxo3 inhibitors, anti-TNF Ab, or other suitable agents. Various combinations of allergens, suppressants, or tolerizing agents can be used. For example, two different suppressants or tolerizing agents can be used in combination with a single allergen, multiple allergens can be used with a single suppressant or tolerizing agent, or multiple allergens can be delivered in combination with multiple suppressants or tolerizing agents. In some embodiments, the allergen and one or more immune suppressants/tolerizing agents can be delivered to the cutaneous microenvironment to treat patients with various skin conditions, disorders, or diseases, such as contact dermatitis, atopic dermatitis, psoriasis, immunobullous diseases, or inflammatory skin disorders. In other embodiments, various autoimmune disorders can be treated using the systems and methods described herein, including lupus or arthritis. In some embodiments, the allergen and one or more immune suppressants/tolerizing agents can be delivered to the skin draining lymph nodes of a patient.
Thus, as discussed above, the present application discloses many novel systems and methods, including the novel integration of biologic molecules into dissolvable MNAs, including, for example, proinflammatory tachykinins, to deliver vaccines to specific skin strata is entirely novel. The release neural mediators in the skin, such as tachykinins, creates a skin proinflammatory microenvironment that is highly effective in generating both local and systemic immune responses. In this way localized delivery of antigen and adjuvant engineers the skin microenvironment to become highly proinflammatory. In addition, skin immunization using the systems and methods disclosed herein can lead to the generation of a novel population of memory T-cells that traffic to and specifically localize in the skin, providing skin specific immune protection.
Down Regulation and/or Suppression of Inflammatory or Immune Responses
Regulation of immune responses in an antigen specific manner using the systems and methods disclosed herein can be achieved by the simultaneously delivery of one or more antigens and one or more immune-regulatory molecules as a “negative immunization.” This strategy can down-regulate unwanted (pathologic) acute and chronic inflammatory responses and adaptive immune responses accounting for a broad number of inflammatory and immune mediated diseases. In some embodiments, the negative immunization is applied through the skin, in which down regulatory modulators are introduced into the cutaneous environment with a target antigen, or into an environment containing an endogenous antigen (auto-antigen).
In one embodiment, skin “negative immunization” involves utilization of a delivery system capable of achieving a simultaneous, efficient, and controlled, release of biologicals in the skin-confined area. For example, one method of achieving this delivery is using the systems and methods disclosed herein, such as carboxymethyl-cellulose (CMC) biodegradable MNAs that integrate both antigen and anti-inflammatory anti-immune molecules. The MNAs can be configured, as disclosed herein, to co-deliver the various components into the epidermis and superficial dermis, which are the skin strata where inflammatory and immune responses can be initiated or abrogated. Such MNAs can integrate those biologicals individually and in combination, in a way that one or more antigen combinations can be associated with one or more anti-inflammatory and/or anti-immune molecules to achieve the desired effect.
Since a potential unwanted immune-stimulatory effect exerted by the MNA components represents a drawback for the purpose of the negative immunization proposed in this application, the potential pro-inflammatory effect of empty MNAs was analyzed. Empty MNAs or DNCB-loaded MNAs were applied to B6 wt mouse skin and inflammation was analyzed (24 h after sensitization) and, effector DTH (following elicitation 7 days after sensitization). As shown in
An example of the negative immunization approach described herein was performed using MNAs to abrogate DNCB-DTH by efficient co-delivery of DNCB and NK1R antagonists into mouse skin.
In some embodiments, the simultaneous co-delivery of DNCB and L733, 060 MNA can be administered to prevent contact dermatitis (CD) relapses locally and systemically. The effects of negative immunization in the prevention of contact dermatitis relapses were studied in wt-B6 mice. As indicated in
NK1R blockade can provide additional beneficial effects in human skin samples. The NK1R-antagonist L733, 060 affects migration, and T-cell stimulatory function of human skin dendritic cells (DCs). To show these additional effects, DNCB±L733, 060-MNA was applied to human skin explants (2 cm2 surface) (10 explants per variable). Negative controls included untreated skin, application of empty MNA, or L733, 060-MNA. Skin migratory DCs were quantified 24 h later, and their T cell stimulatory function was analyzed in 5 d MLC. As shown in
Accordingly, the methods and systems discussed herein can promote pro-inflammatory and/or adaptive immune responses for the purpose of positive immunization for tumors and infectious diseases by delivery of antigen and selected adjuvants in the cutaneous microenvironment. These methods can include delivery of such materials using the novel microneedle arrays described herein, or by other means.
The immune response can be promoted by delivery of adjuvants or other immune response promoting agents described herein, in this section and in others, including, for example,
Microneedle arrays of the type described herein can be used to deliver the immunogenic doses of one or more antigens and/or one or more immune adjuvants and/or other stimulating agents to the cutaneous microenvironment. Any number of different combinations are possible. For example, the microneedle arrays may contain:
In some embodiments, the one or more antigens and/or one or more immune adjuvants and/or other stimulating agents to the cutaneous microenvironment is administered to the cutaneous microenvironment to treat patients with various tumors, and/or various viral, bacterial, parasitic, or fungus-based conditions. For example, in some embodiments, the immunizing treatments can be administered to the cutaneous microenvironment to treat patients with solid primary tumors, circulatory tumors (e.g., leukemias), solid tumor metastasis, or circulatory tumor megastasis. In other embodiments, the immunizing treatments can be administered to the cutaneous microenvironment to prevent and/or provide treatment for infectious diseases caused by viruses, bacteria and their toxins, parasites, and/or fungi. In some embodiments, the cutaneous delivery of these treatments is achieved by preparing and administering the microneedle arrays discussed herein.
As used herein, immuno-suppression means as any intervention with the purpose to downregulate the innate (inflammation) and adaptive immune responses. Thus, as discussed above, the present application discloses novel systems and methods of antigen-specific immune suppression or tolerance induction, which may reduce the occurrence of off-target adverse events resulting from generalized immunosuppression and general anti-inflammatory treatments such as steroids, FK-506 and others. In addition, as discussed above, such treatments are applicable to a broad range of inflammatory and autoimmune diseases from allergy desensitization to the treatment of psoriasis, eczema, asthma, and potentially transplant rejection.
Other immunosuppressive agents that can be embodied and/or delivered in the manners described herein, include:
Modulators of pro-inflammatory cytokine function including cytokine receptor blockade (i.e.: anti-TNF-α receptor, anti-IL-1B receptor, anti-IL-6 receptors, anti-IL 12 receptors, anti-IL-13 receptor, anti-IL-17 receptor, anti-IL-18 receptor, anti-IL23 receptors, anti-IL-33 receptor) and or inflammatory cytokine neutralizers (i.e: soluble receptors, decoy receptors (IL-1βRA).
Inhibitors of Toll-like receptor ligands, including but not limited to TLR-L antagonists, soluble TLRs, agents blocking intracellular pathways activated by TTLR signaling.
Other embodiments can use Anti-inflammatory molecules including but not limited to IL-10, TGF B1, indoleamine 2,3-dioxygenase (IDO), 1,α25-dihydroxyvitamin D3 (Vitamin D3), vascular endothelial growth factor (VEGF), Proopiomelanocortin (POMC) and derivatives including the Melanocyte stimulating hormone (MSH).
Other embodiments can use molecules interfering with the DC-T cell synapse, inducers of T cell death and calcineurin including but not limited to: Galectin-1 and 3, CD200, CD152 (CTLA-4) CD160 and CD244, Rapamycin, Programmed cell death ligand 1 and 2, (PD-L1 and PD-L2), Cyclosporine A, Tacrolimus, pimecrolimus.
Still other embodiments can use agents blocking intracellular signaling pathways blockade, including but not limited to: PI3K, AKT, mTOR, p38 inhibitors. Nuclear Factor κB (NFkB) inhibitors, Inhibitor of cytokine signaling 1 and 3 (SOCS1 SOCS 3), inhibitors of tyrosine phosphatase involved in TCR signaling (SHP-1) STATS, inhibitors of E3 ubiquitin ligase involved in TCR degradation (Cbl-b), inhibitors of RELB IL-12., NFATc1 and NFATc2.
Still other embodiments can use inhibitors of B cell survival and function, including but not limited to: soluble CD40L, anti-CD20, anti-Immunoglobulins.
Additional Results Relating to MNA Delivery for Immunization
Various additional results are discussed below and illustrated in
With regard to an exemplary positive immunization MNA delivery system,
With regard to an exemplary negative immunization MNA delivery system,
In view of the many possible embodiments to which the principles of the disclosed embodiments may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of protection. Rather, the scope of the protection is defined by the following claims. We therefore claim all that comes within the scope and spirit of these claims.
This is the U.S. National Stage of International Application No. PCT/US2017/012315, filed Jan. 5, 2017, which was published in English under PCT Article 21(2), which in turn claims the benefit of U.S. Provisional Application No. 62/275,167, filed Jan. 5, 2016. The provisional application is incorporated herein in its entirety.
This invention was made with government support under grant number EB012776 awarded by the National Institutes of Health. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/012315 | 1/5/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/120322 | 7/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5312456 | Reed | May 1994 | A |
5658515 | Lee et al. | Aug 1997 | A |
6331266 | Powell et al. | Dec 2001 | B1 |
6451240 | Sherman et al. | Sep 2002 | B1 |
6511463 | Wood et al. | Jan 2003 | B1 |
6565871 | Roser et al. | May 2003 | B2 |
6611707 | Prausnitz et al. | Aug 2003 | B1 |
6623707 | Addiego et al. | Sep 2003 | B1 |
6652478 | Gartstein et al. | Nov 2003 | B1 |
6656147 | Gertsek et al. | Dec 2003 | B1 |
6663820 | Arias et al. | Dec 2003 | B2 |
6743211 | Prausnitz et al. | Jun 2004 | B1 |
6767211 | Hall et al. | Jul 2004 | B2 |
6881203 | Delmore et al. | Apr 2005 | B2 |
6899838 | Lastovich | May 2005 | B2 |
6908453 | Fleming et al. | Jun 2005 | B2 |
6924087 | Yeshurun et al. | Aug 2005 | B2 |
6931277 | Yuzhakov et al. | Aug 2005 | B1 |
7052268 | Powell et al. | May 2006 | B2 |
7132054 | Kravitz et al. | Nov 2006 | B1 |
7211062 | Kwon | May 2007 | B2 |
7226439 | Prausnitz et al. | Jun 2007 | B2 |
7285113 | Yeshurun | Oct 2007 | B2 |
7315758 | Kwiatkowski et al. | Jan 2008 | B2 |
7316665 | Laurent et al. | Jan 2008 | B2 |
7332197 | Wood et al. | Feb 2008 | B2 |
7364568 | Angel et al. | Apr 2008 | B2 |
7416541 | Yuzhakov et al. | Aug 2008 | B2 |
7429333 | Chiou et al. | Sep 2008 | B2 |
7473247 | Mikszta | Jan 2009 | B2 |
7497980 | Xu et al. | Mar 2009 | B2 |
7560036 | Golubovic-Liakopoulos et al. | Jul 2009 | B2 |
7578954 | Gartstein et al. | Aug 2009 | B2 |
7588552 | Yeshurun et al. | Sep 2009 | B2 |
7591806 | Xu | Sep 2009 | B2 |
7611481 | Cleary | Nov 2009 | B2 |
7648484 | Yeshurun et al. | Jan 2010 | B2 |
7651475 | Angel et al. | Jan 2010 | B2 |
7658728 | Yuzhakov | Feb 2010 | B2 |
7699819 | Yeung et al. | Apr 2010 | B2 |
7731968 | Mikszta et al. | Jun 2010 | B2 |
D619245 | Moga et al. | Jul 2010 | S |
7753888 | Mukerjee et al. | Jul 2010 | B2 |
7763203 | Arias et al. | Jul 2010 | B2 |
7785301 | Yuzhakov | Aug 2010 | B2 |
7846488 | Johnson et al. | Dec 2010 | B2 |
7850657 | Yeshurun et al. | Dec 2010 | B2 |
D638534 | Moga et al. | May 2011 | S |
7942827 | Mir | May 2011 | B2 |
8052633 | Kendall | Nov 2011 | B2 |
8057842 | Choi et al. | Nov 2011 | B2 |
8062573 | Kwon | Nov 2011 | B2 |
8062835 | Tomono | Nov 2011 | B2 |
8088321 | Ferguson et al. | Jan 2012 | B2 |
8101114 | Park et al. | Jan 2012 | B2 |
8137736 | Zhu et al. | Mar 2012 | B2 |
8162901 | Gonnelli et al. | Apr 2012 | B2 |
8167852 | Quan et al. | May 2012 | B2 |
8172815 | Down et al. | May 2012 | B2 |
8192787 | Kirby | Jun 2012 | B2 |
8216190 | Gartstein et al. | Jul 2012 | B2 |
8236368 | Jung et al. | Aug 2012 | B2 |
8246582 | Angel et al. | Aug 2012 | B2 |
8246893 | Ferguson et al. | Aug 2012 | B2 |
8250729 | Lee et al. | Aug 2012 | B2 |
8257324 | Prausnitz et al. | Sep 2012 | B2 |
8267889 | Cantor et al. | Sep 2012 | B2 |
8321012 | Della Rocca et al. | Nov 2012 | B2 |
8328757 | Beebe et al. | Dec 2012 | B2 |
8353861 | Tobinaga et al. | Jan 2013 | B2 |
8354033 | Scholten et al. | Jan 2013 | B2 |
8361037 | Gonnelli | Jan 2013 | B2 |
8366677 | Kaspar et al. | Feb 2013 | B2 |
8376984 | James | Feb 2013 | B2 |
8402629 | Lee et al. | Mar 2013 | B2 |
8414548 | Yuzhakov | Apr 2013 | B2 |
8414959 | Hye-Ok et al. | Apr 2013 | B2 |
8419708 | Tokumoto et al. | Apr 2013 | B2 |
8444622 | Eckhoff et al. | May 2013 | B2 |
8449807 | Ferguson et al. | May 2013 | B2 |
8454844 | Yeshurun et al. | Jun 2013 | B2 |
8491534 | Takada | Jul 2013 | B2 |
8506530 | Laermer et al. | Aug 2013 | B2 |
8506980 | Takada | Aug 2013 | B2 |
8540672 | McAllister | Sep 2013 | B2 |
8545741 | Jung et al. | Oct 2013 | B2 |
8551391 | Chang et al. | Oct 2013 | B2 |
8554317 | Duan | Oct 2013 | B2 |
8560059 | Hoarau et al. | Oct 2013 | B2 |
8579862 | Kobayashi et al. | Nov 2013 | B2 |
8603384 | Luttge et al. | Dec 2013 | B2 |
8636696 | Ross et al. | Jan 2014 | B2 |
8637136 | Ferguson et al. | Jan 2014 | B2 |
8671544 | Xu et al. | Mar 2014 | B2 |
8696637 | Ross | Apr 2014 | B2 |
8696638 | Terahara et al. | Apr 2014 | B2 |
8708966 | Allen et al. | Apr 2014 | B2 |
8734697 | Chen et al. | May 2014 | B2 |
8741377 | Choi et al. | Jun 2014 | B2 |
8747362 | Terahara et al. | Jun 2014 | B2 |
8758298 | Cantor et al. | Jun 2014 | B2 |
8771781 | Tokumoto et al. | Jul 2014 | B2 |
8784368 | Eckhoff et al. | Jul 2014 | B2 |
8784373 | Gharib et al. | Jul 2014 | B2 |
8784383 | Cole et al. | Jul 2014 | B2 |
8784384 | Boyden et al. | Jul 2014 | B2 |
8784385 | Boyden et al. | Jul 2014 | B2 |
8784860 | Falotico et al. | Jul 2014 | B2 |
8785400 | Levetan et al. | Jul 2014 | B2 |
8788037 | Della Rocca et al. | Jul 2014 | B2 |
8788211 | Boyden et al. | Jul 2014 | B2 |
8788212 | Boyden et al. | Jul 2014 | B2 |
8790257 | Libbus et al. | Jul 2014 | B2 |
8790259 | Katra et al. | Jul 2014 | B2 |
8790658 | Cigarini et al. | Jul 2014 | B2 |
8791062 | Hsu et al. | Jul 2014 | B2 |
8791107 | Chang et al. | Jul 2014 | B2 |
8793075 | Boyden et al. | Aug 2014 | B2 |
8795174 | Manicka et al. | Aug 2014 | B2 |
8795201 | Escutia et al. | Aug 2014 | B2 |
8795230 | Schoonmaker et al. | Aug 2014 | B2 |
8795234 | Kadamus et al. | Aug 2014 | B2 |
8795259 | Beebe et al. | Aug 2014 | B2 |
8796436 | Manoharan et al. | Aug 2014 | B2 |
8798722 | Rylander et al. | Aug 2014 | B2 |
8798932 | Boyden et al. | Aug 2014 | B2 |
8798933 | Boyden et al. | Aug 2014 | B2 |
8821446 | Trautman et al. | Sep 2014 | B2 |
8821779 | Ferguson et al. | Sep 2014 | B2 |
8834423 | Falo, Jr. | Sep 2014 | B2 |
20020082543 | Park et al. | Jun 2002 | A1 |
20020193729 | Cormier et al. | Dec 2002 | A1 |
20020198509 | Mikszta et al. | Dec 2002 | A1 |
20040058882 | Eriksson et al. | Mar 2004 | A1 |
20050008683 | Mikszta et al. | Jan 2005 | A1 |
20050013221 | Takanobu | Jan 2005 | A1 |
20050019918 | Sumimoto et al. | Jan 2005 | A1 |
20050049549 | Wong et al. | Mar 2005 | A1 |
20050065463 | Tobinaga et al. | Mar 2005 | A1 |
20050089553 | Cormier et al. | Apr 2005 | A1 |
20050095298 | Gronlund | May 2005 | A1 |
20050251088 | Kwon | Nov 2005 | A1 |
20070161964 | Yuzhakov | Jul 2007 | A1 |
20070260201 | Prausnitz et al. | Nov 2007 | A1 |
20070299388 | Chan et al. | Dec 2007 | A1 |
20080009763 | Chiou et al. | Jan 2008 | A1 |
20080208134 | Tomono | Aug 2008 | A1 |
20080213461 | Gill et al. | Sep 2008 | A1 |
20080214987 | Xu | Sep 2008 | A1 |
20080221532 | Ogawa | Sep 2008 | A1 |
20080269658 | Vinton et al. | Oct 2008 | A1 |
20080269685 | Singh et al. | Oct 2008 | A1 |
20090017210 | Andrianov et al. | Jan 2009 | A1 |
20090054842 | Yeshurun et al. | Feb 2009 | A1 |
20090232855 | Sang et al. | Sep 2009 | A1 |
20100042137 | Oronsky et al. | Feb 2010 | A1 |
20100228203 | Quan et al. | Sep 2010 | A1 |
20100233093 | Oh et al. | Sep 2010 | A1 |
20110046575 | Takada | Feb 2011 | A1 |
20110098651 | Falo, Jr. | Apr 2011 | A1 |
20110172605 | Berenschot et al. | Jul 2011 | A1 |
20110230736 | Tepper et al. | Sep 2011 | A1 |
20120064124 | McClain et al. | Mar 2012 | A1 |
20120078189 | Ogawa et al. | Mar 2012 | A1 |
20120123341 | Birchall et al. | May 2012 | A1 |
20120265145 | Mefti et al. | Oct 2012 | A1 |
20120283695 | Chen et al. | Nov 2012 | A1 |
20130072902 | Takada et al. | Mar 2013 | A1 |
20130096532 | Ozel et al. | Apr 2013 | A1 |
20130165772 | Traverso et al. | Jun 2013 | A1 |
20130190794 | Kendall et al. | Jul 2013 | A1 |
20130338632 | Kaplan et al. | Dec 2013 | A1 |
20140066843 | Zhang et al. | Mar 2014 | A1 |
20140142492 | Jung et al. | May 2014 | A1 |
20140142541 | Yan et al. | May 2014 | A1 |
20140200511 | Boyden et al. | Jul 2014 | A1 |
20140350472 | Falo, Jr. et al. | Nov 2014 | A1 |
20150030642 | Wu et al. | Jan 2015 | A1 |
20150126923 | Falo, Jr. | May 2015 | A1 |
20160158512 | Tamaru et al. | Jun 2016 | A1 |
20180272621 | Falo, Jr. et al. | Sep 2018 | A1 |
20180304062 | Falo, Jr. et al. | Oct 2018 | A1 |
20180333898 | Francis et al. | Nov 2018 | A1 |
20190255307 | Falo, Jr. et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
147590 | Mar 2004 | CN |
1621102 | Jun 2005 | CN |
2005-35945 | Feb 2005 | JP |
2010-069253 | Apr 2010 | JP |
2011-224332 | Nov 2011 | JP |
WO 9800194 | Jan 1998 | WO |
WO 9829134 | Jul 1998 | WO |
WO 2004000389 | Dec 2003 | WO |
WO 2005025413 | Sep 2005 | WO |
WO 2007080596 | Jul 2007 | WO |
WO 2008091602 | Jul 2008 | WO |
WO 2008114218 | Sep 2008 | WO |
WO 2009-004995 | Jan 2009 | WO |
WO 2009009004 | Jan 2009 | WO |
WO 2009040548 | Apr 2009 | WO |
WO 2009081122 | Jul 2009 | WO |
WO 2009094394 | Jul 2009 | WO |
WO 2010022252 | Feb 2010 | WO |
WO 2010071918 | Jul 2010 | WO |
WO 2010141377 | Dec 2010 | WO |
WO 2011135531 | Nov 2011 | WO |
WO 2011135532 | Nov 2011 | WO |
WO 2012020332 | Feb 2012 | WO |
WO 2012054582 | Apr 2012 | WO |
WO 2012153266 | Nov 2012 | WO |
WO 2013033400 | Mar 2013 | WO |
WO 2013166162 | Nov 2013 | WO |
WO 2014012147 | Jan 2014 | WO |
WO 2015048777 | Apr 2015 | WO |
WO 2015149031 | Oct 2015 | WO |
Entry |
---|
Von Boehmer et al. ‘Therapeutic opportunities for manipulating TReg cells in autoimmunity and cancer.’ Nature Reviews Drug Discovery vol. 12, pp. 51-63(2013). |
Bandyopadhyay et al. ‘Skin codelivery of contact sensitizers and neurokinin-1 receptor antagonists integrated in microneedle arrays suppresses allergic contact dermatitis.’ J Allergy Clin Immunol vol. 150, No. 1, pp. 114-130, 2022. |
European Search Report dated Mar. 10, 2016 by the European Patent Office, for EPC App. No. 13784192.0, 14 pages. |
Examination Report, dated Dec. 16, 2016, for corresponding Australian Patent Application No. 2013256348, 3 pages. |
International Preliminary Report on Patentability dated Sep. 16, 2013 by the Korean Intellectual Property Office, acting as ISA for PCT application No. PCT/US2013/039084, 8 pages. |
International Preliminary Report on Patentability dated Jan. 14, 2016 by the Australian Patent Office, acting as ISA for PCT application No. PCT/US2015/059556, 6 pages. |
International Preliminary Report on Patentability dated Jul. 5, 2016 by the Korean Intellectual Property Office, acting as ISA for PCT application No. PCT/US2016/02374, 15 pages. |
International Search Report and Written Opinion dated Sep. 16, 2013 by the Korean Intellectual Property Office, acting as ISA for PCT application No. PCT/US2013/039084, 10 pages. |
International Search Report and Written Opinion dated Jan. 14, 2016 by the Australian Patent Office, acting as ISA for PCT App. No. PCT/US2015/059556, 11 pages. |
International Search Report and Written Opinion dated Jul. 5, 2016 by the Korean Intellectual Property Office, acting as ISA for PCT application No. PCT/US2016/02374, 18 pages. |
International Search Report and Written Opinion dated Jan. 10, 2017 by the Australian Patent Office, acting as ISA for PCT application No. PCT/US2016/057363, 11 pages. |
Korkmaz et al., “Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays,” Acta Biomater., vol. 24, pp. 96-105 (Sep. 15, 2015). |
Lee et al., “Dissolving microneedles for transdermal drug delivery.” Biomaterials 29(13): 2113-2124, 2008. |
Office Action, dated Jan. 25, 2017, for corresponding Japanese Patent Application No. 2015-510434, with English language translation, 11 pages. |
Office Action, dated Apr. 14, 2017, in corresponding Chinese Patent Application No. 201380031604.6, with English-language translation, 9 pages. |
Office Action, dated Sep. 14, 2017, for corresponding Japanese Patent Application No. 2015-510434, with English language translation, 11 pages. |
Office Action, dated Sep. 26, 2017, for corresponding Mexican Patent Application No. MX/a/2014/013234, no English language translation, 4 pages. |
Office Action, dated Oct. 31, 2017, in corresponding Chinese Patent Application No. 201380031604.6, with English-language translation, 18 pages. |
Office Action, dated Dec. 27, 2017, for corresponding Taiwanese Application No. 2017-78229, no English language translation, 5 pages. |
Xie et al., “Toll-like receptor 2 mediates invasion via activating NF-κB in MDA-MB-231 breast cancer cells,” Biochemical and Biophysical Research Communications 379(4): 1027-1032, 2009. |
Filiz et al., “Micromilling of microbarbs for medical implants,” International Journal of Machine Tools and Manufacture 48(3-4): 459-472, 2008. |
Kim et al., “Microneedles for drug and vaccine delivery,” Advanced Drug Delivery Reviews 64(14): 1547-1568, 2012. |
Khodadust et al., “Development of poly (I: C) modified doxorubicin loaded magnetic dendrimer nanoparticles for targeted combination therapy,” Biomedicine & Pharmacotherapy 68(8): 979-987, 2014. |
Shiozuka et al., “Transdermal delivery of adriamycin to transplanted Ehrlich ascites tumor in mice,” Pharmaceutics 5(3): 385-391, 2013. |
Ma et al., “Poly (I: C) inhibits melanoma metastasis and enhances chemerin expression and NK cell recruitment via a RIG-like helicase innate immune/MAVS-dependent mechanism,” In C38. Pulmonary and Systemic Inflammation, American Thoracic Society, pp. A4165-A4165, 2013. |
Cobleigh et al., “A phase II study of Adriamycin in previously untreated squamous cell carcinoma of the head and neck,” Cancer 56(11): 2573-2575, 1985. |
Lee et al., “Transdermal drug delivery system using microneedles,” Korean Journal of Skin Barrier Research 15(1): 22-33, Jun. 2013 (with English-language machine translation). |
Park et al., “Polymer microneedles for controlled-release drug delivery,” Pharmaceutical Research 23(5): 1008-1019, May 2006. |
Number | Date | Country | |
---|---|---|---|
20190000966 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62275167 | Jan 2016 | US |