This invention relates to radiant energy management, and more particularly to systems for capturing solar energy to manage illumination and temperature within a defined space.
Solar generation and cogeneration systems can offer a logical alternative or addition to fossil fueled energy systems as fuel costs and environmental concerns increase. The solar heat that is collected in a collection system, with or without electricity (such as by way of photovoltaic cells), may provide a major boost to an energy system's value. Unfortunately, however, “solar cogeneration” systems need to be located at the site of use, which presents challenges to most existing or previous concentrator methods. Because the collected heat generally is at low temperature (e.g., typically 40-80 degrees C.), the heat energy cannot be transmitted far without substantial parasitic losses. Further, the capital cost of hot water and other heat transmission systems favors direct on-site use. And, such low temperature heat generally cannot be converted in a heat engine to mechanical or electrical power because of the small temperature differential versus ambient temperatures. Accordingly, systems are needed that harvest light energy and transfer the harvested energy easily to the heating requirements at the site of use, such that the immediate needs of the site are factored into how the system is controlled.
Solar cogeneration technologies are, in part, held back by challenges in creating optical systems that are both inexpensive and that can be mounted or integrated into a building. One problem is the practical limit for how tall a design can be to withstand forces from windy conditions on the device and building on which it may be mounted. Tying a cogeneration apparatus into the foundation or load bearing structure of a building creates expensive installations and/or mounting systems to accommodate system stresses, particularly on the roof. Many commercial sites lack sufficient ground space for a reasonably sized system, and roof-mounting is the only viable option to obtain sufficient collector area.
Efforts have been made to meet the foregoing challenges. For instance, MBC Ventures, Inc., the assignee of the instant application, has developed solar harvesting apparatus and methods and their incorporation into building structures, as described in co-owned U.S. Patent Publication No. US2009/0173375 titled “Solar Energy Conversion Devices and Systems” (U.S. application Ser. No. 12/349,728), and co-owned U.S. Patent Publication No. US2011/0214712 titled “Solar Energy Conversion” (U.S. application Ser. No. 13/056,487), both of which specifications are incorporated herein by reference in their entireties. While such systems provide significant improvement over prior solar harvesting systems, opportunities remain to enhance the reliability, reduce cost, and improve the performance of such systems.
Disclosed is a system and method for harvesting solar energy, and more particularly an energy-positive skylighting system that may provide an integrated energy solution to a variety of commercial buildings. A plurality of skylight modules are provided, each having a plurality of louvers configured to reflect incoming sunlight onto a thermal receiver area on an adjacent louver to heat a working fluid in communication with the louvers (i.e., such that heat transfer is carried out between the thermal receiver and the working fluid), all while allowing control of the amount of daylight that passes through the module. The modules are constructed such that the balance of the solar energy not going into daylighting is captured in the form of thermal heat, which in turn may be applied to building system cooling and heating applications.
With regard to one aspect of a particularly preferred embodiment of the invention, an energy management system is provided, comprising a skylight module, a first louver having a front side and positioned within the skylight module, a second louver having a back side and positioned adjacent the first louver within the skylight module such that the back side of the second louver faces the front side of the first louver, and a receiver tube fixedly mounted within the skylight module, the receiver tube having an outer surface comprising a thermal collector and an interior fluid channel, and the second louver being pivotably attached to the receiver tube, wherein the front side of the first louver is configured to reflect sunlight impacting the front side of the first louver toward the back side of the second louver, and the thermal collector is configured to convert at least a portion of the reflected sunlight into thermal heat and transfer the thermal heat to a working fluid within the interior fluid channel.
With regard to another aspect of a particularly preferred embodiment of the invention, an energy management system is provided, comprising a first louver having a front side, a second louver having a back side and positioned adjacent the first louver such that the back side of the second louver faces the front side of the first louver, a receiver tube attached to the back side of the second louver, the receiver tube having an outer surface comprising a thermal collector and an interior fluid channel, and a reflecting diffuser attached to the back side of the second louver, wherein the front side of the first louver is configured to reflect sunlight impacting the front side of the first louver toward the back side of the second louver, the thermal collector is configured to convert at least a portion of the reflected sunlight into thermal heat and transfer the thermal heat to a working fluid within the interior fluid channel, and the reflecting diffuser is configured to reflect at least a portion of the reflected sunlight to a space below the first and second louvers.
The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying drawings in which:
a is a schematic side view of various operational modes of the louver assembly of
a through 8e provide schematic side views of various operational modes of the louver assembly of
The following description is of a particular embodiment of the invention, set out to enable one to practice an implementation of the invention, and is not intended to limit the preferred embodiment, but to serve as a particular example thereof. Those skilled in the art should appreciate that they may readily use the conception and specific embodiments disclosed as a basis for modifying or designing other methods and systems for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent assemblies do not depart from the spirit and scope of the invention in its broadest form.
In prior constructions, a module might have two operational modes. In such embodiment, when the level of direct beam solar radiation incident on the module is above a threshold value, the module would enter a tracking mode. In this mode, all of the direct solar radiation that falls on the louver assembly may be focused on the thermal receiver area on the back of the adjacent louver. In this case, day lighting is provided primarily by transmissive light-diffusing surfaces around the perimeter of the louver assembly and on the east, west, and north walls of the monitor (the module being installed on a building surface such that the louvers face south for installations in, for example, North America, so as to face the sun). Secondarily, some diffuse light also passes between the louvers, especially at low sun angles. When the amount of direct solar radiation falls below the threshold for tracking mode, the module enters day lighting mode, and the louvers are opened fully. A night mode could also be provided, when the louvers shut completely to reduce the thermal heat loss and the leakage of light to the night sky. Consequently, in this embodiment, when the module is in tracking mode, there may be no means to modulate or control the amount of daylighting delivered by the module. The sizing of an installation in this case is generally done based on the amount of illumination required by the space beneath, so consequently the amount of thermal energy produced by a system is not a separate variable that the system designer can manipulate. This means that in some cases, there may be an excess of thermal energy available, and in other cases, conventional solar thermal modules are needed to supplement the heat provided by the modules. Also with regard to this embodiment, the lighting levels in the space would not be tailored to the needs of the activity in the space, nor would the split of energy going into day lighting and thermal uses be varied. This may result in overlighting the space when unoccupied or when the use of the space otherwise does not require full illumination. This over-illumination may add significantly to heat load that the building's cooling systems must handle, and also represents a lost opportunity to capture thermal heat for useful purposes.
In an improved design, the louvers of a module include a planar thermal receiver 300 (
With particular regard to the embodiment shown in
In order to maximize flexibility in the utilization of the solar resource, it is desired to have the louvers 200 cover a larger fraction of the south-facing wall 110 of the module 100. When light is required, the position of louvers 200 can be adjusted to produce more daylight, but when the daylight is not desired, the energy can be captured as thermal heat rather than directing excess illumination to the space below. As shown in
With reference to both
As noted above, the first component is a curb 112 that is mounted over an opening that is cut into an existing roof or formed in new construction. The curb 112 is preferably delivered to the site in four separate pieces and assembled on site.
Next, the monitor 116 (skylight) provides 1) structural support to the energy conversion module/louver assembly 220 (ECM), 2) thermal insulation between inside air and the outside, and 3) direction and diffusion for the light from the sky into the space below.
Next, the ECM 220, mounted on the south face of the monitor 116 (assuming the south face is facing the sun), is a micro-concentrating thermal collector and light managing device. A controller board 130 and a small electric stepper motor 132 control the angle of the louvers 200 to deliver the desired amount of light through the ECM 220, while converting the excess light to high grade thermal heat. Fluid lines 134 circulate coolant directly through each louver 200 to pipes located on the roof or in the ceiling space below the skylight modules 100.
The louvers 200 are moved by stepper motor 132 and linkage 136 which is located on, for example, the west end of the ECM 220. The controller board 130 is preferably connected to a central control unit and sends commands to the stepper motor 132 which is connected to an actuation bar 131 of linkage 136. The actuation bar 137 is joined to each louver 200 by link arms 138 that connect preferably to the last inch of the west end of the louver 200. The action of the linkage is shown in the schematic views of
As best shown in
The details of the thermal receiver tube 300 are displayed in the cross-sectional views of
The thermal collector 304 on the left and bottom of thermal receiver tube 300 are high-absorbing, low-emissivity thermally selective surfaces. These are formed from thin strips of optically treated aluminum sheets that are formed in a bending brake and adhered to the extrusion using high-conductivity epoxy adhesive. Such optically treated aluminum sheets are commercially available, and may comprise, by way of non-limiting example, ALANOD MIROTHERM available from ALANOD GMBH & CO. KG. These surfaces efficiently convert incoming full spectrum sunlight into thermal heat to be conducted through the wall of the thermal receive tube 300 and to the fluid circulating through the tube center passage 308. The secondary mirror 306 is positioned to the right of thermal collector 304 (as viewed in
The nature of optical systems is that the basic functionality of the system can be independent of scale. That is, the system can be photographically expanded or shrunk over a wide range and the system performs optically the same. The desired dimensions are a factor of the system cost and the fluid system performance (tube dimensions).
While the overall dimensions can have a great deal of variability, the relative sizes of the optical components have a much smaller envelope of allowable values. This being the case, one primary dimension has been selected as the variable that determines the overall scale—the distance between the centerlines of the receiver tubes 300, referred to as the pitch. Other dimensions can be expressed as a ratio to this overall parameter.
Optimal values and dimensional ranges for the critical dimensions are shown below.
The mirror 204 is a non-imaging, variable geometry optical element. Its purpose is to focus incoming solar energy onto thermal absorbing and light reflecting elements on an adjacent louver in order to provide controlled illumination to the space below while efficiently harvesting excess sunlight as thermal heat. For a system operating in the mid-latitudes of the continental US, the articulating mirror system preferably operates over a 100 degree acceptance angle—from the sun at the horizon to 10 degrees north of zenith. For a given position of the sun, the angle of the mirror can be changed to move the focus area of the sunlight to vary the fraction of sunlight that is given to heating or light. Over the wide range of sun angles, it is not possible to have an arbitrary allocation of light and heat. The design goal is to provide up to 50% of the energy as lighting, and up to 100% as heating. At these levels, it will be possible to deliver 200 foot-candles of illumination to the space below, double the typical expected level.
The baseline mirror shape may be faceted for ease of manufacture. In this case, a long rectangular blank of mirrored aluminum sheet is formed into the desired mirror shape in a series of small bends performed by a precision controlled bending brake. Because the concentration of the reflector is a function of the width of the facet, the facet width of the facets is kept as small as possible, in this case preferably 0.25 inches. The bending angle at the vertices of the mirror shape was calculated from the desired radius of curvature along the length of the mirror 204.
The top of mirror 204 is farther from the thermal receiver tube 300 and so has a larger radius of curvature, and the radius decreases linearly along the width of the mirror. There is a discontinuity in the curve as mirror 204 approaches the bottom; this was determined by analysis to be the optimal shape.
The path that light travels through the skylight module 100 varies with the position of the sun, the geometry of the louvers, and the degree of lighting desired at that time. The diagrams of
a shows the light path diagram for a low sun angle. This condition occurs in early morning or late afternoon, especially in the winter when the sun is low to the horizon. The light for heating is focused mainly on the vertical section of thermal collector 304, while the lighting energy spills below the thermal receiver onto secondary mirror 306. The reflection from secondary mirror 306 goes downwards and is represented by a wide arrow to signify the 20 degree cone-shaped reflection from the part specular/part diffuse reflector of secondary mirror 306.
b shows the light path diagram for a mid-sun angle. This is the orientation that occurs most commonly and is the one that corresponds with the maximum available solar energy. The light that comes off of primary mirror 204 is at higher angle compared to the low sun angle. Therefore, the sun for lighting also spills off the bottom of the thermal collector 304, but is at such an angle that it misses the secondary mirror 306 and strikes the reflecting diffuser 222 directly. The reflecting diffuser 222 also reflects the light into a cone pattern to the space below. Note the rays that spill over for daylighting are the ones that come from the highest downward angle onto the reflecting diffuser 222. The curvature of mirror 204 was designed to do this so that the delivery of light into the space below would be the most efficient.
c shows the light path diagram again for a mid-sun angle and providing additional daylighting. The diagram shows a different angle of mirror 204 from
d shows the light path diagram again for a mid-sun angle and providing no daylighting. In this orientation of mirrors 204, the light is directed more upwards so that 100% of the incoming direct solar energy can be delivered as heat.
e shows the light path diagram for a high sun angle. This geometry is similar to the mid-sun angle case. The daylighting rays come from the top of the primary mirror 204 at a high angle to the reflecting diffuser 222 and down below.
As mentioned above, the skylight modules 100 provide a fluid heat transfer system that transfers heat from the louvers 200 to a fluid carried through a fluid channel. Interiorly directed surfaces 310 form heat transfer grooves on the inside of the thermal receiver tube center passage 308 (as shown particularly in
In some configurations, the skylight module 100 may employ the area around the perimeter of the louver assembly to provide daylight to the space below when the louver assembly is in tracking mode. In this embodiment, two types of acrylic diffusers are preferably stacked and adhered to the south face of the skylight monitor 100 under the dome 120. The diffuser on top is a prismatic diffuser that breaks the light up in two dimensions to form a cone of light with about a 15 degree half angle. The bottom diffuser is a linear diffuser with deep sawtooth grooves that bifurcate the incoming light into two lobes each about 45 degrees from the angle of the incident light. The grooves are oriented in a north/south direction which spreads the light coming from each module strongly in an east/west direction. Sheets of such acrylic diffuser materials are readily commercially available, and may comprise, by way of non-limiting example, KSH-25 acrylic lighting panels available from PLASKOLITE, INC. This accomplishes two desired objectives. First, the intensity of the light coming to the area directly below the skylight module 100 is reduced, which eliminates uncomfortable glare that is ordinarily experienced directly under a typical diffusing skylight. Second, spreading the light east/west fills in the troughs of light that exist in the space between the rows of skylights, providing a much more even illumination on the work plane of the space below. However, one disadvantage of using this bidirectional lens is that some of the light is lost as it is directed onto other interior surfaces of the skylight. For example, the diffuser on the east side of the skylight module 100 forms two lobes of light directed to the east and west at 45 degree angles. The lobe that is directed to the west has a good view angle to the floor of the space below and this light is efficiently directed. However, a large fraction of the lobe directed to the east strikes the east wall of the skylight module 100 and either exits to the outside or is lost in re-reflections. In addition, to provide more controllability of the light, it is desired that the louver assembly cover a larger proportion of the south wall of the skylight module 100. This leaves less area available for the diffusing elements, so they must be made more efficient to deliver the same amount of light.
Alternatively, a combined directing/diffusing acrylic Fresnel lens can be used that has a unidirectional refracting lens on one side and a random or prismatic diffusing pattern on the other. To keep the tooling cost down for this custom optical material, the lenses can be fabricated in small sections about one foot square and the sections adhered to the south wall of the monitor to direct the incoming light to the most advantageous direction, minimizing losses and glare. Suitable materials for use as such optical material are readily commercially available, and may comprise, by way of non-limiting example, 36/55 asymmetrical prism film available from MICROSHARP CORPORATION LIMITED. With particular reference to
The multiwall sheets described above have an ability to partially scatter the incoming light in one direction; additional sheets of diffusing and directing films are needed to evenly distribute the light and eliminate glare. The most straightforward method to add diffusing sheets to the panels would be to affix additional sheets to the inner or outer face of the multiwall sheets, but there are certain disadvantages of this approach. Few commercially available diffusing films are made of plastics that can withstand ultraviolet light. Further, the adhesive that holds the sheets on should be optically clear so as not to attenuate the light passing through it, and, if on the outer face, should withstand weather. Finally, laminating adhesives generally require several hundred pounds per square inch to activate, which can deform the multiwall panels.
An alternative approach is to cut the diffusing sheets into thin strips and insert them into the cells of the polycarbonate. The outer face of the polycarbonate panels is infused with a UV blocking compound to protect the polycarbonate from damaging effects of UV rays. Further, the polycarbonate itself is opaque to UV. Thus, the spaces between the ribs of the multiple walls is protected from UV radiation, and so lower cost plastics such as PET can be employed for the diffusing materials. Further, the narrow width of the cells allows the strips to stand in the cell with no adhesive required, thereby eliminating the cost and light attenuation of the adhesive.
Diffusing strips placed inside the multiwall sheets have the ability to almost totally attenuate the multiwall sheet's characteristic one-dimensional scattering of light. Previously, the one-dimensional scattering of the multiple internal reflections inside the multiwall polycarbonate matrix was described. This is often a desirable feature to scatter direct sunlight if there is something to scatter the light in the orthogonal axis. However, this natural scattering of the multiwall is sometimes undesirable. For example, the north wall of the skylight module 100 only receives direct sunlight in the early morning and late afternoon in the spring and summer. The one-dimensional scattering of this light creates glare spots during these periods since all of the direct sunlight is directed into a circular beam emanating from the panel. Diffusing sheets placed on the outer faces of the panels can somewhat diffuse the light coming from these internal reflections, but do nothing to attenuate the cause of the glare, which is the internal reflections themselves. This is because the light passes through the diffusing sheet only one time—on the way in or on the way out. Due to the multiple internal reflections in the multiwall sheets, light passes through the diffusing strips placed inside the matrix of plastic cells multiple times, multiplying their effectiveness and providing much more attenuation of the one-dimensional scattering compared to diffusing sheets placed on the inner or outer surfaces.
In order to increase strength and thermal insulation, multiwall panels preferably have three to five cavities. This provides the opportunity to employ multiple types of diffusers in series for different desired diffusing effects. For example, the east and west walls of the skylight module 100 must both diffuse and direct incoming horizontal or low-angle light downward into the space. For this application, diffusing strips may be placed in the outermost cell (towards the light source), and strips of a light-directing prismatic sheet may be placed in the innermost cell (towards the inner space). For good two-dimensional scattering, two strips of prismatic lenses may be cut at orthogonal angles and placed in series, one diffusing in a horizontal direction and one in a vertical direction. Alternatively, these orthogonally cut strips may be alternated or blended to achieve non-symmetric diffusing patterns. For example, if two thirds of the strips are cut to as to scatter horizontally, and one third to scatter vertically, a cone-shaped diffusing pattern may be achieved.
Central to the skylight module 100 is a low cost smart controller board 130 that is housed in each module that manages the angle of the louvers. The key control inputs are:
If the space below the skylight module 100 is unoccupied, it is possible that the illumination setpoint level would be zero. That is, the module would be in 100% heating mode. In this case, it is necessary to know the position of the sun in the sky and to know the amount of direct vs. diffuse solar radiation to position the louvers 200. The module control system is hierarchical, with a central controller preferably overseeing the activity of individual controller boards 130 on each skylight module 110. There is great advantage to making each skylight module 100 as self-sufficient as possible regarding its data and control activities to reduce the complexity of communications and interaction between the central and distributed controllers. This is made challenging by the need to make the controllers very low cost, which implies limited memory and computing resources.
A software program provides the controller with knowledge of the sun position to within one tenth of a degree and uses less than 4k of memory and a negligible amount of computing cycles. The algorithm takes advantage of the fact that the modules require only single-axis tracking, so the only parameter of interest for the louver pointing is the angle of the sun incident on the skylight module 100 projected into a vertical north/south plane. Furthermore, for a particular location, (and east/west orientation of the module) this angle of interest follows a fairly well behaved set of curves depending on the time of year, as shown in
Another key parameter for controlling the daylight coming through the module is the incident solar radiation and the relative amounts of direct vs. diffuse light. Commercially available sensors employ a shadowing disk that is articulated to stay between a shadowed sensor and the solar disk. These are very accurate but prohibitively expensive to be deployed in renewable energy projects. To solve this problem, a low cost sensor is installed on each module that provides the necessary information to the controller on each module.
A drawing of the sensor 500 is shown in
It is also desirable to provide storage for the heat generated by the modules described above, and a thermal storage tank may be provided for this purpose. Moreover, partitioning and stratification for thermal storage of solar-generated heat is preferred. This is especially true of solar systems which drive absorption chilling equipment, because the solar heat is only useful above 160 F, and mixing of the hotter fluid that is returning from the solar collectors with cooler water in the storage tank creates entropy and degrades the utility of the heat. The ideal storage tank would approach perfect slug flow in a linear storage volume, with a hot end and a cold end. The cold end would supply the collectors with the coldest water, thereby achieving highest efficiency of the solar collection, and would return to the hot end. The hot end would supply the thermal loads, thereby achieving the best utility of the resource, and return to the cold end.
In order to make large commercial solar hot water systems practical and cost efficient, the cost of the thermal storage tanks must be kept within practical limits. Pressurized, welded steel tanks have the advantage of being able to be plumbed directly into the system piping, and are cost effective for smaller systems; however, large commercial solar thermal systems require tank sizes of several thousand up to 10 thousand gallons. Pressurized tanks at these sizes are not cost effective, and furthermore such large tanks are difficult to transport and install in existing buildings. An alternative storage tank technology makes use of unpressurized tanks that use a cylindrical foam insulation body with a riveted sheet metal skin to handle the hoop stress resulting from the hydrostatic pressure of the water in the tank. These tanks have a cost per unit volume of storage about one half to one third that of pressurized tanks, and have a practical height limit of about six feet. Unpressurized tanks also have the advantage of being shipped in flattened containers and assembled on site, which allows large tanks to be fit through doors and passageways to be installed in existing mechanical rooms.
Thermal partitioning of the tank may be done using natural thermoclines, in which the buoyancy of the hotter water keeps it at the top of the column, while the colder water stays at the bottom. This approach, while simple, has several drawbacks. First, the velocity of the fluid flowing into the tank causes mixing in the vicinity of the inlet tube. This can be reduced by reducing the velocity at which the fluid enters the tank, and by making the flow direction horizontal so as not to inject water across the isotherms and directly causing mixing. However, at higher flowrates large diffusing nozzles are required to reduce the exit velocity enough to reduce mixing, and in any case some mixing is unavoidable. Second, in order to achieve good thermal separation, the tank must be tall to make the most use of gravity as the separator. This has two drawbacks. First, the additional height increases the hydrostatic pressure on the lower part of the tank walls. This is not an issue for pressurized metal tanks because the additional static pressure is small compared to the design pressure of the tank. However, as discussed above, low-cost unpressurized tanks have a height limit, and stratification of large tanks is problematic. For example, a 1500 gallon tank with a maximum height of six feet has a diameter of about 10 feet. This height/diameter ratio of 6:10 is the inverse of that which would yield good stratification. One prior art solution to this is to plumb several tanks in series, top to bottom, as shown in
As shown in
The water flows through the four chambers 610 of the middle layer, then down and through the lower layer chambers. The fluid flow direction is opposite for flow to/from the thermal loads; the fluid is drawn out of the top and returns to the bottom chamber. Because the fluid volumes are positively separated by barriers, there is no restriction on the inlet velocity of the fluid, because mixing within one chamber has little loss of entropy. When there is no flow, it is beneficial for the fluid not to mix and for there to be little conduction or convection between cells. The openings 620 are kept small to reduce mixing, and because the hot cells are on top, there will be no upward mixing through the opening. Dynamic simulations have shown that 12 chambers 610 aligned in series provide a close approximation of classic slug flow, and little benefit is derived from increasing the number of chambers. However, if more chambers are desired for a larger tank, the number of partitions per layer could be increased by six or eight.
The largest practical size for an unpressurized storage tank is about 3000 gallons. If a system requires more storage than this, multiple tanks can be plumbed in series as shown in
Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with said underlying concept. It should be understood, therefore, that the invention may be practiced otherwise than as specifically set forth herein.
This application is based upon and claims benefit of copending U.S. Provisional Patent Application Ser. No. 61/589,933 entitled “Skylight Energy Management System,” filed with the U.S. Patent and Trademark Office on Jan. 24, 2012 by the inventor herein, the specification of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61589933 | Jan 2012 | US |