This disclosure relates generally to skylight systems, and more specifically to guard systems for skylights.
A common architectural practice in the design of homes and buildings is to utilize skylights to provide or increase the amount of natural light to the interior. Skylights, being disposed generally on the roof tops of structures, are exposed to the damaging effects of falling debris, such as tree shedding (branches, tree nuts, etc.) and ice chunks from higher adjacent structures. Accordingly, skylights can be fitted with guards that protect the skylight from falling debris.
For flat roofs that are common to commercial and industrial buildings, skylights pose a safety hazard. It is common practice for maintenance personnel to access these roofs to perform general maintenance and repairs. The maintenance personnel have been known to accidentally fall onto skylights or, in some instances, intentionally sit on the skylights. As skylights age, they can deteriorate (e.g., turn brittle) and become more prone to breakage upon being flexed. Accordingly, every year there are many fall related fatalities associated with skylights, not only for maintenance personnel falling through the skylight, but also for persons within the building who happen to be below the skylight.
To address these safety hazards, the Occupational Safety and Health Administration (OSHA) considers rooftops of commercial/industrial buildings as a “walking-working surface” and has promulgated regulations regarding the guarding of skylights and other rooftop structures. These regulations are found generally at 29 CFR 1910.23, with skylights addressed more specifically at 29 CFR 1910.23(a)(4) and 29 CFR 1910.23(e)(8). The regulations at 29 CFR 1910.23 are hereby incorporated by reference herein in their entirety, except for express definitions contained therein.
The OSHA regulations have given rise to the commercial availability of skylight guard systems. Problems can arise with these conventional guard systems, particularly in the context of retrofitting the guard to an existing skylight. Some systems require that the guard be secured to the skylight using fasteners that penetrate the frame of the skylight; this can introduce leaks into the skylight. Other systems require no fasteners, but can be subject to forces that cause plastic deformation due to generation of yield stresses and/or creep stresses, causing the guard system to become loosened and insecure over time. Examples of such guards include U.S. Pat. No. 5,237,788 to Sandow and U.S. Pat. No. 6,209,271 to Kovacs, the disclosures of which are hereby incorporated by reference herein in their entirety except for express definitions and patent claims contained therein. Yield and creep stresses can be problematic for certain materials of choice, for example aluminum and aluminum alloys, which are easily extruded, are lightweight, and have excellent corrosion resistance for outdoor applications.
A skylight guard system addresses the shortcomings of conventional skylight guards would be a welcomed addition.
Various embodiments of the disclosure include a guard assembly for protection of skylights suitable for newly installed skylights as well as for retrofitting to existing skylights, and methods of installation. In one embodiment, the various components of the guard assembly can be sized to proper dimensions at the installation site using standard tools (e.g., a hack saw, a bolt cutter, and/or a wire cutter) to provide a customized fit of the guard assembly to a frame of the skylight. The guard assembly can also include modular reinforcement components that can be field installed to prevent deformation of the guard assembly. In one embodiment, a guard structure that extends over the skylight can be readily removed and reinstalled, for example to service the resident skylight.
Structurally, a skylight assembly is disclosed, comprising a skylight having a substantially rectangular frame and a skylight guard assembly operatively coupled with the frame of the skylight. In one embodiment, the skylight guard assembly includes a pair of rails disposed on opposing sides of the rectangular frame of the skylight, each rail of the pair of rails including a first end and a second end, each of the first end and the second end defining a respective opening. In one embodiment each of the pair of rails are hollow tubular members. A guard structure is operatively coupled with the pair of rails and extends over the skylight. The guard structure can comprise a mesh. The skylight assembly can further comprise a plurality of corner blocks, each disposed in a corresponding one of the respective openings of the first end and the second of the pair of rails. In one embodiment, the skylight assembly includes pair of tension members, each tension member extending substantially between and orthogonal to the pair of rails and being operatively coupled to a respective pair of the plurality of corner blocks. The tension members can be coupled to the corner blocks with threaded fasteners that pass through the corner blocks.
In various embodiments, each of the pair of rails includes a laterally extending flange that extends over the frame of the skylight. Each of the pair of rails can define a channel that extends parallel to the frame of the skylight, the guard structure being disposed in the channel.
Each of the plurality of corner blocks can include an extended portion that extends outward from the corresponding one of the respective openings. The pair of tension members can be coupled to the extended portions of the corner blocks.
In one embodiment, a method embodiment is disclosed for protecting a skylight having a rectangular frame. The method includes:
The set of instructions can further comprise inserting each of the four corner blocks into the respective one the openings of the pair of rails.
Referring to
In one embodiment, the guard structure 34 comprises a mesh 70 with a plurality of longitudinal elements 72 (e.g., rods, wires, or tubes) that extend substantially parallel to the rails 36 and 38, and a plurality of lateral elements 74 that extend substantially perpendicular to the longitudinal elements 72. The longitudinal elements 72 include peripheral longitudinal elements 76 that are coupled to the rails 36 and 38. The mesh 70 can be welded together (as depicted), interwoven, or a combination thereof. The guard structure 34 can also comprise other structural forms, including but not limited to interwoven or overlaid bands, expanded metal, angled mesh, and/or perforated sheet or plate.
Referring to
In one embodiment (not depicted), at least a portion the head portion 82 does not extend longitudinally beyond the rail 36, 38, such that the through hole 94 is disposed within the rail 36, 38. In such embodiments, apertures can be formed in the rail 36, 38 that are substantially concentric with the through axis 96, and both the head portion 82 and the apertures of the rail 36, 38 extend beyond the respective frame members along which the rail 36, 38 extends.
Referring to
Functionally, the corner blocks 80 spread the load imparted by the tension members 42 and 44 over larger bearing surfaces than would simple aperture structures that pass through the rail 36 and 38. The larger bearing surfaces reduces the local stresses on the rail 36 and 38 per unit load imparted by the tension members 42 and 44, thereby reducing the potential of locally deforming the rail 36 and 38 due to excessive tensile stresses and creep stresses. The reduced stresses enable higher forces to be implemented by the tension members, resulting in a greater clamping force between the guard assembly 30 and the skylight 32.
The notch 98 can be utilized to help prevent the corner block 80 from sliding out of the respective opening 56 into which it is inserted. In one embodiment, a hole can be drilled and tapped and a set screw mounted therein (not depicted) so that the set screw aligns with the notch 98 when the block 80 is at the desired depth in the opening 56. In one embodiment, the rail 36, 38 can be dimpled (not depicted), for example with a punch or chisel, at a location that aligns with the notch 98. In one embodiment, holes can be formed laterally through rail 36, 38 proximate to and substantially parallel to the notch axis 104 when the block 80 is at the desired depth in the opening 56, and a pin (not depicted) placed through the holes, thereby residing in the notch 98. The screw, pin, and/or dimple structure provides an obstruction that helps prevent the corner block 80 from sliding out of the opening 56 of the rail 36, 38. The various ways to utilize the notch 98 described above are amenable to on-site fabrication techniques.
Referring to
Referring to
Referring to
In various embodiments, the rail 36 is aligned with a first of the frame members (frame member 62) so that the flange member 126 rests on the first frame member 62. The rail 36 can be cut from common stock at the installation site to approximately the length of the first frame member 62. In one embodiment, the corner block 80a is disposed in the opening 56 (
In one embodiment, the tension member 42 and fastener 110 are brought into substantial alignment along the through axis 96 on opposite sides of the through hole 94 (
In one embodiment, the tension members 42 and 44 can be cut to a length that is shorter than the frame members 64 and 66 along which the tension members 42 and 44 are adjacent, the length of the tension members 42 and 44 being long enough to readily engage the fastener when passed through the respective corner block 80, and short enough so that the tension members 42 and 44 do not engage both corner blocks 80 that are coupled via the fasteners 110. In one embodiment, the tension members can include internal threads formed along the entire or substantial length, to facilitate threadable engagement with the fasteners 110 regardless of the cut length of the tension members; in other embodiments, the tension members can comprise tubular structures with smooth interior walls, with threads being formed at the ends of the tension members 42 and 44 with a hand tap after the tension members 42 and 44 are cut to length. In still other embodiments, the tension members 42 and 44 and fasteners 110 are replaced by threaded rods (not depicted) that are passed through the corner blocks 80a, 80b and 80c, 80d and coupled thereto with nuts.
The guard structure 34 is operatively coupled to the rail 36. The guard structure 34 is of sufficient width so that it bows above the skylight 32 when opposing sides are coupled to the rails 36 and 38. For embodiments where the rail 36 includes the channel structure 114, an edge of the guard structure 34 is inserted into the channel 116 of the rail 36. In one embodiment, the guard structure is then bowed so that an opposing edge of the guard structure 34 can be inserted into the channel of rail 38.
For embodiments where the guard structure 30 is the mesh 70 and/or having peripheral longitudinal elements 76, one of the peripheral longitudinal elements 76 is inserted into the channel 116 of the rail 36 (
In some embodiments, the clips 150 are coupled to the claw portions 132 and 134 of the wall portions 122 and 124, thereby capturing the peripheral longitudinal element 76 within the channel 116 (
In one embodiment, the clips 150 can be readily removed by pulling the lead in 162 away from the claw portion to which the second hook portion 156 is coupled (claw portion 134 in
Functionally, the clips 150 capture the peripheral longitudinal elements 76 within the channel 116, thereby helping prevent the mesh 70 from being lifted out of the channel 116. The clips 150, being disposed between lateral elements 74 that are adjacent each other, can also resist movement of the mesh 70 along the length of the channel 116 (i.e., parallel to the longitudinal axis 46).
In some embodiments, rather than utilizing the clips 150 which are removable, the guard structure 34/mesh 70 can be permanently affixed to the rails 36 and 38, for example by welding or by a permanent crimped-on clip (not depicted). Permanently affixing the guard structure 34 to the rails 36, 38 can facilitate tamper resistance to deter burglary and vandalism.
It is noted that the assembly of the guard assembly 30 is not limited to the order of the steps as presented herein. For example, it may be advantageous to mount the guard structure 34 to the rails 36 and 38 prior to coupling the rails 36 and 38 to the skylight 32, instead of after as depicted and described herein. Other steps of the assembly method recited herein can be performed out of the disclosed sequence, as will be readily apparent to the artisan having ordinary skill in the art.
Each of the additional figures and methods disclosed herein can be used separately, or in conjunction with other features and methods, to provide improved devices and methods for making and using the same. Therefore, combinations of features and methods disclosed herein may not be necessary to practice the disclosure in its broadest sense and are instead disclosed merely to particularly describe representative and preferred embodiments.
Various modifications to the embodiments may be apparent to one of skill in the art upon reading this disclosure. For example, persons of ordinary skill in the relevant art will recognize that the various features described for the different embodiments can be suitably combined, un-combined, and re-combined with other features, alone, or in different combinations. Likewise, the various features described above should all be regarded as example embodiments, rather than limitations to the scope or spirit of the disclosure.
Persons of ordinary skill in the relevant arts will recognize that various embodiments can comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the claims can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
References to “embodiment(s)”, “disclosure”, “present disclosure”, “embodiment(s) of the disclosure”, “disclosed embodiment(s)”, and the like contained herein refer to the specification (text, including the claims, and figures) of this patent application that are not admitted prior art.
For purposes of interpreting the claims, it is expressly intended that the provisions of 35 U.S.C. 112(f) are not to be invoked unless the specific terms “means for” or “step for” are recited in the respective claim.
This application claims the benefit of U.S. Provisional Patent Application No. 61/977,444, filed Apr. 9, 2014, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1233530 | Whitnell | Jul 1917 | A |
2515451 | Isacoff | Jul 1950 | A |
3762120 | Janssen | Oct 1973 | A |
4571897 | Kerr | Feb 1986 | A |
4762160 | Bechtold et al. | Aug 1988 | A |
5237788 | Sandow | Aug 1993 | A |
D354817 | Kovacs et al. | Jan 1995 | S |
5419090 | Sandow | May 1995 | A |
5502934 | Coyne et al. | Apr 1996 | A |
5669186 | Verby et al. | Sep 1997 | A |
6009929 | Linderman et al. | Jan 2000 | A |
6161348 | Morris | Dec 2000 | A |
6199330 | Cobb | Mar 2001 | B1 |
6209271 | Kovacs | Apr 2001 | B1 |
7444784 | Brown | Nov 2008 | B2 |
7624547 | Brinton et al. | Dec 2009 | B1 |
8782973 | Everingham et al. | Jul 2014 | B1 |
20020139063 | Crane | Oct 2002 | A1 |
20090107060 | Ellis et al. | Apr 2009 | A1 |
20110120030 | Swindell et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
61977444 | Apr 2014 | US |