BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view in partial cross-section of the tubular skylight of the present invention;
FIG. 2 is a perspective view of the present tube with longitudinal corrugations for reducing focal points;
FIG. 3 is a side elevational view of the inside of the tube shown in FIG. 2;
FIG. 4 is a top plan view of the tube shown in FIG. 2;
FIG. 5 is a detail of part of the circumference of the tube in circle “5” of FIG. 4;
FIG. 6 is a perspective view of an alternate tube with dimples for reducing focal points;
FIG. 7 is a top plan view of the tube shown in FIG. 6;
FIG. 8 is a side elevational view of the tube as seen along the line 8-8 in FIG. 7; and
FIG. 9 is a detail of a dimple in circle “9” of FIG. 8.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring initially to FIG. 1, a tubular skylight made in accordance with the present invention is shown, generally designated 10, for lighting, with natural sunlight, an interior room 12 having a ceiling dry wall 14 in a building, generally designated 16. FIG. 1 shows that the building 16 has a roof 18 and one or more joists 20 that support the roof 18 and ceiling dry wall 14.
As shown in FIG. 1, the skylight 10 includes a rigid hard plastic or glass roof-mounted cover 21. The cover 21 is optically transmissive and preferably is transparent. In one embodiment, the cover 21 can be the cover disclosed in the above-mentioned '712 patent. Or, the cover 21 can be other suitable covers, such as the covers marketed under the trade name “Solatube” by the present assignee.
The cover 21 can be mounted to the roof 18 by means of a ring-like metal flashing 22 that is attached to the roof 18 by means well-known in the art. The metal flashing 22 can be angled as appropriate for the cant of the roof 18 to engage and hold the cover 21 in the generally vertically upright orientation shown.
As further shown in FIG. 1, an internally reflective hollow shaft assembly, generally designated 24, is connected to the flashing 22. The cross-section of the assembly 24 can be cylindrical, rectangular, triangular, etc. Accordingly, while the word “tube” may be used from time to time herein, it is to be understood that the principles of the present invention are not to be limited to a cylinder per se unless otherwise specified.
The shaft assembly 24 extends to the ceiling 14 of the interior room 12. Per the present invention, the shaft assembly 24 directs light that enters the shaft assembly 24 downwardly to a light diffuser assembly, generally designated 26, that is disposed in the room 12 and that is mounted to the ceiling 14 or to a joist 20 as described in the above-mentioned '593 patent.
The shaft assembly 24 can be made of a metal such as an alloy of aluminum or steel, or the shaft assembly 24 can be made of plastic or other appropriate material. The interior of the shaft assembly 24 may be rendered reflective by means of, e.g., electroplating, anodizing, metalized plastic film coating, or other suitable means. In one preferred embodiment, the shaft assembly 24 is rendered internally reflective by laminating the inside surface of the shaft assembly with a multi-ply polymeric film made by Minnesota Mining and Manufacturing (3M). A single ply of such film is transparent, but when hundreds of layers are positioned flush together and then thermally laminated to the interior surface of the shaft assembly 24, the combination is specularly reflective.
Thus, in non-limiting implementations the shaft may be made of a composite of a metal substrate, e.g., aluminum or steel, with a reflective film adhered to the shaft using an adhesive. The shaft substrate can also be made of a polymer with the reflective film bonded to it.
Alternatively, if the shaft is metal, the shaft substrate can be polished to provide a reflective surface or have a highly reflective metal such as silver or aluminum vapor deposited directly to its surface without the need for a separate adhesive.
In yet other implementations a reflective film itself may be used as a shaft substrate. In such an implementation, metal is vapor-deposited onto the film surface. Or, the film can include a reflective multi-layer polymer composite.
In one preferred embodiment, the shaft assembly 24 is established by a single tube. However, as shown in FIG. 1, if desired, the shaft assembly 24 can include multiple segments, each one of which is internally reflective in accordance with present principles. Specifically, the shaft assembly 24 can include an upper shaft 28 that is engaged with the flashing 22 and that is covered by the cover 21. Also, the shaft assembly 24 can include an upper intermediate shaft 30 that is contiguous to the upper shaft 28 and that can be angled relative thereto at an elbow 31 if desired. Moreover, the shaft assembly 24 can include a lower intermediate shaft 32 that, if desired, may be slidably engaged with the upper intermediate shaft 30 for absorbing thermal stresses in the shaft assembly 24. And, a lower shaft 34 can be contiguous to the lower intermediate shaft 32 and join the lower intermediate shaft 32 at an elbow 35, with the bottom of the lower shaft 34 being covered by the diffuser assembly 26. The elbow 35 may be angled as appropriate for the building 16 such that the shaft assembly 24 connects the roof-mounted cover 21 to the ceiling-mounted diffuser assembly 26. It is to be understood that where appropriate, certain joints between shafts can be mechanically fastened and covered with tape in accordance with principles known in the art.
In any case, the present shaft assembly 24 is formed with surface irregularities on part or all of its inner surface for reflecting light in a way that minimizes the chance of hot spots while nonetheless maximizing light throughput. The surface irregularities may be those described in the present assignee's U.S. patent publication no. 2003/0061775, incorporated herein by reference, or the corrugations or dimples disclosed herein.
More specifically, FIGS. 2-5 show a hollow shaft 40 that may be used as any one of the shafts or shaft segments shown in FIG. 1 and that is formed throughout its length and circumference with linear longitudinal corrugations 42, it being understood that the corrugations 42 may be formed in only part of the length and/or circumference of the shaft 40. As shown best in FIG. 5, the corrugations 42 can have a V-shape in transverse cross-section, although alternately they may be U-shaped.
In general, each corrugation can vary in its included angle from less than one hundred eighty degrees to greater than one degree, and preferably the included angle is greater than one hundred twenty degrees to minimize reflections. Also, the angle can vary around the shaft to provide a greater amount of mixing of the light before it reaches the base diffuser, as will be made clearer momentarily in reference to FIG. 5.
In addition to the controlled light spreading features, the corrugations 42 also allow easier bending of the substrate, when metal, to form a cylindrical shaft from a sheet, and to increase the lateral strength of the shaft 40 due to the increased moment of inertia this geometry provides. These two features allow easier assembly of small diameter tubing and the use of reduced caliper metal due to the increased strength.
With greater attention to preferred non-limiting details in FIG. 5, each corrugation 42 defines a midline 44 and opposed edges 46, 48, with adjacent edges of adjacent corrugations joining each other as shown. While for illustration the midlines 44 in FIG. 5 are defined to be the parts of the corrugations that are radially inset from the edges, hence establishing concave corrugations, the skilled artisan will readily appreciate that the convention can be reversed, i.e., that midlines can be defined to be the radially outside parts of the corrugations, hence establishing convex corrugations.
In any case, FIG. 5 shows that an angle α is formed between transverse tangents to the edges 46, 48 of each corrugation. When the corrugation is V-shaped as shown, the transverse tangents are simply lines extending in the transverse dimension from the midline 44 to each edge 46, 48 as shown, i.e., the angle α is the angle of the “V”. As further shown in FIG. 5, odd-numbered corrugations can have a first angle α, e.g., one hundred twenty degrees, whereas even-numbered corrugations can form a second angle α, e.g., one hundred twenty five degrees, with the odd-numbered corrugations alternating around the circumference of the shaft 40 with the even-numbered corrugations. This geometry results as shown in an angle of two and a half degrees being established between the normal 50 to an edge 48 and the normal 52 to the adjacent midline 44, and an angle of five degrees being established between the normal 52 to a midline 44 and the normal 54 to the next successive midline 44.
Alternatively to corrugations, FIGS. 6-9 show a dimpled hollow shaft 60 that may be used as any one of the shafts or shaft segments shown in FIG. 1. Specifically, the shaft 60 is formed throughout its length and circumference with dimples 62, it being understood that the dimples 62 may be formed in only part of the length and/or circumference of the shaft 60.
A dimple 62 may have any suitable shape, e.g., one of the myriad of shapes of golf ball dimples, e.g., spherical, elliptical, parabolic, hyperbolic, etc. In the illustrative non-limiting embodiment shown best in FIG. 9, each dimple 62 has a concave (or convex, depending on the perspective, i.e., outside or inside) saucer-like shape and hence can establish what might be thought of as the very bottom portion of spherical or parabolic or other bowl that is curvilinear throughout its surface.
Accordingly, in the non-limiting implementation shown, each dimple 62 defines a center 64 and a preferably circular periphery 66. A tangent 68 to the periphery 66 establishes an angle β with respect to a tangent 70 to the center 64 of no more than two degrees (to give greater resolution for seeing the angle β in FIG. 5, the tangent 70 to the center 64 has been offset to the right of the center 62.) Additionally, the distance in the radial dimension between the center 64 and periphery 66 preferably is less than one half inch (<0.5 inches, or less than approximately one and one-quarter centimeters). By limiting the angle β to less than two degrees, the loss of low elevation sunlight is prevented. By limiting the distance in the radial dimension between the center 64 and periphery 66 to less than one-half inch, excessive reflections are prevented, which could otherwise eventually lead to sunlight being reflected back up and out of the dome 21 (FIG. 1) and hence decrease the light throughput of the shaft 60.
In non-limiting embodiments the corrugations and/or dimples described above can be formed in any appropriate way. In one non-limiting example the metal shaft, or the reflective film, or the adhesive can be formed or patterned with an embossing roller. In another example the metal shaft, film, or adhesive can be extruded or coated with the required profile in the extrusion or coating die. Yet again, the metal shaft, film, or adhesive can be molded with the required pattern in a mold tool.
While the particular SKYLIGHT TUBE WITH REFLECTIVE STRUCTURED SURFACE is herein shown and described in detail, the invention is to be limited by nothing except the appended claims.