The present invention relates generally to a tubular skylight assembly, and more particularly to a tubular skylight assembly with a displacement absorber and interlocking telescoping tubes.
Tubular skylights are used for transmission of outdoor, natural lighting to building interiors. Energy free and aesthetically pleasing, such devices enjoy great popularity. Tubular skylights are often installed in new construction, both residential and commercial, but also are installed as retrofitted improvements to existing residential and commercial structures.
A tubular skylight often includes an exterior dome upon the roof of a building, translucent or transparent. Light received by the dome is transmitted through light tubes to the interior of the building. The light tubes are disposed through the space between the exterior roof and the interior building ceiling. At the interior building ceiling, the transmitted light is passed through an interior light diffuser.
With more experience in the installation of tubular skylights, several problems have come to be identified. In no particular order of priority, a first problem arises from recognition that different dimensions exist in different buildings between the exterior roof and the interior ceiling, and that those dimensions may vary greatly. Moreover, even as to a particular structure, different dimensions exist between the roof and ceiling depending upon placement of the exterior dome upon the roof relative to placement of the diffuser on the interior ceiling. Economy in manufacture urges that standardization of the light tunnels would be desirable, yet a single length of light tunnel, or even a limited series of standardized lengths, cannot account for the virtually infinite variations encountered in the field. It would be desirable to have a skylight system with a light tunnel assembly that could be finely adjusted to meet the dimensions of any particular installation without requiring cutting of the light tunnel in the field or cumbersome manipulation of components. At the same time, it would be further desirable that any installation of such apparatus meeting the foregoing concerns also be as simple and foolproof as possible so as to prevent mis-assembly, mistakes, and so forth. Finally, any skylight system meeting all of the foregoing concerns also, desirably, should be inexpensive to manufacture, efficiently shippable, and easy to install.
Another problem is caused by the fact that buildings in which such tubular skylights are to be installed often have pitched roofs. While the pitch of building roofs usually is at one of only several standard gradients, the angle at which the light tunnels beneath such a roof must traverse to reach the interior diffuser panel can vary infinitely. While several devices that have already been commercialized purport to depict a straightforward and simple alignment between the exterior dome and the interior diffuser panel, experience in the field teaches that precise measurement, good alignment, and efficient light transmission can be difficult to achieve with such devices. It would be desirable, therefore, to have a skylight assembly that would allow simple yet effective fine tuning in the field of the angular orientation of the light tunnel.
Still further, it has come to be recognized that some tradesmen installing tubular skylights often prefer to assemble and install as much of a skylight system as possible from the building roof, and concomitantly to minimize the amount of time and assembly required from indoors. Reasons for this preference are varying, but include concern that indoor work in retrofitting efforts to existing buildings is intrusive to building occupants, may be crowded with other tradesmen engaged in other tasks in new construction installations, risks collateral damage from tools, ladders, and the like to interior, fine-finished surfaces such as floors and walls, and so forth. Because those who install tubular skylights often view as better devices that can be more completely assembled and installed from the outside, it would be desirable to have a skylight system that allows for the assembly and installation of as much of a skylight system as possible from the exterior building roof.
A fourth problem has been discovered with specific reference to installation of tubular skylights in new construction. Particularly, it is often desirable to be able to install a tubular skylight before the finished interior ceiling is installed. Such a desire might stem from the increased latitude provided with the scheduling and coordination of the various tradesmen involved in new construction. Moreover, installation of the skylight assembly before installation of the finished ceiling allows for more ready and efficient inspection by governmental authorities monitoring code compliance. Some attention to this concern is noted in U.S. Pat. No. 5,896,713, which contemplates attachment of a support ring to a ceiling joist prior to installation of ceiling drywall. However, the device in the '713 patent requires, at a minimum, installation of the tubular skylight after installation of the ceiling joist, and makes no allowance for installations in buildings having no ceiling joists. It would be more desirable, therefore, to have a tubular skylight assembly that could be installed after construction only of the building roof and before construction or installation of any ceiling structure or components. Such would be desirable, for example, as to installation in which ceiling joists are not ever to be installed, for example with the use of suspended tile ceilings.
Three other problems have been identified with reference to existing tubular skylight systems, and these three problems do not relate to the method or timing of installation but instead to the function and continued integrity of the skylight after installation. First, governmental authorities in some jurisdictions have enacted building code requirements that require devices such as tubular skylights to withstand certain earthquake forces. For example, one such requirement for a tubular skylight for use with the suspended ceiling requires that the tubular skylight assembly remain affixed to the roof structure of a building even if the suspended ceiling collapses as a result of earthquake forces. Skylight assemblies in which the light tubes or other components are supported by the ceiling cannot satisfactorily meet such requirements. It would be desirable to have a skylight assembly the components of which are carried by the roof of the building rather than by the ceiling.
A second functional problem has been discovered with regard to thermal expansion and contraction of the skylight assembly and/or the building in which the assembly is installed. Various components of the building and/or the skylight assembly may expand or contract thermally at different rates. Moreover, mechanical compression of an installed skylight assembly may result from workers upon the roof of a building, the weight of whom may tend to deflect the roof downward. Both the structural integrity and the aesthetic appeal of the skylight system should be preserved in either event. Thermal expansion of the skylight assembly, or compression of the roof sheathing by workers upon the roof, might cause the diffuser panel at the interior ceiling to protrude from the plane in the ceiling, or may break loose attached components of the skylight assembly, either result being undesirable. Alternatively, either effect may cause the structure of the exterior dome to protrude upward from its installed position upon the roof, breaking loose weatherproofing that would otherwise seal the installed assembly. It would be desirable, therefore, to have a skylight assembly that absorbs thermal expansion and contraction, and mechanical compression, while preserving weatherproofing, structural integrity, and aesthetic appeal of the assembly.
Finally, another problem has been encountered with the use of tubular skylights in applications in which a rectangular diffuser panel is used at the interior ceiling, such as with a suspended ceiling. It is known that light tubes of generally circular cross-section are most efficient in transmitting light from the exterior dome to the interior diffuser panel. However, adapting from such a generally circular cross-sectional light tunnel to a rectangular diffuser panel has been found to cause differential lighting upon the diffuser panel. Sometimes known as “hot spots,” in such applications the diffuser panel tends to have regions of greater light intensity and regions of lesser light intensity, a phenomenon considered to be undesirable by the consuming public. Rather, it would be desirable in such applications to provide an adaptor member between the generally circular cross-sectional light tunnel and the rectangular diffuser panel that provides a more pleasing and even distribution of light upon the diffuser panel.
The present invention relates to a new skylight assembly that provides distinct advantages of the conventional systems and methods.
In response to the described problems and difficulties encountered before, a new skylight with a displacement absorber and interlocking telescoping tubes has been discovered.
According to the present invention, a tubular skylight assembly for use in a building having a roof and a ceiling is provided. The assembly includes a mounting collar and an exterior dome is attached to the mounting collar. A light transmitting top elbow depends from the collar inwardly through the roof of the building. Attached below the top elbow may be first and second light tubes that telescope between each other. Attached to the bottom of the light tubes may be a displacement absorption member. A displacement absorber likewise is a light tunnel, but is compressible and flexible, and may be bent at an angle different from the axis of the light tunnel(s). At the lower end of the displacement absorber may be an adaptor box. Circular at its top and rectangular at its bottom, the adaptor box efficiently and effectively transmits the light received from the tunnel assembly and flexible displacement absorber to an interior diffuser at the interior ceiling.
Accordingly, there is provided in the present skylight assembly a collar. The collar may include a condensation collection gutter, as well as drain holes from the gutter to the exterior of the skylight assembly. The exterior dome of the skylight assembly may be attached to the collar, either by snap fit or by mechanical fasteners. The collar generally would be positioned exterior to the building, upon the building roof, and flashing between the collar and the roof weatherproofs the skylight assembly with respect to the building. Alternatively, the collar itself as a single unit may provide for flashing of the installation.
A rigid top elbow is likewise provided. The top elbow is carried by the collar, and depends downwardly from the collar through the roof into the building interior. The top elbow may include an upper section and a lower section, with the upper and lower sections rotatable relative to each other at an angular junction between them. The top elbow also may include limiting means for limiting the top elbow from further downward movement relative to the collar once the top elbow has been assembled properly to a predetermined position in the collar. Likewise, the top elbow may include means for preventing upward movement of the top elbow relative to the collar once the top elbow has been properly assembled to such predetermined position within the collar.
Light tubes are carried by the top elbow, and depend downwardly from it further into the interior of the building. One or more light tubes, including first and second light tubes, may be used. The first and second light tubes are telescopically connected, such that one telescopes within the other to form an assembly. One or more such light tube assemblies, each such assembly including telescopically connected first and second light tubes, may be connected in series, as dimensionally required in installations of particular dimensions. Of the two light tubes, the one of larger diameter includes a female interlock feature, and the one of smaller diameter includes a male interlock feature adapted to abut the female interlock feature. The male and female interlock features are disposed proximate to ends of the respective light tubes, such that the two interlock features will abut as the two light tubes approach their greatest length of telescopic extension. Optionally, two male interlocks may be provided proximate to the opposing ends of the light tube of smaller diameter, to prevent disconnection of the telescopic assembly. Once installed in a particular building, and extended suitably for effective interconnection of the various skylight assembly components, the two light tubes are screwed, riveted, or otherwise fastened together.
A displacement absorber is carried by the lower end of the telescoping light tube combination. The displacement absorber transmits light through its interior aperture, but is capable of compression to smaller dimensions or extension to larger dimensions depending upon thermal contraction or expansion forces upon the skylight assembly or mechanical compression of the skylight assembly resulting upon weight upon the roof of the building. Further, the displacement absorber may be bendable relative to the axis of the first and second light tubes, so that the path of light provided by the exterior dome, top elbow, and light tubes may be bent to another direction for orientation into the interior of the building.
Beneath and attached to the displacement absorber is an adaptor box. The adaptor box has an upper opening and an opposed lower opening. The upper opening is configured for attachment to the end of the displacement absorber. The lower opening of the adaptor box may be of any geometry, including a rectangular geometry fitting into standardized suspended ceiling grids.
The skylight assembly also includes secondary means for securing the assembly to the roof of the building, to provide, for example, earthquake resistance of the structure. Such means include cabling or strapping extending from roof structures to the lower aspect of the lower of the two light tubes, and also may include further securement to the lower adaptor box.
So configured, it is an object of the present invention to provide a new skylight assembly that has all of the advantages of the prior art and none of the disadvantages.
It is another object of the present invention to provide a new skylight assembly that may be easily and efficiently manufactured and distributed.
It is a further object of the present invention to provide a new skylight assembly that is of durable and reliable construction.
It is a further object of the present invention to provide a new skylight assembly that is easy to install.
It is a further object of the present invention to provide a new assembly that may be substantially assembled and installed from the exterior of the building.
Additional objects and advantages of the invention will be set forth in the following description or may be obvious from the description. Structural and operational details of preferred designs of the present invention and components embodying the invention and advantages obtained thereby will become apparent from the appended drawings and the detailed description to follow.
The details of the present invention, both as to its structure and as to its operation, can be understood in reference to the accompanying drawings, in which like reference numbers refer to like parts. It should be noted that the drawings may not be to scale in all instances, but instead may have exaggerated dimensions in some respects to illustrate the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode contemplated by the inventors of carrying out their invention, is set forth herein. Reference will be made in detail to the presently preferred embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, and is not meant as a limitation of the invention. For example, features illustrated or described as part of one embodiment may be used in another embodiment to yield a still further embodiment. It is intended that the present application include such modifications and variations as come within the scope and spirit of the invention. Repeat use of reference characters throughout the present specification and appended drawings is intended to represent the same or analogous features, elements, or components.
According to the present invention and with reference to
As depicted in
In
As will be explained in more detail below, cabling 90 may be used for secondary securement of skylight assembly 20 within a building, for example for compliance with earthquake resistance building code specifications.
Turning in detail to the components of skylight assembly 20,
As illustrated in
Top elbow 50 may also be configured to include means for preventing upward movement of top elbow 50 relative to collar 30 upon assembly of top elbow 50 within collar 30. One exemplary embodiment of such means is depicted in
As will be observed from
Light tube 60 and light tube 70 are attached together in telescopic engagement. As illustrated in
Light tubes 60, 70 include interlock features that define a stop position of the telescopic movement between the two light tubes. One embodiment of such interlock features is illustrated in
Interlocks 61, 71 as depicted in
Light tubes 60 and 70 may be assembled in telescopic engagement by inserting the end of light tube 70 opposite male interlock 71, 71′ into the end of light tube 60 opposite female interlock 61. Such assembly may be understood with reference to
As shown in
A displacement absorber 80, illustrated in
A lower adaptor box 95 is carried by the lower end of displacement absorber 80. One embodiment of a lower adaptor box 95 is depicted in
Flange 98 is disposed about the perimeter of diffuser receptacle 97 of lower adaptor box 95 in the embodiment shown in
In one embodiment, it has been found desirable to configure the walls 99 of lower adaptor box 95 to be nonplanar. As such, any cross-sectional evaluation of walls 99, such as at locations denominated as planes G, H, or I in
Skylight assembly 20 also may include means for secondarily securing the skylight assembly to the building roof, for example for compliance with governmental requirements that mandate withstanding certain earthquake forces. Cabling 90 may be provided in skylight assembly 20 for such secondary securement. As shown in
Cabling 90 may also be used to retain displacement absorber 80 and lower adaptor box 95 in place in during construction, as will be explained in more detail below.
With a rough opening first cut through a building roof, including through roof sheathing 26 from the exterior, installation of much of skylight assembly 20 into the building may be by several methods by tradesmen still upon the exterior roof, among which are the following exemplary methods.
With angular orientation E between upper section 53 and lower section 54 configured at approximately 180°, top elbow 50 may be inserted through collar 30, the bottom end of top elbow 50 opposite flange 51 inserted first. As top elbow 50 is pushed through collar 30, shoulder 52 or dimples 52′, as may be the case in a particular situation, come to bear against inner lip 32. Because top elbow 50 may be constructed of somewhat flexible material, such as for example sheet aluminum, sheet steel, or plastic, some temporary deflection of top elbow 50 allows passage of shoulder 52 or dimples 52′ past inner lip 32, until upper flange 51 of top elbow 50 abuts against inner lip 32 of collar 30. Shoulder 52 or dimples 52′ may be disposed in manufacture a predetermined distance from upper flange 51, such that when upper flange 51 abuts against inner lip 32, shoulder 52 or dimples 52′ likewise abut against ledge 35, at which point collar 30 is properly installed within collar 30. Collar 30 and flashing 40 are preferably shipped together by the manufacturer, with silicone sealing already applied between them. Alternatively, flashing 40 may be slipped upon top elbow 50, from the bottom of top elbow 50 and worked toward its top until annulus 41 is held against upper section 53 by collar 30. Further alternatively, collar 30 may itself also include flashing features adapted for the carrying of the skylight assembly 20 by the roof and for weatherproofing thereof as to the roof without use of flashing 40.
Upper light tube 60 and lower light tube 70 may have been shipped together in “knocked down” condition from the manufacturer, with lower light tube 70 telescoped within upper light tube 60, for economy of packaging and shipping, and to minimize opportunity for incorrect assembly in the field. As already described, lower light tube 70 may also optionally include second interlock 73, which prevents mistaken disassembly of light tube 70 from light tube 60. Top elbow 50 having been installed within collar 30, upper light tube 60, with lower light tube 70 telescoped within it, may be attached to the lower end of top elbow 50. Such attachment may be by screws, rivets, brads, or like techniques known in the art. During such attachment, lower light tube 60 is prevented from falling from the bottom of upper light tube 70 by engagement of female interlock 61 with male interlock 71 or interlock 71′.
In installations involving greater distances to be traversed by skylight assembly 20, additional light tubes may be serially attached to the bottom of second light tube 70, by screws, rivets, brads, and the like. For example, a second telescoping light tube assembly, constructed of a second set of first light tube 60 and second light tube 70, may be serially attached to the first set described above, for greater telescopic expansion in traversing such distance. Alternatively, as may be required only a single additional light tube may be attached to the bottom of second light tube 70, the telescopic adjustment of light tubes 60, 70 providing the required expandability needed.
Displacement absorber 80 may be attached, with upper band 85, to the lower end of lower light tube 70, by screws, rivets, brads, or like techniques known in the art. Also, screw eyes (not shown) may be attached to the lower portion of light tube 70, for later receipt of cabling 90. If additional telescoping assemblies are required, as described in the preceding paragraph, it has been found useful to attach such cabling 90 to the lowermost of such interconnected tubes, for stability in lowering the subassembly through the rough opening as will now be described.
At any point during the foregoing assembly after installation of top elbow 50 into collar 30, upper section 53 and lower section 54 of top elbow 50 may be rotated relative to each other to provide appropriate angular orientation E of lower section 54 toward a target location of the building ceiling below. Likewise, the abutment of upper flange 51 of top elbow 50 with inner lip 32 of collar 30, and the abutment of shoulder 52 or dimples 52′ of top elbow 50 with ledge 35 of collar 30, allow top elbow 50 to be rotated within collar 30 to provide appropriate directional orientation of lower section 54 toward such target location of the ceiling below.
Exterior dome 25 may be attached to collar 30, either by predetermined snap fit configuration or by the use of mechanical clips.
With exterior dome 25, collar 30, flashing 40, top elbow 50, upper light tube 60, lower light tube 70 (and such additional, serially-connected light tubes as necessary), and displacement absorber 80 so interconnected, the subassembly may be inserted through the hole in the roof from the outside of the building. Engagement of female interlock 61 with male interlock 71, 71′ will prevent lower light tube 70 and displacement absorber 80 from falling from the bottom of upper light tube 70 into the building, and maintain the structure so assembled.
At such point, or later, flashing 40 may be affixed to curb 28, if a rooftop curb is used, or may be sealed to surrounding roofing systems if no curb is used.
Exterior installation steps having thus been completed, lower adaptor box 95 may be attached to the displacement absorber from inside the building, for example with lower band 86. Once the approximate final location of the lower adaptor box 95 is determined, even in the absence of ceiling rafters or a suspended ceiling grid, screws 72 (
Cabling 90 may then be installed from a roof rafter to a lower light tube, for example lower light tube 70, and thereby provide earthquake resistance means for secondarily securing the skylight assembly to the building roof.
In locations in which final placement of lower adaptor box 95 into a ceiling (not shown) or into a suspended ceiling grid 29 (
While the particular skylight with displacement absorber and interlocking telescoping tubes as herein shown and described in detail is fully capable of attaining the objects of the invention, it is to be understood that it is the presently preferred embodiment of the present invention and is thus representative of the subject matter that is broadly contemplated by the present invention. It is to be further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art. It is intended that the present invention include such modifications and variations as come within the scope of the appended claims and their equivalents, in which reference to an element in the singular is not intended to means “one and only one” unless explicitly so stated, but rather “one or more.”